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Abstract— With the current generalisation of parallel archi-
tectures arises the concern of applying formal methods to
parallelism. The complexity of parallel, compared to sequential,
programs makes them more error-prone and difficult to verify.
Bulk Synchronous Parallelism (BSP) is a model of computation
which offers a high degree of abstraction like PRAM models
but yet a realistic cost model based on a structured parallelism.
We propose a framework for refining a sequential specification
toward a functional BSP program, the whole process being done
with the help of the Coq proof assistant. To do so we define BH,
a new homomorphic skeleton, which captures the essence of BSP
computation in an algorithmic level, and also serves as a bridge
in mapping from high level specification to low level BSP parallel
programs.

I. I NTRODUCTION

With the current generalisation of parallel architecturesand
increasing requirement of parallel computation arises thecon-
cern of applying formal methods, which allow specifications
of parallel and distributed programs to be precisely statedand
the conformance of an implementation to be verified using
mathematical techniques. However, the complexity of parallel
programs, compared to sequential ones, makes them more
error-prone and difficult to verify. This calls for a strongly
structured form of parallelism [18], [22], which should not
only be equipped with an abstraction or model that conceals
much of the complexity of parallel computation, but also
provide a systematic way of developing such parallelism from
specifications for practically nontrivial examples.

The Bulk Synchronous Parallel (BSP) model is a model for
general-purpose, architecture-independent parallel program-
ming [10], [28]. The BSP model consists of three components,
namely a set of processors each with a local memory, a
communication network, and a mechanism for globally syn-
chronising the processors. A BSP program proceeds as a series
of super-steps. In each super-step, a processor may operate
only on values stored in local memory. Values sent through the
communication network are guaranteed to arrive at the end of
a super-step. Although the BSP model is simple and concise,
it remains as a challenge to systematically develop efficient
and correct BSP programs that meet given specifications.

To see this clear, consider the following tower-building
problem, which is an extension of the known line-of-sight
problem [4]. Given a list of locations (positionxi and height
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TOWER-BUILDING PROBLEM

hi) along a line in the mountain (see Fig. 1):

[(x1, h1), . . . , (xi, hi), . . . , (xn, hn)]

and two special points(xL, hL) and(xR, hR) on the left and
right of these locations along the same line, the problem is
to find all locations from which one can see the two points
after building a tower of heighth. If we do not think about
efficiency and parallelism, this problem can be easily solved
by considering for each location(xi, hi), whether it can be
seen from both(xL, hL) and(xR, hR). The tower with height
h at location(xi, hi) can be seen from(xL, hL) if for any
k = 1, 2, . . . , i− 1 the inequality

hk − hL

xk − xL

<
h+ hi − hL

xi − xL

holds. Similarly, it can be seen from(xR, hR) means that for
any k = i+ 1, . . . , n, the inequality

hk − hR

xR − xk

<
h+ hi − hR

xR − xi

holds. While the specification is clear, its BSP parallel pro-
gram, say in BSML [8], a library for BSP programming in
the functional language Objective Caml, is rather complicated.
This gap makes it difficult to verify that the implementation
is correct with respect to the specification.

In this paper, we propose the first general framework (in
Sect. II), as far as we are aware, for systematic developmentof
certified functional BSP parallel programs. More specifically,
(1) we introduce a novel algorithmic skeleton (Sect. III), BSP
Homomorphism (orBH for short), which can not only capture
the essence of BSP computations at algorithmic level, but also
serve as a bridge by mapping high level specification to low
level BSP parallel programs; (2) we develop a set of useful
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AN OVERVIEW OF OURFRAMEWORK FORDEVELOPING CORRECTBSP

PROGRAMS

theories (Sect. IV) in Coq for systematic and formal derivation
of programs from specification toBH, and we provide a
certified parallel implementation (Sect. V) ofBH in BSML
so that a certified BSP parallel program can be automatically
extracted; and (3) we demonstrate with examples that our new
framework can be very useful to develop certified BSP parallel
programs for solving various nontrivial problems (Sect. VI).

II. A N OVERVIEW

Figure 2 depicts an overview of our framework. We insert
a new layer, called “algorithm inBH”, between problem
specifications and certified BSP parallel programs, so as to
divide the development process into two easily tacking steps:
A formal derivation of algorithms from specification toBH
and a proof of correctness of a BSML implementation ofBH.

In our framework, a specification is described in Coq [26],
allowing the user to be confident in its correctness without
concern of parallelism. We chose to take Coq definitions as
specifications for reasons of simplicity of our system, and for
giving access to the full strength of the Coq assistant to prove
initial properties of the algorithms (the system will then pro-
vide a proof that these properties are preserved throughoutthe
transformations). In the first step, we rewrite the specification
into a program using theBH skeleton, in a semi-automated
way. To do so, we provide a set of Coq theories overBH and
tools to make this transformation easier. This transformation is
implemented in Coq, and proved to be correct,i.e. preserving
the semantics of the initial specification. Thus, this step
converts the original specification into a program (using BH)
that is proved equivalent. In the second step, we replace the
calls to the skeletonBH in the algorithm with a parallel
implementation (in BSML) that is proved correct. By using the
program extraction features of Coq on the rewritten algorithm,
we get a parallel program that implements the algorithm of the
specification, and that is proved correct.

