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Abstract

Traditionally researchers tend to exclude fluorescence
from color appearance algorithms in computer vision and
image processing because of its complexity. In reality, fluo-
rescence is a very common phenomenon observed in many
objects, from gems and corals, to different kinds of writ-
ing paper, and to our clothes. In this paper, we provide
detailed theories of fluorescence phenomenon. In particu-
lar, we show that the color appearance of fluorescence is
unaffected by illumination in which it differs from ordinary
reflectance. Moreover, we show that the color appearance
of objects with reflective and fluorescent components can be
represented as a linear combination of the two components.
A linear model allows us to separate the two components
using images taken under two unknown illuminants using
independent component analysis(ICA). The effectiveness of
the proposed method is demonstrated using digital images
of various fluorescent objects.

1. Introduction
In the field of computer vision, recognizing objects and

patterns by their color has always been a difficult problem
because the color appearance of objects varies dramatically
with surrounding illumination. Researchers in computa-
tional color constancy proposed many algorithms and mod-
els to discount the effect of illumination and recover the true
color of objects [1, 8, 4]. Researchers in image reproduc-
tion and realistic rendering strive to accurately predict the
color of objects under arbitrary illuminants [11]. While the
algorithms and techniques compute color appearance dif-
ferently, they share one common assumption: none of the
objects in the scene exhibit fluorescence. In reality, fluo-
rescence is a very common phenomenon observed in many

Figure 1. Examples of fluorescent objects: gems and corals,
clothes, banana peel and fluorescent sheets.

objects, from gems and corals, to different kinds of writing
paper, and to our clothes(Figure 1). Therefore, computer
vision techniques or image synthesis algorithms concerned
with exact object color must take fluorescence into account.

By experimentation, we discovered that a composite ob-
ject with both ordinary reflective and fluorescent component
has the color appearance that is the sum of the two compo-
nents interact with illuminants differently. To handle the
two components correctly, it is necessary to separate them
first. This motivates us to develop a method for separating
fluorescence and reflectance. In essence, if we assume an
ordinary color camera has narrowband RGB responses, we
can show that the intensity of a pixel pc on the captured
image can be expressed as a linear contribution

pc = acRc + bcFc,

where c = {R,G,B}, Rc and Fc represent ordinary reflec-
tive and fluorescent components at pc. ac and bc are coef-
ficients computed from camera responses and illumination
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that represent how they affect the color appearance of these
components. Since we do not know the illumination un-
der which p is taken, we need to solve forR and F from the
only known variable p. To make this hard problem solvable,
we assume that reflective and fluorescent components seen
in an image are statistically independent. The assumption is
reasonable because in the absence of image interpretation,
the spacial distribution of fluorescent component is uncor-
related with the spatial distribution of the reflective compo-
nent. Based on the linear contribution model, we show that
given p for two images taken under different illuminants, R
and F can be effectively recovered using independent com-
ponent analysis (ICA).

The contributions of our paper are

• providing a theory of fluorescent phenomenon,

• showing that the color of fluorescent component is not
affected by the color of its illuminant, in which it dif-
fers from that of ordinary reflective component, and

• proposing a method for separating reflective and fluo-
rescent components using only two images taken under
different illuminants.

As far as we know, this is the first attempt to separate re-
flective and fluorescent components of an image taken un-
der unknown illumination. The rest of the paper is struc-
tured as follows. Section 2 summarizes earlier research in
color constancy, color appearance and rendering algorithms
for fluorescent surfaces, as well as research in image sep-
aration. Section 3 presents the theories and experimental
results explaining how fluorescent surfaces interact with il-
luminants. Our algorithm and the results for separating or-
dinary reflective and fluorescent components of an image
are presented in Section 4 and 5. In the conclusion, we dis-
cuss issues and future directions of our research.

2. Related Work
The color appearance of non-fluorescent surfaces has al-

ways been the main focus of color-related computer vision
algorithms. For example, in computational color constancy,
researchers attempt to recover the “true color” of objects
under a reference illuminant [1, 8]. The true color is then
modified to predict the appearance of objects under other
illuminants. Barnard et al. studied and compared existing
color constancy algorithms by evaluating their performance
with a large set of test images [4]. Some of the test images
contain fluorescent objects, but all of the evaluated color
constancy algorithms treat them as ordinary objects.

Later on, researchers realized that assuming all objects
are non-fluorescent greatly limits on the accuracy of color
algorithms, because many objects around us exhibit fluores-
cence. In Johnson and Fairchild’s research, they provided

brief explanations of fluorescence, and extended spectral
rendering algorithms to take fluorescence into account [11].
Hullin et al. proposed new ways to model and render flu-
orescent objects by acquiring their bispectral bidirectional
reflectance and reradiation distribution functions (BRRDF)
and the results showed significant improvement in fluo-
rescent object modeling [9]. Furthermore, Barnard pro-
posed ways to improve color constancy algorithms to in-
clude spectral data of several fluorescent materials [3]. Al-
though Barnard solved some problems of including fluores-
cent objects in color constancy algorithms, his work was
mainly based on experimental measurements. His paper
did not provide comprehensive models for fluorescent sur-
faces. In our paper, we extend Barnard’s research by pro-
viding more detailed theories and accurate models for fluo-
rescence.

