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Abstract— With the current generalisation of parallel archi-
tectures arises the concern of applying formal methods to
parallelism. The complexity of parallel, compared to sequential,
programs makes them more error-prone and difficult to verify.
Bulk Synchronous Parallelism (BSP) is a model of computation
which offers a high degree of abstraction like PRAM models
but yet a realistic cost model based on a structured parallelism.
We propose a framework for refining a sequential specification
toward a functional BSP program, the whole process being done
with the help of the Coq proof assistant. To do so we define BH,
a new homomorphic skeleton, which captures the essence of BSP
computation in an algorithmic level, and also serves as a bridge h;) along a line in the mountain (see Fig. 1):
in mapping from high level specification to low level BSP parallel
programs. (1, h1), .oy (@i hi)s e ooy (T, B

Fig. 1
TOWER-BUILDING PROBLEM

|. INTRODUCTION and two special point§ry,, hy) and(xg, hr) on the left and

right of these locations along the same line, the problem is

to find all locations from which one can see the two points

after building a tower of height. If we do not think about

3fficiency and parallelism, this problem can be easily sblve

”E)% considering for each locatiofx;, h;), whether it can be
en from bothxy,, hy) and(xg, hgr). The tower with height

h at location(x;, h;) can be seen fronizy,, hy) if for any

e 1,2,...,1— 1 the inequality

With the current generalisation of parallel architectused
increasing requirement of parallel computation arisesctive
cern of applying formal methods, which allow specification
of parallel and distributed programs to be precisely starsdi
the conformance of an implementation to be verified usi
mathematical techniques. However, the complexity of pelral
programs, compared to sequential ones, makes them m
error-prone and difficult to verify. This calls for a stropg|

structured form of parallelisni [18][[22], which should not hi —h, _ hthi—hy

only be equipped with an abstraction or model that conceals Tk — XL Ti —TL

much of the complexity of parallel computation, but alsgg|ds. Similarly, it can be seen frofaz, hz) means that for
provide a systematic way of developing such parallelisrmfroany;C —i+1,...,n, the inequality

specifications for practically nontrivial examples.
The Bulk Synchronous Parallel (BSP) model is a model for h = hr < hthi —hr
general-purpose, architecture-independent parallebrpro- TR — Tk TR — T
ming [10], [28]. The BSP model consists of three componentsplds. While the specification is clear, its BSP parallel pro-
namely a set of processors each with a local memory,geam, say in BSMLI[[B], a library for BSP programming in
communication network, and a mechanism for globally sythe functional language Objective Caml, is rather comptida
chronising the processors. A BSP program proceeds as a sefigis gap makes it difficult to verify that the implementation
of super-steps. In each super-step, a processor may opeiatrrect with respect to the specification.
only on values stored in local memory. Values sent through th In this paper, we propose the first general framework (in
communication network are guaranteed to arrive at the endS¥éct[T]), as far as we are aware, for systematic developofent
a super-step. Although the BSP model is simple and concisertified functional BSP parallel programs. More specilical
it remains as a challenge to systematically develop efficiefl) we introduce a novel algorithmic skeleton (Sécl. 115
and correct BSP programs that meet given specifications. Homomorphism (oBH for short), which can not only capture
To see this clear, consider the following tower-buildinghe essence of BSP computations at algorithmic level, lsat al
problem, which is an extension of the known line-of-sighterve as a bridge by mapping high level specification to low
problem [4]. Given a list of locations (positiar; and height level BSP parallel programs; (2) we develop a set of useful
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Fig. 2 homomorphismif it is defined recursively in the form of
AN OVERVIEW OF OURFRAMEWORK FORDEVELOPING CORRECTBSP
PROGRAMS h [] = id@
h [a] = fa
hz+y) = (hz)o(hy)
theories (SecE_IV) in Coq for systematic and formal deiomt where applying a functiorf to an expression is written f =,
of programs from specification t®H, and we provide a [z1,...,x,] denotes the list containing the elementsto x,,,

certified parallel implementation (Se€fl V) &H in BSML -+ denotes list concatenatioit; denotes the identity unit of
so that a certified BSP parallel program can be automaticatly Sinceh is uniquely determined by and®, we will write
extracted; and (3) we demonstrate with examples that our néw= (©, f]).
framework can be very useful to develop certified BSP pdralle Though being general, different parallel computation mod-
programs for solving various nontrivial problems (S&ci).VI els would require different specific homomorphisms togethe
with a set of specific derivation theories. For instance, the
Il. AN OVERVIEW distributed homomorphism [11] is introduced to treat the

Figure[2 depicts an overview of our framework. We inseftyper-cube style of parallel computation, and the accutivela
a new |ayer, called “a'gorithm irBH”, between pr0b|em homomorphismEES] is introduced to treat the skeleton ﬂﬂl’a|
specifications and certified BSP parallel programs, so asa@mnputation.
divide the development process into two easily tackingsstep Our BH (BSP Homomorphism) is a specific homomorphism
A formal derivation of algorithms from specification ®H carefully designed for systematic development of certiB&®
and a proof of correctness of a BSML implementatiorBef. ~ algorithms. The key point is that we formalise “data waiting