III. A BSP HOMOMORPHISM

Homomorphisms play an important role in both formal
derivation of parallel programs [7], [12], [14], [16] and
automatic parallelisation [20]. Functionh is said to be a
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INFORMATION PROPAGATION FORBH.

homomorphism, if it is defined recursively in the form of






h [ ] = id⊙
h [a] = f a
h (x++ y) = (h x)⊙ (h y)

where applying a functionf to an expressionx is writtenf x,
[x1, . . . , xn] denotes the list containing the elementsx1 to xn,
++ denotes list concatenation,id⊙ denotes the identity unit of
⊙. Sinceh is uniquely determined byf and⊙, we will write
h = ([⊙, f ]).

Though being general, different parallel computation mod-
els would require different specific homomorphisms together
with a set of specific derivation theories. For instance, the
distributed homomorphism [11] is introduced to treat the
hyper-cube style of parallel computation, and the accumulative
homomorphism [15] is introduced to treat the skeleton parallel
computation.

Our BH (BSP Homomorphism) is a specific homomorphism
carefully designed for systematic development of certifiedBSP
algorithms. The key point is that we formalise “data waiting”
and “synchronisation” in the super-step of the BSP model
by computation of gathering necessary information around
for each element of a list and then perform computation
independently to update each element.

Definition 1 (BSP Homomorphism):Given functionk, two
homomorphismsg1 and g2, and two associative operators⊕
and⊗, a functionbh is said to be a BSP Homomorphism or
BH, if it is defined in the following way.







bh [a] l r = [k a l r]
bh (x++ y) l r = bh x l (g1 y ⊕ r) ++

bh y (l ⊗ g2 x) r

The abovebh defined with functionsk, g1, g2, and associative
operators⊕ and⊗ is denoted as

bh = BH (k, (g1,⊕), (g2,⊗)).
Functionbh is a higher-orderhomomorphism, which takes

a list as input and returns a new list of the same length. In
addition to the input list,bh has two additional parameters,
l and r, which contain necessary information to perform
computation on the list. The information ofl andr, as defined
in the second equation and shown in Fig. 3, is propagated from
left and right with functions(g2,⊗) and (g1,⊕) respectively.

It is worth remarking that BH is powerful; it cannot only
describe super-steps of BSP computation, but is also powerful
enough to describe various computation including all homo-
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morphisms (map and reduce) (Sect. IV), scans, as well as the
BSP algorithms in [10].

IV. D ERIVING ALGORITHMS IN BH

In this section, we show how to derive correct algorithms
in terms of BH from problem specifications. The specification
gives a direct solution to the problem, where one does not need
to think about low level parallel computation issues, such as
layout of processors, task distribution, data communication.
This specification will be transformed into an equivalent
algorithm in terms of BH based on a set of transformation
theorems.

A. Specification

Coq functions are used to write specification, from which
an algorithm in BH is to be derived. Recursions and the
well-known collective operators (such as map, fold, and scan)
can be used in writing specification. To ease description of
computation using data around, we introduce a new collective
operatormapAround .

The mapAround , compared tomap, describes more in-
teresting independent computation on each element of lists.
Intuitively, mapAround is to map a function to each element
(of a list) but is allowed to use information of the sublists in
the left and right of the element, e.g.,

mapAround f [x1, x2, . . . , xn] =
[ f ([], x1, [x2, . . . , xn]), f ([x1], x2, [x3, . . . , xn]),

. . . , f ([x1, x2, . . . , xn−1], xn, []) ].

In addition, we provide a set of communication functions
such aspermute, shiftL, shiftR to redistribute list elements.
They are designed to be not only useful for reconstructing
lists in the specification level but also equipped with low lever
certified BSP implementations.

Example 1 (Specification of the Tower-Building Problem):
Recall the tower-building problem in the introduction. We
can solve it directly usingmapAround , by computing
independently on each location and using informations
around to decide whether a tower should be built at this
location. So our specification can be defined straightforwardly
as follows.

tower (xL, hL) (xR, hR) xs = mapAround visibleLR xs

where visibleLR (ls , (xi, hi), rs) =
visibleL ls xi ∧ visibleR rs xi

visibleL ls xi = maxAngleL ls < h+hi−hL

x−xL

visibleR rs xi = maxAngleR rs < h+hi−hR

xR−x

The inner functionmaxAngleL is to decide whether the left
tower can be seen, and is defined as follows (wherea ↑ b
returns the bigger ofa andb).

maxAngleL [ ] = −∞

maxAngleL ([(x, h)] ++xs) = h−hL

x−xL

↑ maxAngleL xs

and the functionmaxAngleR can be similarly defined. 2

Example 2 (Maximum Prefix Sum Problem Specification):
Consider the maximum prefix sum problem [4], which is

to compute the maximum sum of all the prefix sublists.
For instance, supposingmps is the function that solves the
problem, we have

mps [1,−1, 2] = 1 ↑ (1 + (−1)) ↑ (1 + (−1) + 2) = 2

We have two ways to solve this problem. One is to decompose
this problem to smaller ones, each of which can be described
with our list functions, and then compose them together.
Following this idea, we could solve the maximum prefix sum
problem by first enumerating all the prefix sums and then
compute their maximum.

mps = maximum ◦ psums

where maximum = ([↑, id])
psums = scan (+)

Certainly, there could be other specification for the same
problem. For example, we could solve this problem as by the
following recursive function (both leftwards and rightwards).







mps [ ] = 0
mps ([a] ++ x) = 0 ↑ (a+mps(y))
mps (x++ [a]) = mps(x) ↑ (sum(x) + b)

Heresum can be defined similarly and its definition is omitted
here. 2

B. Theorems for DerivingBH

Since our specification is a simple combination of collective
functions and recursive functions, derivation of a certified BSP
parallel program can be reduced to derivation of certified BSP
parallel programs for all these functions, because the simple
combination is easy to be implemented by composing super-
steps in BSP.

