
A Framework for Building Reusable
Mobile Agents for Network Management

Ichiro Satoh�

National Institute of Informatics /
Japan Science and Technology Corporation

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430

Abstract

Mobile agents can migrate among nodes to perform a set of management tasks
at each of the visited nodes. Existing mobile agent-based network management
systems often assume that their mobile agents are designed to work in partic-
ular networks to raise the efficiency of agent migration among multiple nodes.
Unfortunately, such mobile agents cannot be reused in different networks. This
paper proposes a framework where a mobile agent for network management
is composed of two kinds of software components, a itinerary part and a be-
havioral logic part. Both components are implemented as mobile agents. The
former is a carrier designed for particular networks, and it can efficiently navi-
gate other mobile agents among nodes in its target network. The latter defines
management tasks performed at each node independently of any local network.
This framework allows a mobile agent for network management to be reused in
various networks without being modified. A prototype implementation of this
framework and its application were built on a Java-based mobile agent system.

Keywords
Mobile Agents, Reusability, and Agent Itinerary

1 Introduction

Mobile agent technology provides a solution to the flexible management of telecom-
munication systems. Mobile agents can locally observe and control equipments at
each node by migrating among the nodes. Mobile agent-based network manage-
ment has several advantages in comparison with traditional approaches, such as the
client/server one. For example, they can reduce network traffic and easily support
disconnected operation. Moreover, the dynamic deployment and configuration of

�E-mail: ichiro@nii.ac.jp

new or existing functionalities into a network system are extremely important tasks
especially as they potentially allow outdated systems to be updated in an efficient
manner. Adopting the mobile agent technology eliminates the need for the admin-
istrator to constantly monitor many network management activities, e.g., installation
and upgrading of software and periodic auditing of the network. There have been
several attempts to apply this technology to network management tasks.

However, there have been serious problems associated with the development of
mobile agent-based applications, in addition to security problems. Such applications
are required to migrate their agents among all specified nodes efficiently to perform
their own tasks at each of the visited nodes, because the itinerary of an agent greatly
affects its achievement and efficiency. However, it is often difficult to dynamically
generate an efficient itinerary among multiple nodes, without having any knowledge
of the network. Even if a smart agent can create an efficient itinerary based on its
previous processing and the current environment, such an agent is not always be
appropriate, because both the cost of discovering such an itinerary and the size of its
program tend to be large.

Therefore, most existing mobile agent-based applications explicitly and implic-
itly assume that their mobile agents are statically designed for their target networks
for greater efficiency of agent migration over the networks. However, an agent op-
timized for particular networks cannot be reused in other networks. This results in
an inevitable trade-off between the performance and reusability of a mobile agent.
Furthermore, this problem becomes more serious when mobile agents are used for
network management. This is because network management systems must often
handle networks that may have some malfunctions and whose topology may not be
exactly unknown. Consequently, it is almost impossible for each mobile agent to
efficiently migrate among nodes in such networks. This is one of the reasons why
there have not been many attempts to use mobile agent technology in the domain of
network management, although the technology can be used in this domain.

This paper addresses several problems, including the problem of a trade-off be-
tween the performance and reusability of a mobile agent in the development of mo-
bile agent-based network management systems and proposes a new framework for
building mobile agent-based network management systems in order to solve these
problems. The framework allows us to build efficient and scalable mobile agents for
network management without losing their reusability. Like other mobile agent-based
network management systems, the framework uses mobile agents to implement net-
work management functionalities, but it allows each mobile agent to be designed
independently of any network and dynamically change its itinerary without modi-
fying its application-specific behaviors. That is, when a mobile agent arrives at an
unknown sub-network, it can dynamically obtain an itinerary statically designed for
the visited sub-network and thus can efficiently migrate among the nodes on the
sub-network. The current implementation of the framework is built on a Java-based
mobile agent system, called MobileSpaces [13], which is unique among existing
systems because it hierarchically organizes multiple mobile agents.