In our framework, a specification is described in Cog [26fnd “synchronisation” in the super-step of the BSP model
allowing the user to be confident in its correctness witholy computation of gathering necessary information around
concern of parallelism. We chose to take Coq definitions & each element of a list and then perform computation
specifications for reasons of simplicity of our system, amd findependently to update each element.
giving access to the full strength of the Coq assistant tegoro Definition 1 (BSP HomomorphismfGiven functionk, two
initial properties of the algorithms (the system will therop homomorphismsg;; and g2, and two associative operatofs
vide a proof that these properties are preserved througheutand ®, a functionb’. is said to be a BSP Homomorphism or
transformations). In the first step, we rewrite the spedifica BH, if it is defined in the following way.
into a program using th&H skeleton, in a semi-automated

. : bh [a] I 7 = Jkalr]

way. To do so, we provide a set of Coq theories dskerand bh (z +y) L bhal (g y®r) +
tools to make this transformation easier. This transfoionas bh y (i ®1 )
implemented in Coq, and proved to be corré&, preserving y g2 )T
the semantics of the initial specification. Thus, this stephe abovebh defined with functions:, g1, g», and associative
converts the original specification into a program (using) Brbperators® and @ is denoted as
that is proved equivalent. In the second step, we replace the bh = BH(k, (g1, ®), (g2, ®)).
calls to the skeletorBH in the algorithm with a parallel  Functionbh is ahigher-orderhomomorphism, which takes
implementation (in BSML) that is proved correct. By using tha |ist as input and returns a new list of the same length. In
program extraction features of Coq on the rewritten albarit addition to the input listph has two additional parameters,
we get a parallel program that implements the algorithm ef th and », which contain necessary information to perform
specification, and that is proved correct. computation on the list. The information bandr, as defined
in the second equation and shown in [Elg. 3, is propagated from
left and right with functiong g2, ®) and (g1, @) respectively.

Homomorphisms play an important role in both formal It is worth remarking that BH is powerful; it cannot only
derivation of parallel programs |[7],[12] [14]/[16] anddescribe super-steps of BSP computation, but is also paiverf
automatic parallelisation[ [20]. Functioh is said to be a enough to describe various computation including all homo-

I1l. ABSP HOMOMORPHISM



morphisms (map and reduce) (Sécfl 1V), scans, as well as thecompute the maximum sum of all the prefix sublists.
BSP algorithms in[[10]. For instance, supposingips is the function that solves the

roblem, we have
IV. DERIVING ALGORITHMS IN BH P

In this section, we show how to derive correct algorithms mps [1,—1,2] =11 (14 (=1)) T (1 +(-1) +2) =2

in. terms .Of BH from problem specifications. The specificatiowe have two ways to solve this problem. One is to decompose
gives a direct solution to the problem, where one does nat N&fis problem to smaller ones, each of which can be described

to think about low level parallel computation issues, sush ith our list functions, and then compose them together.

Iay_out of processors, task distribution, data commureai Following this idea, we could solve the maximum prefix sum

r‘|5roblem by first enumerating all the prefix sums and then

algorithm in terms of BH based on a set of transformatioa:bmpute their maximum

theorems.
A Specification mps = Maxrimum o psums

- Specmcat where mazimum = (1, id))

Coq functions are used to write specification, from which psums = scan (+)
an algorithm in BH is to be derived. Recursions and the _ L
well-known collective operators (such as map, fold, andsca Certainly, there could be other specification for the same
can be used in writing specification. To ease description Bﬁ?ble,m' For ex_am;f)le, we cobuldhslolfve thés pm(;)'e.”;]?; by the
computation using data around, we introduce a new coliectil?loWing recursive function (both leftwards and rightaay.

operatormapAround. mps |] = 0
The mapAround, compared tomap, describes more in- mps ([a] ++2) = 071 (a+ mps(y))
teresting independent computation on each element of lists mps (x 4+ [a]) = mps(z) T (sum(z) + b)

Intuitively, mapAround is to map a function to each element

(of a list) but is allowed to use information of the sublists i Heresum can be defined similarly and its definition is omitted
here

the left and right of the element, e.g., H
mapAround [ [x1,x9,...,2,] = B. Theorems for DerivindggH
[f ([, (22, s mnl), f ([21]s 22, 23, 24]), Since our specification is a simple combination of colleztiv
o (e, meea] 2, ) ] functions and recursive functions, derivation of a cedifSP

. ) o . parallel program can be reduced to derivation of certifie®® BS
In addition, we provide a set of communication funCt'onﬁarallel programs for all these functions, because the lsimp

such aspermute, shiftL, shiftR to redistribute list elements. ., bination is easy to be implemented by composing super-
They are designed to be not only useful for reconstructirgqeps in BSP

lists in the specification level but also equipped with lowele While simple communication functions may be mapped

certified BSP mplem_entgnons. o directly to certified BSP parallel programs, it is more diffic
Example 1 (Specnflcgnon of the quer-Bq|Id|ng Pr,Oblem)for the collective functions and recursive functions, vhicay