While simple communication functions may be mapped
directly to certified BSP parallel programs, it is more difficult
for the collective functions and recursive functions, which may
be parametrised with other functions and have more flexible
computation structure. Our idea is to map these functions into
BH, and then show howBH can be mapped to a certified BSP
parallel programs.

First, let us see how to deal with collective functions. The
central theorem for this purpose is the following theorem.

Theorem 1 (ParallelisationmapAround with BH): For a
function

h = mapAround f

if we can decomposef asf (ls , x, rs) = k (g1 ls , x, g2 rs),
wherek is any function andgi is a composition of a function
pi with a homomorphismhi = ([⊕i, ki]), then

h xs = BH (k′, (h2,⊕2), (h1,⊕1)) xs ι⊕1
ι⊕2

where







k′ (l, x, r) = k(p1 l, x, p2 r) holds,
ι⊕1

is the (left) unit of⊕1,
ι⊕2

is the (right) unit of ⊕2 .

Proof: This has been proved by induction on the input
list of h with Coq (available in [27]).
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Theorem 1 is general and powerful in the sense that it
can parallelise not onlymapAround but also other collective
functions toBH.

For instance, the usefulscancomputation

scan (⊕) [x1, x2, . . . , xn] = [x1, x1⊕x2, . . . , x1⊕x2⊕· · ·⊕xn]

is a specialmapAround : scan (⊕) = mapAround f where
f(ls , x, rs) = first (([⊕, id]) ls, x, []) andfirst returns the first
component of a triple.

What is more important is that any homomorphism can
be parallelised withBH, which allows us to utilise all the
theories [7], [12], [14], [16], [20] that have been developed
for derivation of homomorphism.

Corollary 1 (Parallelisation Homomorphism withBH):
Any homomorphism([⊕, k]) can be implemented with aBH.
Proof: Notice that ([⊕, k]) = last ◦ mapAround f where
f(ls , x, rs) = (([⊕, k])xs)⊕ (k x). It follows from Theorem 1
that the homomorphism can be parallelised by aBH.

Now we consider how to deal with recursive functions.
This can be done in two steps. We first use the existing
theorems [12], [14], [20] to obtain homomorphisms from
recursive definitions, and then use Corollary 1 to getBH for
the derived homomorphisms.

It is worth noting that homomorphisms are very important
in all our derivations ofBH, not only becauseBH itself
is a specific homomorphism, but also because many of our
derivations go along with derivations of homomorphisms. For
example, in Theorem 1, our main theorem, we have to derive
homomorphisms so that functionf can be defined in a way
that the theorem can be applied.

Example 3 (Derivation for the Tower-Building Problem):
From the specification given before, we can see that
Theorem 1 is applicable with

visibleLR (ls, x, rs) = k (g1 ls, x, g2 rs)
where g1 = maxAngleL

g2 = maxAngleR

k (maxl, (xi, hi),maxr) =

(maxl < h+hi−hL

x−xL

) ∧ (maxr < h+hi−hR

xR−x
)

provided thatg1 andg2 can be defined in terms of homomor-
phisms.

By applying the theorems in [12], [14], [20], we can
easily obtain the following two homomorphisms (the detailed
derivation is beyond the scope of this paper).

maxAngleL = ([↑, k1]) where ↑= max; k1 (x, h) = h−hL

x−xL

maxAngleR = ([↑, k2]) where k2 (x, h) = hR−h
xR−x

Therefore, applying Theorem 1 yields the following result
in BH.

tower (xL, hL) (xR, hR) xs =
BH (k, (maxAngleL, ↑), (maxAngleR, ↑)) xs (−∞) (−∞)
where k (maxl, (xi, hi),maxr)

= (maxl < h+hi−hL

x−xL

) ∧ (maxr < h+hi−hR

xR−x
) 2

Example 4 (Maximum Prefix Sum Problem Derivation):
Derivation ofBH from the specification

mps = maximum ◦ psums

where maximum = ([↑, id])
psums = scan (+)

given above is straightforward, because it is a compositionof
a homomorphism and a scan, both of which can be mapped
to BH according to Theorem 1 and Corollary 1. 2

C. Theorem Implementation in Coq

The Coq proof assistant [2], [3], [26] is based on the
calculus on inductive construction. This calculus is a higher-
order typedλ-calculus. Theorems are types and their proofs
are terms of the calculus. The Coq systems helps the user to
build the proof terms and offers a language of tactics to do so.
Coq is also a functional programming language. In appendix
we give a very short introduction to Coq.