This paper is organized as follows: Section 2 discusses the advantages of mobile

agent-based network management and the actual problems associated with it. Sec-
tion 3 presents the basic ideas of the framework described in this paper. Section 4
presents the design and implementation of the framework. Section 5 describes prac-
tical applications of the framework and discusses its usefulness. Section 6 reviews
some related works, and Section 7 makes some concluding remarks.

2 Background

To manage a network system, we sometimes need to locally observe and control
components on multiple nodes in the system. Existing network management systems
essentially use the client/server mechanism for their functionalities. Such systems of-
ten suffer from poor scalability due to an increase in the amount of communication
and the number of failures in nodes and channels. In contrast, mobile agent technol-
ogy can be used for a variety of network management functions. Discussion on the
advantages of mobile agents in network management can be found in [4, 8]. How-
ever, in addition to the trade-off problem mentioned in the previous section, there
have been several other problems with obtaining these advantages.

Reduction in network traffic and information retrieval: Network nodes, includ-
ing gateways, databases, and sensors, often record a large amount of data. In the
traditional approach all the data recorded in remote nodes must be frequently trans-
mitted to a central management systems. In contrast, since the transmission of a
mobile agent to data sources creates less traffic than the transmission of the data,
mobile agent technology substantially reduces the network bandwidth for the collec-
tion and filtering of data from remote networks. However, to take this advantage of
this feature, each mobile agent must be small, so it is usually designed for particular
networks and tasks. This is because even if a general-purpose and adaptive mobile
agent could be constructed, it may not work well, because the execution cost of such
a sophisticated agent could be very high.

On-demand distribution of software: In the client/server approach, static multi-
ple servers require duplication of functionality at every node, which often has only
limited resources, such as CPU power and memory. In contrast, a mobile agent re-
sides only on one node at a time while other nodes do not run an agent if they do
not need to. Such an agent carries a management function to the node. Therefore,
it is not always necessary for every node to have software for network management.
However, if an agent does not know all the nodes to which it must distribute software,
it is difficult for the agent to detect and reach all the nodes on the fly.

Automation and fault tolerance: Each mobile agent is a self-contained and au-
tonomous entity, so it can be controlled in a decentralized manner and perform its
management tasks independently of its source node. Consequently, the technology
can relieve the administrator from the need to continuously monitor some network

management activities. Furthermore, mobile agents can survive if moved closer to
resources, or away from partially failed nodes. However, this often requires the cen-
tral manager to have knowledge about the network, because it is difficult for each
agent to visit all the required nodes and move away from malfunctioning nodes to
another node.

Direct manipulation: A mobile agent is locally executed on the node it is visiting,
and it can easily discover the types and functions of devices on this node to directly
control the devices. This is helpful in network management, in particular in detect-
ing and removing device failures. However, we cannot take full advantage of this
feature because of a security mechanisms. Although there has been a lot of efforts to
solve the security problems of mobile agent technology, most existing security mech-
anisms cannot be used for mobile agents in network management, because they are
designed to restrict low-level procedure calls while such agents often need to directly
access low-level resources.

3 Approach

The goal of this paper is to provide a framework for building and operating mobile
agents, which can autonomously travel among nodes on multiple sub-networks to
perform their management tasks at each node they visit.

To solve the above mentioned problems, the framework introduces two types of
mobile agents: task agents and navigator agents, as shown in Figure 1. The idea was
inspired by a tour bus going around the sights of a town. A task agent corresponds
to a tourist, who takes a tour-bus to visit sights in an unfamiliar town. A navigator
agent corresponds to a tour-bus guide, who guides several tourists among the places
of the town.

� The Navigator agent does not have any application-specific tasks. Instead, it
carries task agents and is designed for a particular sub-network. It must be
familiar with the topology of its target sub-network. Therefore, it can effi-
ciently guide one or more task agents among their multiple destinations in the
sub-network.