Recall the tower-building problem in the introduction. We o ametrised with other functions and have more flexible

can solve it directly usingmapAround, by computing o,y tation structure. Our idea is to map these functiotts in

independently on each location and using informatiorBﬁ_L and then show howH can be mapped to a certified BSP
around to decide whether a tower should be built at thbsarallel programs.

location. So our specification can be defined straightfatlyar = i<t et us see how to deal with collective functions. The

as follows. central theorem for this purpose is the following theorem.
tower (wr,hr) (vr,hr) 7s = mapAround visibleLR s Theorem 1 (ParallelisationnapAround with BH): For a
where visibleLR (Is, (x;, h;),rs) = function
visibleL s x; A visibleR rs x; h = mapAround f
h+h;—hp

visibleL ls x; = mazAngleL Is < == .
hthi—hy  if we can decompos¢ as f (Is,x,rs) = k (g1 Is,x, g2 75),

TR wherek is any function andy; is a composition of a function
The inner functionmazAngleL is to decide whether the left ), with a homomorphisnh; = (@®;, k;]), then

tower can be seen, and is defined as follows (wherg b

visibleR rs x; = maxAngleR rs <

returns the bigger of andb). h ws = BH(K', (h2, ®2), (h1,®1)) 75 1, ta,
mazAngleL [] = -0 E (l,x,r) = k(p1 l,x,p2 r) holds
mazAngleL ([(z,h)] ++xs) = Z:Zi 1 mazAngleL xs where ¢ (g, is the (left) unit of®,,

and the functionmaxzAngleR can be similarly defined. O be, 1S the (right) unit of &, .

Example 2 (Maximum Prefix Sum Problem Specification): ~ Proof: This has been proved by induction on the input
Consider the maximum prefix sum problem [4], which i¢ist of » with Coq (available in[[27]). [ |



Theorem[dl is general and powerful in the sense that itExample 4 (Maximum Prefix Sum Problem Derivation):
can parallelise not onlynapAround but also other collective Derivation of BH from the specification
functions toBH.

. . mps = maximum O PSuUmMs
For instance, the usefisicancomputation P P

where mazimum = (1, id))

scan (@) [x1, 2o, . .., Tp] = [T1, 21DT2, . . ., T1 DT By psums = scan (+)

, . _ given above is straightforward, because it is a composition
is a specialmapAround: scan (©) = mapAround f where 5 pomomorphism and a scan, both of which can be mapped

fs,z,rs) = first (([@,id]) Is,x,[]) andfirst returns the first to BH according to Theorerfl 1 and Corollddy 1. -
component of a triple.

What is more important is that any homomorphism ca@. Theorem Implementation in Coq

be parallelised withBH, which allows us to utilise all the Tpe Coq proof assistanf1[2][1[3][26] is based on the
theories [[7], [12], [14], [[16], ([2D] that have been develdpecaicylus on inductive construction. This calculus is a bigh
for derivation of homomorphism. order typedi-calculus. Theorems are types and their proofs
Corollary 1 (Parallelisation Homomorphism witBH): are terms of the calculus. The Coq systems helps the user to
Any homomorphism(®, k) can be implemented with BH.  pyiid the proof terms and offers a language of tactics to do so
Proof: Notice that (®,k) = last o mapAround f where Coq s also a functional programming language. In appendix
f(s,x,rs) = ((&, k)zs) & (k). It follows from Theorenidl \ye give a very short introduction to Cog.
that the homomorphism can be parallelised bt B \We use the Coq proof assistant to prove correct the deriva-
Now we consider how to deal with recursive functionsjons from a functional specification to a BH skeleton instan
This can be done in two steps. We first use the existifgtion. Derivations and parallel term retrieving is autisd
theorems [[12], [[14], [[20] to obtain homomorphisms fronysing a newly introduced feature in Coq: Type clas5es [24].
recursive definitions, and then use Corollaty 1 to Bet for The full code can be downloaded [27].
the derived homomorphisms.
It is worth noting that homomorphisms are very important V. BH TO BSML: CERTIFIED PARALLELISM

in all our derivations ofBH, not only becauseBH itself e have until now supposed a certified parallel implementa-
is a specific homomorphism, but also because many of aign of BH on which the algorithms rely. This implementation
derivations go along with derivations of homomorphisms. Fgs realized using Bulk Synchronous Parallel ML (BSML) [8],
example, in Theorefl 1, our main theorem, we have to deriyg efficient BSP[[10],[[28] parallel language based on Objec-
homomorphisms so that functiofi can be defined in a way tive Caml and with formal bindings and definitions in Coq. In
that the theorem can be applied. Cog, we prove the equivalence of the natural specification of
Example 3 (Derivation for the Tower-Building Problem): BH with its implementation in BSML, therefore being able to
From the specification given before, we can see thahnslate the previous BH certified versions of the algamith
Theoren( is applicable with to a parallel, BSML version. We also analyse the parallel