We use the Coq proof assistant to prove correct the deriva-
tions from a functional specification to a BH skeleton instan-
tiation. Derivations and parallel term retrieving is automated
using a newly introduced feature in Coq: Type classes [24].

The full code can be downloaded [27].

V. BH TO BSML: CERTIFIED PARALLELISM

We have until now supposed a certified parallel implementa-
tion of BH on which the algorithms rely. This implementation
is realized using Bulk Synchronous Parallel ML (BSML) [8],
an efficient BSP [10], [28] parallel language based on Objec-
tive Caml and with formal bindings and definitions in Coq. In
Coq, we prove the equivalence of the natural specification of
BH with its implementation in BSML, therefore being able to
translate the previous BH certified versions of the algorithms
to a parallel, BSML version. We also analyse the parallel
performances of this implementation.

A. Bulk Synchronous Parallel ML: An Overview

a) Bulk synchronous parallelism:A BSP machine can
be though as a homogeneous distributed memory machine
with a unit able to synchronise all the processors. A BSP
program is executed as a sequence ofsuper-steps, each one
divided into (at most) three successive and logically disjointed
phases: (a) Each processor uses its local data (only) to perform
sequential computations and to request data transfers to/from
other nodes; (b) the network delivers the requested data
transfers; (c) a global synchronisation barrier occurs, making
the transferred data available for the next super-step.

The performance of a BSP machine is characterised by 3
parameters:p is the number of processor-memory pairs,L is
the time required for a global synchronisation andg is the time
for collectively delivering a 1-relation (communication phase
where every processor receives/sends at most one word). The
network can deliver anh-relation in timeg × h for any arity
h. The BSP parameters can be determined in practice using
benchmarks: first a fourth parametersr, the computing power
of the processors is determined (in flop/s), then someg′ andL′
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are measured ins/word ands, and the final BSP parameters
areg = g′ × r (in flop/word) andL = L′ × r (in flop).

The execution time (orcost) of a super-step is thus the sum
of the maximal local processing time, of the data delivery time
and of the global synchronisation time:

max
0≤i<bspp

wi + max
0≤i<bspp

max(h+

i , h
−
i )× g + L

where, at processori, wi is the local sequential work per-
formed during the computation phase,h+

i is the size of data
sent fromi to other processors, andh−

i the size of the received
data by processori from other processors.

b) BSML parallel vectors:BSML designed as a full lan-
guage, is currently implemented as a library for the Objective
Caml language [8]. BSML offers an access to the parameters
of the underlying BSP architecture with the constants:bsp p
(an integer),bsp g, bsp l, andbsp r (floats).

A BSML program is not written in the Single Program
Multiple Data (SPMD) style as many parallel programs are,
but offers a global view of the parallel program. It is a
usual OCaml program plus operations on a parallel data
structure. This structure is called parallel vector and it has an
abstract polymorphic type’a par. A parallel vector has a fixed
width bsp p equals to the constant number of processes in a
parallel execution. We will informally write〈x0, . . . , xn−1〉
for a parallel vector of sizen, which contains the valuexi

at processori. The nesting of parallel vectors is forbidden.
BSML provides four primitives for the manipulation of parallel
vectors. For each of these primitives, we will give its signature,
its informal semantics, examples of use and its formalisation
in Coq.

In the Coq developments of our framework, all the modules
related to parallelism are functors that take as argument a
module which provides a realization of the semantics of
BSML. This semantics is modelled in a module type called
BSML SPECIFICATION. A module type or module signature
in Coq is a set of definitions, parameters and axioms, the latter
being types without an associated proof terms.

The module typeBSML SPECIFICATION contains : the def-
inition processor of processor names, and associated axioms;
the typepar of parallel vectors; the axioms which define the
semantics of the four parallel primitives of BSML.

A naturalprocessor max is assumed to be defined. The total
number of processor, the BSP parameterbsp p is the successor
of this natural. The typeprocessor is defined as:

Definition processor := { pid: nat | pid < bsp p }.

A term of type{x:A | P x} is a value of typeA and a proof
that this value verify the propertyP. A value of typeprocessor
thus a pair: A natural and a proof that this natural is lower
thanbsp p.

The type of parallel vectors is an opaque type

Parameter par: Set→Set.

This means thatpar could take as argument a type and returns
a new type: It is a polymorphic type thus it has as argument the
type of the values contained in the vectors. For example, the

type for parallel vectors of string could be writtenpar string
(and is writtenstring par in BSML).

In the informal semantics above, a parallel vector consists
of p values. As the typepar is opaque in the formalisation in
Coq, to model this we assume that the typepar comes with
a functionget that can access any component of the parallel
vector:

Parameter get : ∀A: Set, par A →processor →A.

Given a typeT, a parallel vectorvec of type par T and a
processori, (get T vec i) is the value held by processori in
parallel vectorvec.

c) Parallel vector creation:The primitivemkpar is used
to create parallel vectors. It takes a functionf as argument
and creates a parallel vector that contains the value of(f i) at
processori, 0 ≤ i < bsp p. The signature of this primitive is:
mkpar: (int→ ’a) → ’a par, and informally its semantics could
be written as:

mkpar f = 〈f 0, . . . , f (bspp− 1)〉

In the interactive loop of BSML [8]1 on a machine with
6 processors, one could have the following result:

# let this = mkpar (fun i → i);;
val this : int Bsml.par = <0, 1, 2, 3, 4, 5>

# is the prompt inviting us to write an expression to evaluate.
The expressionlet this =. . . is used to define the valuethis
by applying the primitivemkpar to the (anonymous) identity
function. In the second line, the top-level answers that a value
(val) called this has been defined, that it is a parallel vector
of integers (int Bsml.par) and its value is〈0, 1, 2, 3, 4, 5〉.