� The Task agent is an application-specific agent that performs its management
task at each of the nodes it visits. It can travel from sub-network to sub-
network, but may be unfamiliar with the sub-networks it visits.

When a task agent arrives at an unknown sub-network, it enters an idle navigator
agent that knows the current network well. Then, the selected navigator agent carries
the visiting task agent to the nodes that the task agent wants to visit. Each navigator
agent is defined and managed by its network and can explicitly restrict the nodes to
which it can carry task agents.

This framework also provides a mechanism for allowing a task agent to select a
navigator agent suitable for the current network. The mechanism, called Agent Pool,

step 1

Sub-network

Navigator Agent
Itinerary: A>B>C

Task Agent
Agent Pool

Node C Node B

Node A

step 2
carry

carryAgent Pool

Sub-network

Node C
Node B

Node A

Navigator
Agent

Task Agent

Figure 1: Navigator agents and task agents

stores idle agents in a manner similar to that in a bus-terminal or a taxi stand, as
shown in Figure 2. Each sub-network has multiple agent places for storing navigator
agents specific to the sub-network and each navigator agent is designed to return
to its place soon after achieving its navigation task to wait for the next task. Each
task agent is responsible for traveling among the agent pools of its destination sub-
networks, where each navigator agent is responsible for navigating its inner agents
among the nodes in its sub-network. Therefore, to travel among some of the nodes
on a sub-network, a task agent migrates to the agent pool at the sub-network and asks
a navigator agent stored in the pool to carry it among the nodes.

Sub-network A

Navigator
Agent A

Task Agent Agent Pool
Node 1 Node 3

Node 2

Navigator
Agent A'

Sub-network B

Navigator
Agent B

Agent Pool
Node 1 Node 3

Node 2

Navigator
Agent B'

Node 4

Source Node
Sub-network

migration

Figure 2: Agent Pools

4 Design and Implementation

Before describing the framework presented in this paper, we describe the MobileSpaces
mobile agent system that provides the infrastructure for this framework. Based on
this system, we then explain how we envisage the construction of task and navigator
agents.

4.1 MobileSpaces: A Hierarchical Mobile Agent System

This framework consists of navigator agents, task agents, and agent pools. These
agents are implemented as mobile agents in MobileSpaces.

Hierarchical Mobile Agents in MobileSpaces

Mobile agents in MobileSpaces are programmable entities like other mobile agents.
They are capable of conserving their state while on the move and their itineraries can
include multiple network nodes. Furthermore, MobileSpaces provides each mobile
agent with two novel concepts: agent hierarchy and inter-agent migration. The
former means that another mobile agent can be contained within one mobile agent.
The latter means that each mobile agent can migrate to other mobile agents as a
whole, with all its inner agents, as long as the destination agent accepts it. Therefore,
an agent can contain other mobile agents inside it as shown in Figure 3.

migration

Step 1

Step 2

Agent B

Agent A

Agent C

Agent B

Agent A

Agent C

Computer A Computer B

Computer A Computer B

Figure 3: Agent hierarchy and inter-agent migration

Each agent has direct control of all its inner agents and thus can instruct them to move
to other locations and can destroy them. In contrast, each agent has no direct control
over its container agents. Instead, each agent can have a set of service methods,
which can be accessed by its containers. Each agent has a globally unique name and
can have more than one active thread under the control of the runtime system.

MobileSpaces Runtime System

Each runtime system is a platform for executing and migrating agents. It is built on
a Java virtual machine, and mobile agents are Java objects. Each runtime system
can subordinate all the agents inside it, and the system maintains the life-cycle state

of the agents. When the life-cycle state of an agent is changed, for example, at
creation, termination, or migration, the core system issues certain events to invoke
certain methods in the agent and the agents it contains. The runtime system provides
a mechanism for marshaling and unmarshaling agents. 1 When an agent is marshaled,
the runtime system propagates certain events to the agent and its inner agents that are
still running to instruct them to stop. It also can automatically stop and serialize them
after a given time period. The runtime system can transfer agents to the destination
computer over TCP/IP connection.