erformances of this implementation.
visibleLR (s, x,rs) =k (g1 ls,x, g2 18) P P

where g1 = mazAngleL A. Bulk Synchronous Parallel ML: An Overview

ZQ = mclmAngileR B a) Bulk synchronous parallelismA BSP machine can
(maz ’_(xi’hi)};f,?fr) D be though as a homogeneous distributed memory machine
(mazl < ) A (mazr < ) ith a unit able to synchronise all the processors. A BSP

r—xy,
provided thaty; andgs can be defined in terms of homomor.Prodram is executed as a sequencesgper-stepseach one
phisms. divided into (at most) three successive and logically dnsgml

: : hases: (a) Each processor uses its local data (only) torperf
B lying the th [ T12]/ TL4][20], p . .
y appyying the theorems n ] ] I, we Cansequenual computations and to request data transfersro/f

ngil\llét?obr:a}? gziofrc])(ljlﬂvr\]/;ngct(\;vr?eh;r?r(;?g;pph;f? s (the dewlleother nodes; (b) the network delivers the requested data
transfers; (c) a global synchronisation barrier occurskinta
mazAngleL = (1, k1)) where 1= maz; ki (z,h) = % the transferred data available for the next super-step.
mazAngleR = (1,ks) where ky (z,h) = hazh The performance of a BSP machine is characterised by 3
" parametersp is the number of processor-memory paifsis
Therefore, applying Theorefd 1 yields the following resuthe time required for a global synchronisation and the time
in BH. for collectively delivering a 1-relation (communicatioimgse
where every processor receives/sends at most one word). The
network can deliver am-relation in timeg x h for any arity
h. The BSP parameters can be determined in practice using
benchmarks: first a fourth parametershe computing power

of the processors is determined (in flop/s), then sgfread L’

tower (xr,hr) (xr,hr) xs =
BH (k, (mazAngleL,T), (mazAngleR, 1)) xs (—o0) (—o0)
where k (maxl, (x;, h;), mazxr)

= (maxl < %) A (maxr < tthizhe)

TR—X



are measured in/word ands, and the final BSP parametersype for parallel vectors of string could be writt@ar string
areg = g’ x r (in flop/word) andL = L’ x r (in flop). (and is writtenstring par in BSML).

The execution time (ocos) of a super-step is thus the sum In the informal semantics above, a parallel vector consists
of the maximal local processing time, of the data delivemeti of p values. As the typgar is opaque in the formalisation in
and of the global synchronisation time: Coq, to model this we assume that the tyme comes with

max  wi+ max  max(h,hT) x g+ L a functionget that can access any component of the parallel

o<i<bspp o<i<bspp vector:
where, at processai, w; is the local sequential work per-Parameter get: VA: Set, par A —processor —A.

formed during the computation phase! is the size of data Given a typeT, a parallel vectorvec of type par T and a
sent fromi to other processors, artg™ the size of the received processofi, (get T veci) is the value held by processofin
data by processarfrom other processors. parallel vectonec.

b) .BSML paral_lel vectorsBSML d§5|gned as a ful I_an-_ c) Parallel vector creation:The primitive mkpar is used
guage, is currently implemented as a library for the Obyecti to create parallel vectors. It takes a functignas argument
Caml| Ianguaggl]S]. BSML qffers an access to the paramet%rﬁ,d creates a parallel vector that contains the valug of at
of the underlying BSP architecture with the constabtgi.p processoti, 0 < ¢ < bsp_p. The signature of this primitive is:

(an integer) bsp.g, bSpTI’ and bSpfr (flqats). . mkpar: (int— 'a) — 'a par, and informally its semantics could
A BSML program is not written in the Single Programbe written as:

Multiple Data (SPMD) style as many parallel programs are,

but offers aglobal view of the parallel program. It is a mkpar f = (f 0,...,f (bspp—1))
usual OCaml program plus operations on a parallel data ) ) ) )
structure. This structure is called parallel vector ancais an [N the interactive loop of BSML (I8 on a machine with
abstract polymorphic type par. A parallel vector has a fixed & Processors, one could have the following result:

width bsp_p equals to the constant number of processes in#det this = mkpar (fun i — i);;

parallel execution. We will informally write/x,...,z,_,) val this:intBsml.par=<0,1,2,3, 4,5>

for a paralle! vector of Siz&, which contains the Valqei # is the prompt inviting us to write an expression to evaluate.
at processofi. The nesting of parallel vectors is 1‘orb|dden,rhe expressioriet this =. . . is used to define the valugis