A useful function isreplicate:

# let replicate = fun x → mkpar(fun → x);;
val replicate : ’a → ’a Bsml.par = <fun>

# let vx = replicate ”PDCAT”;;
vx : string Bsml.par = <”PDCAT”, ”PDCAT”, ”PDCAT”,

”PDCAT”, ”PDCAT”, ”PDCAT”>

The evaluation of an application ofmkpar to a functionf is
done without any communication (any usual Objective Caml
value is replicated on all the processors, hence the function
f), and is done during the asynchronous computation phase of
a BSP super-step. Its BSP cost ismax0≤i<bspp f i wheree
denotes the time required to evaluate expressione.

The semantics of the parallel primitives of BSML in Coq are
specified using theget function. It is a quite straightforward
translation of the informal semantics. Instead of giving the
result parallel vector as a whole it is described by giving the
values of its components. A Coq formalisation of themkpar
primitive is thus:

Parameter mkpar specification : ∀(A:Set) (f: processor →A),
{ X: par A | ∀i: processor, get X i = f i }.

1In case the reader wants to try the examples in the interactiveloop
(commandbsml) while reading the paper, she needs to writeopen Bsml;;
at the beginning of the session.
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d) Point-wise parallel application:As the typepar and
the primitive mkpar are polymorphic, it is possible to create
parallel vectors of functions. For example:

# let vf = mkpar(fun i→ fun x → x ˆ (string of int i));;
val vf : (string → string) Bsml.par = ≪ fun>, ..., <fun≫

Thus we may need to apply a parallel vector of func-
tions to a parallel vector of values. Such an application is
not a usual functional application: We need a primitive to
perform it. This primitive is calledapply. Its signature is:
apply:(’a→ ’b)par→ ’a par→ ’b par.

For example, we can apply the parallel vector of functions
vf to the parallel vector of valuesvx:

# let v2 = apply vf vx;;
val v2 : string Bsml.par = <”PDCAT0”, ”PDCAT1”, ”PDCAT2”,

”PDCAT3”, ”PDCAT4”, ”PDCAT5”>

The informal semantics ofapply could be written as:

apply 〈f0, ..., fp−1〉 〈x0, ..., xp−1〉 = 〈f0 x0, ..., fp−1 xp−1〉

The evaluation of an application ofapply requires no commu-
nication. Its BSP cost ismax0≤i<bspp fi xi. In Coq,apply is
specified as follows:

Parameter apply specification :
∀(A B: Set) (vf: par (A →B)) (vx: par A),
{ X: par B | ∀i: processor, get X i = (get vf i) (get vx i) }.

Very useful functions which are part of the BSML standard
library could be implemented frommkpar andapply such as:

(∗ parfun: (’a → ’b) → ’a par → ’b par ∗)
let parfun = fun f v → apply (replicate f) v

There exist variantsparfunN of parfun for point-wisely ap-
plying a sequential function withN arguments toN parallel
vectors.

e) Communications:The two last primitives of BSML
require both communication and synchronisation.

The primitive put is used to exchange data between pro-
cesses. It takes and returns a parallel vector of functions.At
each processor the input function describes the messages to
be sent to other processors and the output function describes
the messages received from other processors. Its signature
is put:(int→ ’a)par→ (int→ ’a)par and it informal semantics
follows:

put 〈f0, . . . , fp−1〉 = 〈λi.fi0, . . . , λi.fi(p− 1)〉

At processori, the functionfi encodes thebsp p possible
messages to be sent to other processors. Some values, as the
empty list or the first constructor without parameters in a sum
type, are considered to mean “no message”. For example if we
want to broadcast a value at a specific processor in a parallel
vector to all other processors, we will use two functions: One
that will send this value to every processor, one that will send
nothing to every processor. The first of these functions should
be used by the processor that is the root of the broadcast, and
the second function by all other processors:

let choice root pid value =
let toall = fun dst → [value]
and nothing = fun dst → [] in
if pid=root then toall else nothing

Then after the functionchoice is used to build a parallel
vector of functions describing the communications we want
to perform, and this parallel vector is given as argument
to put, we need to retrieve the sent values. Here again the
bsp p possible received values by a processor are encoded
as a function. To know the value sent by a processori to a
processorj, one has to apply, at processorj, the obtained
function toi. In the case of the broadcast, all processors need
to apply the function to the processorroot:

# let broadcast root vx =
let msg = apply (mkpar(choice root)) vx in
parfun List.hd (apply (put msg) (replicate root));;

val broadcast : int → ’a Bsml.par → ’a Bsml.par = <fun>

# let v3 = broadcast 3 v2;;
val v3 : string Bsml.par = <”PDCAT3”, ”PDCAT3”, ”PDCAT3”,

”PDCAT3”, ”PDCAT3”, ”PDCAT3”>

The evaluation of an application of theput primitive requires
a full super-step: First the messages are computed from the
parallel vector of functions describing the messages to send;
then the messages are exchanged; and a global synchronisation
ends the super-step in order to allow the functions describing
the received messages to be built. In the following, we note
| v | the size (in words) of the valuev, and(e)↓ the result of
the evaluation of the expressione. The BSP cost ofput is:

max
0≤i<bspp

(

bspp−1
∑

j=0

fi j) + max
0≤i<bspp

(h+

i , h
−
i )× g + L

where

{

h+

i =
∑j 6=i

0≤j<bspp | (fi j)↓ |

h−
i =

∑j 6=i

0≤j<bspp | (fj i)↓ |

h+

i is the total size of the messages sent by processori, while
h−
i is the total size of the messages received by processori.
The Coq specification ofput is:

Parameter put specification :
∀(A:Set) (vf: par (processor →A)),
{ X: par (processor →A) | ∀i j: processor, get X i j = get vf j i }.

The last primitiveproj:’a par→ (int→ ’a) is the inverse of
mkpar (for functions defined on the domain of processor
names). It also requires a full super-step, we omit the details
for the sake of conciseness.

B. BH in BSML

As a larger BSML example, we present in Fig. 4 a par-
allel implementation of the BH algorithmic skeleton where
sequence n1 n2 returns the list[n1 ; ... ; n2], bh seq is a se-
quential implementation of BH and type of communicated data
is type (’l,’r) comm type = Lcx of ’l | Rcx of ’r | Ncx.

Given a list that is split into local chunks in the order of the
processors, the preliminary local computation (applyinggl and
gr) can be done with theapply primitive; then aput is used to
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let bh par k gl opl gr opr = fun (l: ’l) (lst: ’a list par) (r: ’r) →
let accl = parfun gl lst
and accr = parfun gr lst in
let comms = put(apply(

apply(
mkpar(fun i accr accl receiver →

if i < receiver then Lcx accl
else if i > receiver then Rcx accr
else Ncx)) accl)accr) in

let lv = parfun2
(fun c pl →

fold left
(fun acc i → opl acc (match c i with Lcx x→ x))
l
pl)

comms
(mkpar(fun pid→ sequence 0 (pid−1)))

and rv = parfun2
(fun c pr →

fold right
(fun i acc → opr (match c i with Rcx x→ x) acc)
pr
r)

comms
(mkpar(fun pid→ sequence (pid+1) (bsp p−1))) in

parfun3 (bh seq k gl opl gr opr) lv lst rv

Fig. 4

AN IMPLEMENTATION OF BH IN BSML

send the computedr value leftwards to every other processor,
and thel value rightwards.apply is then sufficient to locally
compute BH on the local chunks using the sequential version
of BH.

However this implementation is not proved correct to the
definition of BH.

C. Proving Correct BSML Implementation of BH in Coq

From the axioms presented in subsection V-A above, we
obtain four Coq functions that verify the BSML specifications.
These functions and their properties are used when we prove
the correctness of a parallel version of BH with respect to
definition 1.

The main theorem is:

Theorem bh bsml bh lst: ∀(L A R B:Set) (k:L→A→R→B)
(gl: list A→L) (opl:L→L→L) (gr:list A→R) (opr:R→R→R)
(gl hom : is homomorphism A L gl opl)
(gr hom : is homomorphism A R gr opr)
(lst:list A),
list of par list(bh bsml comp (gl nil) (scatter lst) (gr nil))) =
bh comp k gl opl gr opr (gl nil) lst (gr nil).

It states the equivalence ofbh comp and the parallel version
bh bsml comp. The bh bsml comp function is quite similar to
the direct implementation of BH in BSML given in Fig. 4. This
function takes a distributed list (or parallel vector of lists) as
input (type ’a list par in BSML and par(list A) in Coq), and
also returns a distributed list whereasbh comp takes as input
a list and returns a list. Thus some conversions are needed.
scatter takes a list and cuts it into pieces that are distributed.
list of par list does the inverse: it takes a parallel vector of lists
converts it to a function from natural to lists (using a variant

of the proj primitive) and eventually merges the lists into one
list.

In order to prove this theorem, two intermediate results
are necessary. They state that at a given processor, the Coq
formalisation of vl and vr in Fig. 4 are respectively equal
to applying gl (resp. gr) to the sub-list of elements being
on the left (resp. the right) of the local sub-list. The proofs
are technical and use several steps where sub-lists are cut
and combined. The proofs (available in [27]) are done by
considering the processor list as being the list(l1++p::nil)++l2
and by reasoning by induction onl1 for vl and onl2 for vr.

D. BSP Cost of Parallel BH

The BSML implementation ofBH applied to parameters
k, gl, ⊕l, gr, ⊗r and lst (assumed to be values) has the
following complexity: The computation is done in one full
super-step followed by some asynchronous local computations.
We assume each processori has a contiguous part of the list
lst, that will be denoted bylsti.