4.2 Navigator Agent

Each navigator agent is a container of one or more task agents and is responsible
for guiding them to hosts in the network it covers. That is, it travels with its inner
agents in accordance with its itinerary, which is statically or algorithmically deter-
mined, or dynamically based on the agent’s previous computations and the current
environment. This framework provides abstract classes in the Java language and nav-
igator agents can be defined by extending these classes. A typical navigator agent
has a routing mechanism for managing its own routing table, which consists of all
the nodes on its target network, and can dynamically add and remove elements from
the table. After it has achieved its navigation task, the navigator agent goes back to
the agent pool of the sub-network that it covers, and advertises the list of reachable
nodes to the pool. It then waits for the arrival of other task agents. The interac-
tion between a navigator agent and the task agents inside it is based on event-based
communication introduced in the Abstract Window Toolkit of JDK 1.1. A naviga-
tor agent invokes certain methods of its task agents, whenever it arrives at one of
the destinations. The navigator agent executes its built-in method, go(AgentURL
url), in order to migrate itself and its task agents to the next destination specified as
url, after they have performed their tasks. Each navigator agent can explicitly limit
the length of the execution period of its incoming task agents after arriving at each
destination. When the time limit of a task agent inside it expires, it automatically
terminates the task agent.

public class NavigatorAgent extends Agent {
// advertising its possible destinations
void register(HostSet h) throws IlleagalAccessException..{..}
AgentURL getURL(){ .. } // getting the address of the current host
// moving to the host specified as url
void go(AgentURL url) throws NoSuchHostException ... { ... }
// sending an event to all its inner agents
void dispatchEvent(AgentEvent e) throws NoSuchEventException..{..}
....

}

1The current implementation of the system uses the Java object serialization package provided by JDK
to marshal and unmarshal agents. The package does not support capturing the stack frames or a program
counter of threads. Consequently, our system cannot serialize the execution states of any thread objects.

4.3 Task Agent

Each task agent is a mobile agent that defines its management tasks at each of the
nodes in accordance with its management criterion. It travels among the agent pools
of its target sub-networks. When arriving at an agent pool, a task agent gives the
pool a list of the names or types of the nodes at which it needs to perform its tasks
by invoking the setNodes() method and then the pool recommends to the agent
a suitable navigator that fits the description on the list or conditions. To hook events
invoked by its container agent and the runtime system, each task agent can have one
or more listener objects. One of the most basic listener interfaces, TaskAgen-
tEventListener, is shown as follows:

interface TaskAgentEventListener extends AgentEventListener {
// after creation at url
void create(AgentURL url);
// before termination
void destroy();
// before serialization
void serialize();
// after deserialization
void deserialize();
// after arrived at one of the destinations
void arrive(AgentURL from);
// before moving to one of the destinations
void leave(AgentURL to);
// before traveling among the destinations
void departure(AgentURL to);
// after traveling among the destinations
void finish();
....

}

When a task agent arrives at an agent pool, it is allocated to a navigator agent by the
pool and then the departure method defined in the task agent is invoked with the
first destination. Upon arrival at a node, the navigator agent invokes the arrive
method of its task agent to instruct it to do something during a given time period at
the node. After receiving a certain event from all the task agents or after the period
has elapsed, the navigator agent invokes the leave method with the address of the
next node and then moves itself and its task agents to the destination according to
its itinerary. After it has traveled among all the required nodes, the navigator agent
invokes its finishmethod. For reasons of security, all agents must be authenticated
by the agent pool of the sub-network and then carried by a navigator agent managed
by the agent pool of the sub-network, since a sub-network may explicitly prohibit
any task agent from visiting its nodes. Therefore, a task agent alone cannot migrate
to the nodes, even if it has been authenticated and knows the addresses of its target
nodes in the sub-network. This appears to imply that each task agent needs to know
the location of the agent pools of its target sub-networks, but in fact the framework
can provide task agents that have no knowledge about the location of an agent pools
because navigator agents can carry them among the to agent pools.