BSML provides four primitive_s f_o_r the manipulatior_w of _pdail by applying the primitivemkpar to the (anonymous) identity
yegtors. For each Of, these primitives, we wil give Its s@mg, _function. In the second line, the top-level answers thatlaeva
:tns énofgrmal semantics, examples of use and its formabsati |y called this has been defined, that it is a parallel vector
In the Coq developments of our framework, all the moduleosfg\nfgei[}sl f;tniiirglr'lp;)e;:litf value is(0, 1,2,3,4,5)-
related to parallelism are functors that take as argument a
module which provides a realization of the semantics @flet replicate =fun x — mkpar(fun - — x);
BSML. This semantics is modelled in a module type calleff! "eplicate : 'a —’a Bsml.par = <fun >
BSML_SPECIFICATION. A module type or module signaturey gt yx = replicate "PDCAT":;
in Coq is a set of definitions, parameters and axioms, therlatyx : string Bsml.par = <”"PDCAT”, "PDCAT”, "PDCAT",
being types without an associated proof terms. "PDCAT”, "PDCAT", "PDCAT">
The module type8SML_SPECIFICATION contains : the def-

I . . The evaluation of an application afkpar to a functionf is
inition processor of processor names, and associated axiomss "\ ithout any communication (any usual Objective Caml
the typepar of parallel vectors; the axioms which define the

. o value is replicated on all the processors, hence the fumctio
semantics of the four parallel primitives of BSML. and is done during the asynchronous computation phase of
A naturalprocessor_max is assumed to be defined. The totaﬁ)’ 9 y P P

number of processor, the BSP parametgr.p is the successor a BSP super-step. Its .BSP COSHMXOSKDSFlpf i wheree
. . ! } denotes the time required to evaluate expression
of this natural. The typ@rocessor is defined as:

The semantics of the parallel primitives of BSML in Coq are
Definition processor := { pid: nat | pid < bsp.p }. specified using theet function. It is a quite straightforward
A term of type {x:A|P x} is a value of typeA and a proof translation of the informal sema_nti_cs. Inst_ead of giyi_ng th
that this value verify the propery. A value of typeprocessor result parqllel vector as a whole it is des_cnt?ed by giving th
thus a pair: A natural and a proof that this natural is low&f@lués of its components. A Coq formalisation of th&par
than bsp_p. primitive is thus:

The type of parallel vectors is an opaque type Parameter mkpar_specification : V(A:Set) (f: processor —A),

Parameter par: Set—sSet. { X: par A | Vi: processor, get X i =fi }.

This means thapar could take as argument a type and returns
a 9 yp lin case the reader wants to try the examples in the interattiop

a new type: Itis a polymorphic type thus it has as argument t mmandbsm ) while reading the paper, she needs to wdfgen Bsml;;
type of the values contained in the vectors. For example, he beginning of the session.



d) Point-wise parallel application:As the typepar and let choice root pid value =
the primitive mkpar are polymorphic, it is possible to create let toall = fun dst — [value]

rallel vectors of functions. For example: and nothing = fun dst — [Jin
parallel vectors of functions. For example if pid=root then toall else nothing

# let vf = mkpar(fun i— fun x — x~ (string_of_int i));; . . .
val vf - (string—gstring) Bsml.par:<£ fung>, <3‘Ln>> Then after the functiorchoice is used to build a parallel

vector of functions describing the communications we want
Thus we may need to apply a parallel vector of funao perform, and this parallel vector is given as argument
tions to a parallel vector of values. Such an application {6 put, we need to retrieve the sent values. Here again the
not a usual functional application: We need a primitive tgsp_p possible received values by a processor are encoded
perform it. This primitive is calledapply. Its signature is: as a function. To know the value sent by a processtr a

apply:(‘a— 'b)par— 'a par— b par. processorj, one has to apply, at processgrthe obtained
For example, we can apply the parallel vector of functiorfgnction to:. In the case of the broadcast, all processors need
vf to the parallel vector of valuesx: to apply the function to the processamot:
# let v2 = apply vf vx;; # let broadcast root vx =
val v2 : string Bsml.par = <”"PDCAT0”, "PDCAT1”, "PDCAT?2”, let msg = apply (mkpar(choice root)) vx in
"PDCAT3", "PDCAT4", "PDCAT5"> parfun List.hd (apply (put msg) (replicate root));;

) ) ) val broadcast : int — 'a Bsml.par — 'a Bsml.par = <fun >
The informal semantics adpply could be written as:

# let v3 = broadcast 3 v2;;
apply (fo, ..., fp—1) (zo, ..., p—1) = (fo To, .., fp—1 Tp—1)  val v3: string Bsml.par = <"PDCAT3", "PDCAT3", "PDCAT3",
"PDCAT3", "PDCAT3", "PDCAT3">
The evaluation of an application apply requires no commu-

nication. Its BSP cost imaXO<i<bSpp f; 7. In Cog, apply is The evaluation of an application of tipat primitive requires
specified as follows: - a full super-step: First the messages are computed from the

parallel vector of functions describing the messages tal;sen
then the messages are exchanged; and a global synchromisati
ends the super-step in order to allow the functions desxayibi
the received messages to be built. In the following, we note

Very useful functions which are part of the BSML standarflv | the size (in words) of the value, and(e)J the result of
library could be implemented frommkpar and apply such as: the evaluation of the expressien The BSP cost oput is:

Parameter apply_specification :
V(A B: Set) (vf: par (A —B)) (vx: par A),
{ X: par B | Vi: processor, get X i = (get vf i) (get vxi) }.