The BSP cost of the application of BH is:

seq1 + max
0≤i<bspp

max(h+

i , h
−
i )× g + L+ seq2

The first phase computes on each processor, the two “sum-
maries” of the values held by the processor: One to be sent to
processors at its left (computed withgl), and one to be sent
to the processors at its right (computed withgr):

seq1 = max
0≤i<bspp

(gl lsti + gr lsti)

After that, each processori sends li = (gl lsti)↓ to
processors with smaller processor names andri = (gl lsti)↓
to processors with greater processor names. So the size of
exchanged data is:

{

h+

i = i× | li | + (bspp− 1− i)× | ri |

h−
i =

∑i−1

j=0
| rj | +

∑bspp−1

j=i+1
| lj |

The remaining asynchronous local computation proceeds
as follows: First, on each processor the received list of left
(resp. right) summaries is reduced with⊕l (resp.⊗r). Then
a local sequential BH is performed: It is implemented as the
computation of the local left and right summaries for each
element of the local list yielding to listslli and lri. However
each of these lists can be computed with traversing only once
the local listlsti. The computation ends with applyk to each
triple of the list obtained as the combination of the three lists
lli, lsti, andlri. We do not detail the cost in the general case.
In cases where⊕l, ⊗r, andk have constant complexity, andgr
and gl have constant complexity on singleton lists, we have:
seq2 ∈ O(length lsti).

Tower building complexity:With the example of tower
building,⊕l = ⊗r =↑ has constant complexity providing that
we can do a comparison in constant time.maxAngleL and
maxAngleR have the same complexity:

maxAngleL lst = maxAngleR lst ∈ O(length lst).
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So extracted Tower Building has complexity:

max
0≤i<bspp

O(length lsti) + g ∗ O(p) + L

Thus, if the listlst is evenly distributed the complexity is:

O(length lst/p) + g ∗ O(p) + L.

VI. PROGRAMSEXTRACTION AND EXPERIMENTS

Let us summarise the different steps towards a proved
correct parallel implementation of the tower building problem:
(a) First we specify the problem as an instance ofmapAround;
(b) using theorem 1, we prove that the problem is an instance
of BH; (c) using theorembh bsml bh, we prove that the
problem is an instance of the parallel version of BH.

From this latter proof, we can extract an implementation
of the tower building problem in BSML. The resulting code
is of course similar in structure of the code of the direct
implementation of BH in BSML (Fig. 4). The main differences
are on the sequential data structures. The lists type are theone
defined inductively in Coq, not the optimised ones defined in
Ocaml. The BSML primitives in Coq manipulateprocessor
andnat which rely on a Peano encoding of naturals. Thus the
extracted code contains:type nat = | O | S of nat which is very
inefficient for computations.

To test the differences of efficiency between extracted and
non-extracted programs, we experimented with two different
tower building programs: The direct implementation and the
implementation extracted from the derivation in Coq. The
experiments were conducted on the “Centre de Calcul Sci-
entifique de la Ŕegion Centre (CCSC)” which is a 42 nodes
cluster of IBM blades with 2 quad-core Xeon E5450 and 8 Gb
of memory per blade.

We had to use only one core per CPU due to a dramatic
loss of performance in MPI communications when multiple
cores of the same CPU try to access to the network, and we
were able to book up to 18 nodes of the cluster.

In order to avoid the garbage collector of OCaml to be
triggered too often, we grew the minor heap size to 1 Gb. We
performed a garbage collection after the computation and took
its time into account in our benchmark. Indeed, when the data
are to big to fit in the minor heap, the recurrent calls to the
garbage collector dramatically hinder the overall performance.

Figure 5 shows, for 12 processors the computation time for
different sizes of data. We can see that the programs execution
time (and the garbage collection time) grows linearly with the
amount of data. The extracted version of the program is slower
than the direct implementation with a time factor between 1
and 2.5. As said earlier, this come most probably from the
difference in data structure encoding.

As shown by figure6, the speedup of both implementation
is linear with the number of processors, for a fixed amount of
data (5.120.000 elements).

We also performed experiments on the Maximum Prefix
Sum example on another cluster, up to 32 processors. Figure 7
also shows a linear speedup (320.000 elements).
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VII. R ELATED WORK

Our framework combines two strength: constructive algo-
rithmic and proved correct bulk synchronous parallel language.
In this paper we focus on the semantics of the programming
model of Bulk Synchronous Parallel ML, which was first
express as an extension of theλ-calculus [19]. It is pos-
sible to implement this semantics as a sequential program,
for example by realizing parallel vectors by lists or arrays.
But as it is traditional in data-parallel languages, we also
provide the semantics of an execution model which describes
the parallel implementation of BSML programs as SPMD
programs. We even propose a semantics which is even closer to
the real implementation: a parallel abstract machine. All these
semantics have been proved equivalent [9]. Thus proving the
correctness of a BSML program using the semantics of the

Fig. 7

MAXIMUM PREFIX SUM SPEEDUP
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programming model of BSML ensuresthe parallel execution
of this program will also be correct (up to the correctness of
the implementation of the parallel abstract machine).

But BSML relies, for communications, on theput operation
which is not very easy to use. On the contrary, constructive
algorithmic provides various ways to help the programmer of
parallel applications to systematically derive efficient parallel
algorithms [7], [12]. However there is a gap between the
final composition of algorithmic skeletons obtain by derivation
and its implementation. Usually in skeletal parallelism, the
semantics of the execution model remains informal. Exception
are [1], [5]. Several researchers worked on formal semantics
for BSP computations, for example [17], [23], [25]. But to
our knowledge none of these semantics was used to generate
programs as the last step of a systematic development.