4.4 Agent Pool

When a task agent arrives at a sub-network, if it knows the topology of the sub-
network, it travels over the sub-network according to its own itinerary. Otherwise it
migrates itself to an agent pool of the sub-network to find a suitable navigator agent.
Each agent pool is a stationary container of several navigator agents and is respon-
sible for managing one or more sub-networks. It maintains inside itself a repository
of idle navigators standing by for a chance to navigate. When it receives a request
from a visiting task agent via the setNodes method, it detects one of the most
suitable navigator agents from the repository. The selection mechanism of the cur-
rent implementation compares the reachable nodes of all the navigators stored in
the pool and the list of the nodes that the task agent must visit. That is, each agent
pool selects a navigator agent whose reachable nodes include the nodes that the task
agent must visit. If more than one navigator agent that satisfies the conditions, the
pool selects the navigator with the fewest reachable nodes. This framework pro-
vides Java-based abstract classes that allow us to easily define advanced agents by
extending the classes.

4.5 Current Status

The system is implemented as a collection of mobile agents on MobileSpaces and
it can be run on any computer with a JDK 1.2-compatible Java runtime system that
can migrate agents over a network using a TCP-based agent migration protocol. The
current implementation of this framework was not built for performance, but a basic
agent migration experiment was done using four computers (Pentium III-600 MHz
with Windows2000 and JDK 1.3) connected with a 100-Mbps Ethernet.

Table 1: Performance of agent migration

Agent migration Single agent Navigator agent Navigator agent
(two computers) (two computers) (four computers)

Latency (ms) 24 30 90

Table 1 shows the basic performance of agent migration over a network in our ex-
periment to measure the latency in microseconds in moving a agent, through two
and four computers. The first result shows the cost of moving an agent between
two computers. The moving agent is a simple implementation of the TaskAgen-
tEventListener interface presented in Section 4 and it corresponds to a null
RPC and the data size is about 2.5 Kbytes (zip-compressed). The runtime systems
on the computers exchange agents with each other through a simple TCP-based agent
migration protocol. The marshaled agent consists of its serialized state, its code, and
its attributes such as a name and capability, and it is packed and compressed into a bit
stream that amounts to 1.5 Kbytes. The latency is the sum of delays in the marshaling
of the agent, zip-based compression, the opening of a TCP connection, transmission,

security verification, decompression, and the unmarshaling of the agent. The second
and third results show the cost of agent migration using a simple navigator agent,
which has a static itinerary list of two or four nodes and carries its inner agents to
the nodes sequentially by incorporating them inside itself. The overhead of the hi-
erarchical structure of this framework is less than ten percent, so the latency costs
in the above table are basically dependent on the MobileSpaces runtime system. We
believe that the latency of agent migration in this framework is reasonable for a pro-
totype of a mobile agent-based network management system.

5 Application to Network Management

To evaluate the effectiveness of the framework, we developed a network management
system for GRID-based computational environment consisting of three sub-networks
and each of the sub-networks has from four to eight processor elements distributed
geographically.2 The purpose of the management system is to monitor some network
and computational resources at nodes. The system deploys agent pools at one node
of each sub-network and offers several task agents and navigator agents. For ex-
ample, a task agent for monitoring network traffic loads is designed for performing
its task at each node that it visits as shown in Figure 4. Although the system itself
is independent of any network management protocols, we constructed a task agent
that can access SNMP data from a small stationary agent at its visiting node. The
stationary agent allows that visiting task agent to access the MIB of its node through
interagent communication. Since the task agent can contain codes to perform both
information retrieval and filtering, it can carry only relevant information. Also, the
system has three other task agents for monitoring computational resources at pro-
cessor nodes. They are designed to collect information on the use of CPU, memory,
and disks by incorporating performance monitoring systems at the nodes. The sys-
tem also provides several navigator agents with different itineraries. The agents are
statically optimized for the topology of their target sub-networks so that they can
efficiently travel among the nodes in the sub-networks.