(x parfun: (a — 'b) — 'a par — ’b par x) bspp-1
let parfun = fun fv — apply (replicate f) v max Z fij) + max (hj,hi_) xg+ L
o<i<bspp — o<i<bspp
There exist variantparfunN of parfun for point-wisely ap- =
plying a sequential function witiN arguments ta\N parallel | a— J#i "~
vectors. where }Z— %gifd’sap : E; j;h
L, = . )
e) Communications:The two last primitives of BSML i 0<j<bspp I \Jj
require both communication and synchronisation. R is the total size of the messages sent by processehile

The primitive put is used to exchange data between pra:; is the total size of the messages received by processor
cesses. It takes and returns a parallel vector of functidhs. The Coq specification gfut is:
each processor the input function describes the_me:;sage_}'s_,‘,jlt%meter put_specification :
be sent to other processors and the output function describey(a:set) (vf: par (processor —A)),
the messages received from other processors. Its signatufeXx: par (processor —A) | Vi j: processor, get X ij=get vfji }.
is put:(int— 'a)par— (int— 'a)par and it informal semantics

follows: The last primitive proj:’a par— (int— 'a) is the inverse of

mkpar (for functions defined on the domain of processor
put (fo, ..., fp—1) = (M. fi0,.. ., Ai. fi(p — 1)) names). It also requires a full super-step, we omit the detai
for the sake of conciseness.
At processori, the function f; encodes thessp_p possible

messages to be sent to other processors. Some values, aBthH in BSML

empty list or the first constructor without parameters inmsu As a larger BSML example, we present in Fig. 4 a par-
type, are considered to mean “no message”. For example if aleel implementation of the BH algorithmic skeleton where
want to broadcast a value at a specific processor in a paraiefuence n1 n2 returns the listin1; ... ; n2], bh_seq is a se-
vector to all other processors, we will use two functionseOmguential implementation of BH and type of communicated data
that will send this value to every processor, one that witidse is type ('I,’r) comm_type = Lcx of 'l | Rex of 'r | Nex.

nothing to every processor. The first of these functions lshou Given a list that is split into local chunks in the order of the
be used by the processor that is the root of the broadcast, anolcessors, the preliminary local computation (applhghand

the second function by all other processors: gr) can be done with thapply primitive; then aput is used to



let bh_par k gl opl gr opr = fun (I: 'l) (Ist: 'a list par) (r: 'r) —
let accl = parfun gl Ist
and accr = parfun gr Ist in
let comms = put(apply(
apply(
mkpar(fun i accr accl receiver —
if i < receiver then Lcx accl
else if i > receiver then Rcx accr
else Ncx)) accl)accr) in
let Iv = parfun2
(fun c pl —
fold_left
(fun acc i — opl acc (match ciwith Lcx x— X))
|
pl)
comms
(mkpar(fun pid— sequence 0 (pid—1)))
and rv = parfun2
(fun c pr —
fold_right
(fun iacc — opr (match ciwith Rcx x— x) acc)
pr
)
comms
(mkpar(fun pid— sequence (pid+1) (bsp-p—1))) in
parfun3 (bh_seq k gl opl gr opr) Iv Ist rv

Fig. 4
AN IMPLEMENTATION OF BH IN BSML

of the proj primitive) and eventually merges the lists into one
list.

In order to prove this theorem, two intermediate results
are necessary. They state that at a given processor, the Coq
formalisation ofvl and vr in Fig. [4 are respectively equal
to applying gl (resp.gr) to the sub-list of elements being
on the left (resp. the right) of the local sub-list. The pmoof
are technical and use several steps where sub-lists are cut
and combined. The proofs (available in_[27]) are done by
considering the processor list as being the (list+p::nil)++I2
and by reasoning by induction dn for vl and onl2 for vr.

D. BSP Cost of Parallel BH

The BSML implementation oBH applied to parameters
k, gl, &, gr, @, and st (assumed to be values) has the
following complexity: The computation is done in one full
super-step followed by some asynchronous local computatio
We assume each procesgdnas a contiguous part of the list
lst, that will be denoted byst,;.

The BSP cost of the application of BH is:

seq + max max(h,h; ) x g+ L+ seqa
o<i<bspp

The first phase computes on each processor, the two “sum-
maries” of the values held by the processor: One to be sent to

send the computedvalue leftwards to every other processoiprocessors at its left (computed witi), and one to be sent
and thel value rightwardsapply is then sufficient to locally to the processors at its right (computed with):
compute BH on the local chunks using the sequential version

of BH.

5€q1 = max (m + W)
o<i<bspp

However this implementation is not proved correct to the

definition of BH.