On the contrary LOGS [6] is a semantics of BSP programs
and was used to generate C programs [30]. Compared to
our approach, there is a gap between the primitives of the
semantics and the implementation in C. Our programs are
extracted from Coq proof terms. There exists work on bulk
synchronous parallel algorithmic skeletons [13], [29]: inthese
approaches the derivation or optimisation process is guided by
the BSP cost model, but the gap between the final composition
of skeletons and the implementation is still there.

It is worth noting that the idea of using formal approaches
for transforming abstract specifications into concrete imple-
mentations was also proposed as abstract parallel machines
in [21]. Compared with the study, the contribution of the paper
is that we proposed and realized a concrete framework based
on the Coq proof assistant and the BSP model.

VIII. C ONCLUSION

In this paper, we report our first attempt of combining the
theory of constructive algorithmic and proved correct BSML
parallel programs for systematic development of certified BSP
parallel programs, and demonstrate how it can be useful to
develop certified BSP parallel programs. Our newly proposed
framework for the certified development of programs includes
the new theory for the BH homomorphism, and an integration
of Coq (for specification and development interaction), theBH
homomorphism and BSML programming. All the certification
of the transition from specification to algorithms in BH and to
certified BSML parallel programs is done with the Coq proof
assistant. We prove, in Coq, theorems validating the trans-
formations of a simple, sequential specification into a more
detailed and complex parallel specification. Then, using the
program-extraction features of Coq yields a certified parallel
program.
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APPENDIX

A V ERY SHORT INTRODUCTION TOCOQ

The Coq proof assistant [26] is based on the calculus on
inductive construction. This calculus is a higher-order typed
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λ-calculus. Theorems are types and their proofs are terms of
the calculus. The Coq systems helps the user to build the proof
terms and offers a language of tactics to do so.

We illustrate quickly all these notions on a short example :

Inductive nat:Set := O : nat | S : nat →nat.

Fixpoint plus (n1 n2 : nat) {struct n1} : nat :=
match n1 with
| O ⇒n2
| S n ⇒S(plus n n2)

end .

Lemma plus n O : ∀n, plus n O = n.
induction n.
(∗ case n=0 ∗) simpl. reflexivity.
(∗ case n>0 ∗) simpl. rewrite IHn. reflexivity.

Qed.

Definition pred : ∀n:nat, n<>O→{q:nat|(S q)=n}.
intros.
destruct n.

(∗ case n=0 ∗) elim H. reflexivity.
(∗ case n>0 ∗) exists n. reflexivity.

Defined .

In this example, we first define a new inductive type, the
type of natural numbers in the Peano style.nat has type
Set which means it belongs the computational realm of the
Coq language. We also define theplus recursive function on
naturals. In this recursive definition we specify the decreasing
argument (heren1) as all functions must be terminating in
Coq. In both cases, we gave the type of the new name we
wanted to define as well as a term of this type.

We then define a lemma namedplus n O which states that
∀n, plus n O = n. If we check (using theCheck command of
Coq) the type of expression, we would obtainProp which
mean that this expression belongs to the logical realm. To
defineplus n O we also should provide a term of this type, that
is a proof of this lemma. We could write directly such a term,
but it is usually complicated and Coq provides a language of
tactics to help the user to build a proof term. If we give to Coq
top-level the line beginning withLemma we would enter the
interactive proof mode that would indicate us that we should
prove the goal:

============================
forall n : nat, plus n O = n

We prove this goal by induction onn using the tactic
induction n. The system indicates now two goals to prove:

============================
plus O O = O

subgoal 2 is:
plus (S n) O = S n

The first one is proved using the definition ofplus using the
tactic simpl which yields the goal0 = 0 and this case is ended
by the application of the tacticreflexivity. The second one is
the inductive case:

n : nat
IHn : plus n O = n
============================
plus (S n) O = S n

After simplification, we obtain the goalS(plus n O) = S n. We
solve it first by rewritingplus n O in n using theIHn hypothesis
and then we conclude by reflexivity.

Mixing logical and computational parts is possible in Coq.
For example a function of typeA→B with a preconditionP
and a postconditionQ corresponds to a constructive proof of
type: ∀x:A, (P x) →exists y:B →(Q x y). This could be express
in Coq using the inductive typesig:

Inductive sig (A:Set) (Q:A→Prop) : Set := | exist: ∀
(x:A), (Q x) →(sig A Q).

It could also be written, using syntactic sugar, as{x:A|(P x)}.
This feature is used in definition of the

function pred. The specification of this function is:
∀n:nat, n<>O→{q:nat|(S q)=n} and we build it using
tactics. We reason by case onn (tactic destruct). The first
case is easily solved because we have the hypothesisO<>O,
the second one is trivial.

The commandExtraction pred would extract the computa-
tional part of the definition ofpred. We could obtain a certified
implementation of the predecessor function:

(∗∗ val pred : nat →nat ∗∗)
let pred = function
| O →assert false (∗ absurd case ∗)
| S n0 →n0

[2] is a quick yet longer introduction to Coq.
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