carry

Node C

Node B
Node A

Monitor
Task Agent

Agent Pool

migration to a navigator agent

Navigator Agent

Monitor Task Agent

carry

carry
carry

Node D

Sub-network

Figure 4: Mobile agent-based management system
2The GRID environment is small in scale because it is implemented as a testbed for developing mid-

dleware and applications for GRID computing rather than a computational infrastructure.

Our early experience with this system suggests that the framework presented
in this paper enables each task agent to be built independently of any sub-network
and to move efficiently among multiple nodes by using navigator agents. That is,
our task agents can be reused in other networks and their programs are relatively
simple because they contain no specific knowledge about sub-networks. Actually,
the total size of a navigator agent containing one of the task agents is about 4 KB
(zip-compressed) and it is only 20 percents greater than the size of a self-contained
task agent that can control its own itinerary. This is a small increase in size if we
take into account the amount of the data such agents can collect from nodes.

The system currently offers three types of navigator agents. Their itineraries are
based on migration patterns described in [9, 12]. Navigator agents of the first type
are designed for traveling sequentially around the destination nodes to perform tasks
at each node. Navigator agent of the second type travel among nodes in a star-shaped
route. That is, they go back and forth between destination nodes and a given base
node and performs their tasks in the destination nodes. Navigator agent of the third
type generate as many copies of themselves as the number of nodes that they must
monitor before migrating to the nodes. After that, each copy moves to the node and
accesses the resources, and then goes back to the source node. Each copy reports to
the leader agent among the copies and then disappears. Navigator agents of each type
should be selected according to the topology of the network and the requirements
of their task agents. They can cover agent itineraries of typical management tasks
such as monitoring network traffic and computational resources at the nodes that are
known in advance. Also, we can easily define other navigator agents whose routes
are more complex by extending the Java classes of the three type of navigator agents.

Moreover, our experience tells us that our navigator agents are useful in the re-
source management of GRID-based computational environments. This is because
they can provide a mechanism for the deployment of computational tasks at remote
nodes in a decenterized manner. To perform a variety of applications efficiently, a
Grid-based environment must support multiple policies for task deployment. This
framework allows such policies to be naturally defined as navigator agents.

5.1 Discussion

The remainder of this section describes how the framework presented in this paper
solves the problems discussed in Sections 1 and 2.

� Reusability and Performance: This framework enables each navigator agent to
be optimized for particular networks independently of any application-specific
logic. Therefore, the agent can efficiently guide various task agents among
nodes in the networks. On the other hand, each task agent has its application-
specific tasks, which are designed to be performed at each of the visited nodes
regardless of the sub-network. It needs to know the location of the agent pools
of its target sub-networks but does not have to know the topology of the net-
works. By dynamically changing to a navigator agent suitable for its current

network, a task agent can efficiently migrate among nodes in various networks
to perform its task, without modifying its own program.

� Simplification of Agents: The framework enables both navigator and task agents
to be small and simple, because navigator agents can be designed for particular
networks and thus do not have to offer any adaptive mechanisms for handling
various networks, which would make the programs of the agents large and
complex. On the other hand, task agents leave their itineraries to correspond-
ing navigator agents only when they know the location of the agent pools of
their destinations.

� Network-dependent Migration: Since each navigator agent is optimized for a
particular network, it can statically have knowledge about the networks. After
achieving its current task, it returns to the given agent pool and stands by for
the next navigation without any initialization. Consequently, when it detects
changes in the network environment, such as malfunction in nodes, network
disconnection, or network topology changes, it keeps the changes in its state
and reflect them in its next navigation in a heuristic manner.