C. Proving Correct BSML Implementation of BH in Coq

After that, each processor sendsi; = (gl Ist;)| to
processors with smaller processor names ang (gl lst;)]
to processors with greater processor names. So the size of

From the axioms presented in subsecfionlV-A above, v@changed data is:

obtain four Coq functions that verify the BSML specificaton
These functions and their properties are used when we prove
the correctness of a parallel version of BH with respect to

definition[1.
The main theorem is:

Theorem bh_bsml_bh Ist: V(L A R B:Set) (kL—A—R—B)
(gl: list A—L) (opl:L—L—L) (gr:list A—»R) (opr:-R—R—R)

(gl-hom : is_homomorphism A L gl opl)
(gr-hom : is_homomorphism A R gr opr)
(Ist:list A),

list_of_par_list(bh_bsml_comp (gl nil) (scatter Ist) (gr nil))) =

bh_comp k gl opl gr opr (gl nil) Ist (gr nil).

{ hi = ix L] +(bspp—1—1i) x |r;]
b= Eiso Iml + S5 1L

The remaining asynchronous local computation proceeds
as follows: First, on each processor the received list df lef
(resp. right) summaries is reduced with (resp.®,.). Then
a local sequential BH is performed: It is implemented as the
computation of the local left and right summaries for each
element of the local list yielding to listd; andlr;. However
each of these lists can be computed with traversing only once
the local listist;. The computation ends with apphkyto each
triple of the list obtained as the combination of the threésli

It states the equivalence oh.comp and the parallel version ;. .. andir;. We do not detail the cost in the general case.

bh_bsml.comp. The bh_bsml.comp function is quite similar t0 |, cases wherey;, @,., andk have constant complexity, ane
the direct implementation of BH in BSML given in Fig. 4. Thisyq gl have constant complexity on singleton lists, we have:
function takes a distributed list (or parallel vector oftdlsas .4, ¢ O(length Ist;).

input (type’alist par in BSML and par(list A) in Coq), and

Tower building complexity:With the example of tower

also returns a distributed list wherelals comp takes as input building, &; = ®, =1 has constant complexity providing that

a list and returns a list. Thus some conversions are need\%. can do a comparison in constant timeazAnglel and
scatter takes a list and cuts it into pieces that are distribute%amAngleR have the same complexity:

list_of_par_list does the inverse: it takes a parallel vector of lists

converts it to a function from natural to lists (using a vatia

mazAngleL lst = mazAngleR st € O(length lst).



So extracted Tower Building has complexity: 100
I 2 ]
max O(length lst;) + g+ O(p) + L 10+ 8 & E
o<i<bspp [ s § + 1
Thus, if the listist is evenly distributed the complexity is: 1k A % & E
A8
O(length lst/p) + g« O(p) + L. 01k & N o ]
r & ¥ Computation time for extracted program<
VI. PROGRAMSEXTRACTION AND EXPERIMENTS ooil § & °°gg“{i?£%?;:”;s?g,"r;aﬁ_rgg{rg'g{l’ggr?g?;agggg 1
) [ . ( time for direct implementation x 7
Let us summarise the different steps towards a proved I Compgfrg%ﬂtggg] tfé%fg;ng"ggrr%f{;egt{;%ﬁ% from cogs
correct parallel implementation of the tower building peoh: 0001l
. . . . 100000 1e+06 1le+07 1e+08 1e+09
(a) First we specify the problem as an instancenapAround,; clements
(b) using theorerfil1, we prove that the problem is an instance
of BH; (c) using theorembh_bsmi_bh, we prove that the Fig. 5
problem is an instance of the parallel version of BH. TOWERBUILDING TIMINGS (IN s)

From this latter proof, we can extract an implementation
of the tower building problem in BSML. The resulting code
is of course similar in structure of the code of the direct 40 ; ‘ ‘
implementation of BH in BSML (FidJ4). The main differences .| i o on & |
are on the sequential data structures. The lists type arenine
defined inductively in Coq, not the optimised ones defined in
Ocaml. The BSML primitives in Coq manipulaigocessor
andnat which rely on a Peano encoding of naturals. Thus the
extracted code containgpe nat=| O | S of nat which is very
inefficient for computations.

To test the differences of efficiency between extracted and
non-extracted programs, we experimented with two differen
tower building programs: The direct implementation and the
implementation extracted from the derivation in Coqg. The

40

experiments were conducted on the “Centre de Calcul Sci- provessers
entifique de la Rgion Centre (CCSC)” which is a 42 nodes Fig. 6
cluster of IBM blades with 2 quad-core Xeon E5450 and 8 Gb TOWERBUILDING SPEEDUP

of memory per blade.
We had to use only one core per CPU due to a dramatic
loss of performance in MPI communications when multiple
cores of the same CPU try to access to the network, and we VII. RELATED WORK

were able to book up to 18 nodes of the cluster. , .
Our framework combines two strength: constructive algo-