� Limitation of Reachable Nodes: Each navigator agent can limit the migration
range of task agents. This is because each navigator agent can explicitly de-
fine its own reachable nodes and each node accepts only authorized navigator
agents. Consequently, when a task agent is carried by a navigator agent whose
reachable nodes are limited, it can travel only among the reachable nodes of
the navigator agent. Moreover, each agent pool can authenticate its visiting
task agents on behalf of its sub-network. This is helpful in network manage-
ment systems whose nodes may have limited CPU power and memory.

6 Related Work

Many mobile agent systems have been developed over the last few years, for ex-
ample, Aglets [9] and Telescript [17]. There have been several attempts to develop
mobile agent-based network management, for example see [2, 4, 6, 11, 12]. Typi-
cally, a mobile agent for network management must visit multiple hosts to perform
its task, so the itinerary of such an agent can affect its success and efficiency. How-
ever, most of these studies often assume that the agents are designed for particular
networks, because it is difficult for the agents to dynamically make their itineraries to
visit all the specified nodes in their target networks, which may be incomplete or lack
any global perspective. Several studies attempted to build smart mobile agents that
can dynamically learn the topology of networks, (see, for example [10]). However,
most of these studies explicitly and implicitly assume to be performed on only sim-
ulated networks. Even if the studies could be performed in a real system, the costs
of generating efficient routes tend to be large and thus they are not always suitable in
mobile agent-based network management systems.

Some solutions to this problem have been found outside the domain of network

management. For example, ADK [7] separates the travel itinerary of an agent from
its behavior by building a mobile agent from a set of component categories: navi-
gational components responsible for the travel itinerary and performer components
responsible for executing one or more management tasks at each node. Aglets [9]
introduces the notion of an itinerary pattern, which is similar to design patterns in
software engineering, to shift the responsibility for navigation from an application-
specific agent to a framework library described in [1]. Both approaches allow us to
design an application-specific itinerary for an agent independent of the agent’s logi-
cal behavior, but the itinerary parts must be statically and manually embedded in the
agent. Consequently, this agent, unlike ours, cannot dynamically change its itinerary
and cannot travel beyond its familiar networks.

We described an approach to building configurable protocols for agent migration
in another paper [15]. While that approach customizes network processing for agent
migration embedded in a mobile agent runtime system, the approach presented in this
paper can change network-dependent routings embedded in a mobile agent according
to the topology of the current network.

7 Conclusion and Future Work

This paper presented a new approach to building mobile agents for network manage-
ment. The key idea is to build a mobile agent from two subcomponents: a navigator
agent and a task agent. The former is designed for its target networks and thus can
efficiently carry multiple task agents among hosts in the networks. The latter defines
a set of management tasks to be performed at each of the host to be visited. This
framework also provides a mechanism for storing idle navigator agents. When a task
arrives at an unknown network, it finds a navigator agent for the network and enters
the navigator agent to migrate to nodes in the network. As a result, each task agent
can be reused in different networks. A prototype implementation of the framework
built on a Java-based mobile agent system, called MobileSpaces, allowed us to ex-
periment with mobile agent-based network management based on this framework.
We believe that using this framework, we can easily build mobile agents for network
management without any limitation on the reusability of application-specific agents
or the agent migration efficiency.

Finally, we would like to mention some future research directions. The frame-
work presented in this paper is designed to a general-purpose framework. To prove
the utility of the framework, we need to apply the framework to various network
management systems. The current implementation relies on a JDK 1.1 security man-
ager and provides an authentication mechanism for navigator agents; however many
other security problems are left open for our future work. The performance of the
current implementation is not yet satisfactory, so further measurements and opti-
mization are needed.

Acknowledgments

We are grateful to the anonymous reviewers and Professor Juergen Schoenwaelder
for their valuable comments and suggestions.

References
[1] Y. Aridor, and D.B. Lange, “Agent Design Patterns: Elements of Agent Application Design”, in

Proceedings of Second International Conference on Autonomous Agents (Agents ’98), ACM Press,
pp. 108-115. 1998.

[2] C. Bohoris, G. Pavlou, and H. Cruickshank, “Using Mobile Agents for Network Performance
Management”, in Proceedings of IEEE/IFIP Network Operations and Management Symposium
(NOMS’00), pp.637-652, April, 2000.

[3] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple Network Management Protocol
(SNMP)”, RFC 1157, 1990.

[4] A. Bieszczad, B. Pagurek, and T. White, “Mobile Agents for Network Management”, IEEE Com-
munications Surveys, Vol. 1, No. 1, Fourth Quarter 1998.

[5] I. Foster and C. Kesselman (eds.). “The Grid: Blueprint for a New Computing Infrastructure”,
Morgan Kaufmann, San Fransisco, 1999.

[6] D. Gavalas, D. Greenwood, M. Ghanbari, and M. O’Mahony, “An Infrastructure for Distributed and
Dynamic Network Management based on Mobile Agent Technology”, in Proceedings of Conference
on Communications (ICC’99), pp.1362-1366, 1999.

[7] T. Gschwind, M. Feridun, and S. Pleisch, “ADK: Building Mobile Agents for Network and System
Management from Reusable Components”, in Proceedings of Symposium on Agent Systems and
Applications / Symposium on Mobile Agents (ASA/MA’99), pp.13-21, IEEE Computer Society,
1999.

[8] A. Karmouch, “Mobile Software Agents for Telecommunications”, IEEE Communication Maga-
zine, vol. 36 no. 7, 1998.

[9] B. D. Lange and M. Oshima, “Programming and Deploying Java Mobile Agents with Aglets”,
Addison-Wesley, 1998.

[10] N. Minar, K. H. Kramer, P. Maes, Cooperating Mobile Agents for Dynamic Network Routing, in
Software Agents for Future Communication Systems, pp.287-304, Springer, 1999.

[11] A. Puliafito and O. Tomarchio, “Advanced Network Management Functionalities through the use of
Mobile Software Agents”, in Proceedings of Workshop on Intelligent Agents for Telecommunica-
tion Applications (IATA’99), LNCS vol.1699, pp.33-45, August 1999.

[12] A. Sahai and C. Morin, “Mobile Agents for Managing Networks: The MAGENTA Perspective, in
Software Agents for Future Communication Systems, pp.358-380, Springer, 1999.

[13] I. Satoh, “MobileSpaces: A Framework for Building Adaptive Distributed Applications Using a Hi-
erarchical Mobile Agent System”, in Proceedings of International Conference on Distributed Com-
puting Systems (ICDCS’2000), pp.161-168, IEEE Computer Society, April, 2000.

[14] I. Satoh, “MobiDoc: A Framework for Building Mobile Compound Documents from Hierarchical
Mobile Agents”, in Proceedings of Symposium on Agent Systems and Applications / Symposium
on Mobile Agents (ASA/MA’2000), LNCS Vol.1882, pp.113-125, Springer, 2000.

[15] I. Satoh, “Network Processing of Mobile Agents, by Mobile Agents, for Mobile Agents”, in
Proceedings of Workshop on Mobile Agents for Telecommunication Applications (MATA’2001),
LNCS, Vol.2146, pp.81-92, Springer, 2001.

[16] I. Satoh, “Flying Emulator: Rapid Building and Testing of Networked Applications for Mo-
bile Computers”, in Proceedings of Conference on Mobile Agents (MA’2001), LNCS, Vol. 2240,
pp.103-118, Springer, 2001.

[17] J. E. White, “Telescript Technology: Mobile Agents”, General Magic, 1995.