In order to avoid the garbage collector of OCaml to beh . d d t bulk h llel |
triggered too often, we grew the minor heap size to 1 Gb. é MIC and proved correct bulk synchronous paraiiel laxgs

performed a garbage collection after the computation aokl to n tg'sl peflpgr l\ll(veSfocur? on the ;emﬁnltlc'\jl_of thhg [r)]rogramf_ml?g
its time into account in our benchmark. Indeed, when the d4fipde! of bBu ynchronous Farafie , WhiCh was 1irs

are to big to fit in the minor heap, the recurrent calls to thePress as an extension of thecalculus [ID]. It is pos-

garbage collector dramatically hinder the overall perfance. sible to implement t'h.|s semantics as a sequ'ent|al program,
. S for example by realizing parallel vectors by lists or arrays
Figure[® shows, for 12 processors the computation time fgr o o ;
ut as it is traditional in data-parallel languages, we also

different sizes of data. We can see that the programs erecuti . . . : .
time (and the garbage collection time) grows linearly with t provide the semantics of an execution model which describes

amount of data. The extracted version of the program is slov&ge paraliel implementation of BSML programs as SPMD

than the direct implementation with a time factor between fograms. We even propose a semantics which is even closer to

. . : the real implementation: a parallel abstract machine. dse
and 2.5. As said earlier, this come most probably from tr};eemantics have been proved equival@ht [9]. Thus proving the
difference in data structure encoding. P q ' P 9

As shown by figuis, the speedup of both implementatic?r?rrecmess of a BSML program using the semantics of the

is linear with the number of processors, for a fixed amount of
data (5.120.000 elements).
We also performed experiments on the Maximum Prefix Fig. 7
Sum example on another cluster, up to 32 processors. Hijure 7 MAXIMUM PREFIX SUM SPEEDUP
also shows a linear speedup (320.000 elements).
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A-calculus. Theorems are types and their proofs are termsAdfer simplification, we obtain the god@(plus n O) =S n. We
the calculus. The Coq systems helps the user to build the preolve it first by rewritingelus n O in n using thelHn hypothesis

terms and offers a language of tactics to do so.

and then we conclude by reflexivity.

We illustrate quickly all these notions on a short example : Mixing logical and computational parts is possible in Cog.

Inductive nat:Set := O : nat | S : nat —nat.

Fixpoint plus (n1 n2: nat) {struct n1} : nat :=
match nl with

| O =n2

| S n =S(plus n n2)
end.

For example a function of typa—B with a preconditionP
and a postconditioi® corresponds to a constructive proof of
type: Vx:A, (P x) —exists y:B —(Q xy). This could be express
in Coq using the inductive typsig:

Inductive sig (A:Set) (Q:A—Prop) : Set := | exist: V

(x:A), (Q x) —(sig A Q).

It could also be written, using syntactic sugar,{&\|(P x)}.

L lus_.n_O: | O=n. ] . . e
emma pus-n vh, plusn : This feature is used in definition of the

induction n. : St ) X !

(+ case n=0 «) simpl. reflexivity. function pred. The specification of this function is:

(x case n>0 =) simpl. rewrite IHn. reflexivity. vn:nat, n<>O—{q:nat|(Sq)=n} and we build it using
Qed. tactics. We reason by case on(tactic destruct). The first

Definition pred : ¥n:nat, n<>0—s{q:nat|(S q)=n}. case is easily sqlveq pecause we have the hypotlesisO,
intros. the second one is trivial.
destruct n. The command:xtraction pred would extract the computa-
(x case n=0 ) elim H. reflexivity. tional part of the definition ofred. We could obtain a certified
(x case n>0 x) exists n. reflexivity. implementation of the predecessor function:

Defined .
(xx val pred : nat —nat x:x)

In this example, we first define a new inductive type, thiet pred = function
type of natural numbers in the Peano stylat has type | O —assertfalse (x absurd case )
Set which means it belongs the computational realm of the! S0 —n0
Coq language. We also define thiis recursive function on [2] is a quick yet longer introduction to Cogq.
naturals. In this recursive definition we specify the desirga
argument (herenl) as all functions must be terminating in
Coq. In both cases, we gave the type of the new name we

wanted to define as well as a term of this type.

We then define a lemma nametlis_.n_O which states that
vn, plus n O =n. If we check (using thecheck command of
Coq) the type of expression, we would obtanop which
mean that this expression belongs to the logical realm. To
defineplus_n_O we also should provide a term of this type, that
is a proof of this lemma. We could write directly such a term,
but it is usually complicated and Coq provides a language of
tactics to help the user to build a proof term. If we give to Coq
top-level the line beginning withemma we would enter the
interactive proof mode that would indicate us that we should
prove the goal:

forall n: nat, plus n O=n

We prove this goal by induction om using the tactic
induction n. The system indicates now two goals to prove:

plus OO0 =0

subgoal 2 is:
plus (Sn) O=Sn

The first one is proved using the definition gfis using the
tactic simpl which yields the goab = 0 and this case is ended
by the application of the tactieeflexivity. The second one is
the inductive case:

n : nat
IHn @ plus n O=n

plus (Sn) O=Sn
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