To accurately predict the appearance of composite ob-
jects with both reflective and fluorescent components, it is
important to separate the two components. Research in nat-
ural science [15] shows necessary procedures for measur-
ing color of fluorescent materials in the spectral domain us-
ing optical devices. For example, Haneishi and Kamimura
used spectral data taken under multiple light sources un-
der known spectral distributions, for characterizing fluores-
cent samples [12]. Alterman et al. separated the appearance
of each fluorescent dye from a mixture by unmixing multi-
plexed images [2]. Nakajima and Tominaga used statistics
of fluorescent materials for estimating fluorescent compo-
nents of a real material using multi-spectral images seen
under sunlight [13]. In the early stage of our research, we
successfully separated the components of fluorescent sheets
using spectral data captured by a spectrometer. The success-
ful results motivated us to develop a more practical system
for doing the separation using images taken by an ordinary
digital camera.

The computer vision community has several methods for
separating components of an image [14, 17]. Some al-
gorithms separate specular reflections from diffuse reflec-
tions. Some algorithms separate non-correlated compo-
nents of images. For example, Farid and Adelson proposed
a method for separating a painting from the reflection of
an observer on the glass in front of the painting, using two
images [7]. We found that Farid and Adelson’s problem
closely resembles the fluorescence-separation problem we
are interested in. Therefore, a similar approach based on
independent component analysis is used in our case for sep-
arating reflective and fluorescent components.

3. Properties of Fluorescent Surfaces

3.1. Fluorescence

We start by looking at what is fluorescence. Most typ-
ical fluorescent material absorbs light in the near ultravio-
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Figure 2. Natural daylight and fluorescent lamp both have strong
UV and short-wavelength components.

let (UV) range from 200 nm to 380 nm, and re-emit visible
light in 380 nm to 720 nm. Some material absorbs short-
wavelength visible light and re-emit longer-wavelength vis-
ible light. The first type of special UV lights are not re-
quired to observe fluorescence because many natural light-
ing conditions, such as daylight and cool fluorescent light,
have strong UV components (Figure 2). After decades of
studies, researchers can explain fluorescence phenomenon
and two unique properties of fluorescent materials with con-
cepts in quantum theory[6, 15]: fluorescent material always
emits light at longer wavelength than the absorbed light,
and the emission spectra of each fluorescent material always
have the same frequency distribution (e.g. shape) regardless
of the spectra of incident light.

Due to their unique properties, the appearance of fluo-
rescent surfaces must be computed differently than reflec-
tive surfaces. The color of a reflective surface depends only
on the illuminant and its reflectance. For example, the ob-
served spectrum of an ordinary reflective surface with re-
flectance R under illuminant I is

P (λ) = I(λ)R(λ),

where I(λ) is the intensity of the illuminant at wavelength
λ and R(λ) is the reflectance of the material at wavelength
λ. If we capture the object with a charge-coupled device
(CCD) camera with three channels R,G and B, then the
color of each pixel for each channel is

p =

∫
c̄(λ)I(λ)R(λ) dλ, (1)

integrated over visible spectrum (380 nm to 720 nm), where
c̄(λ) = {r̄(λ), ḡ(λ), b̄(λ)} are the camera response curves
for each channel [16].

For a pure fluorescent surface, the observed spectrum
depends on the illuminant, the material’s excitation spec-
trum and emission spectrum. Excitation spectrum shows
how much energy from the illuminant is absorbed at each
wavelength. Thus it is a function of the wavelength of
the illuminant. For each wavelength in an excitation spec-
trum, there is a corresponding emission spectrum that shows

Figure 3. Measured excitation and emission spectra of fluorescent
sheets. Top: Emission spectra for light source at different wave-
length. Middle: Excitation(dotted) and emission(solid) spectra for
red-orange sheet. Bottom: Excitation(dotted) and emission(solid)
spectra for yellow sheet.

the frequency distribution and intensity of the emitted light.
Usually the emission spectrum is a function of wavelength
covering the visible range. The frequency distribution of
all emission spectra is constant, but the intensity varies.
Figure 3(Top) shows the measured emission spectra of a
red-orange fluorescent sheet. Each colored spectrum cor-
responds to the illuminant at a different wavelength, and
have the same frequency distribution as one another. Fig-
ure 3(Middle) shows the normalized1 excitation and emis-
sion spectra of the sheet. From the emission spectrum we
can see that the sheet appears reddish orange when it is il-
luminated with light in the range of 380 nm to 650 nm.

To obtain the observed spectrum of a pure fluorescent
surface, we must consider the sum of the contribution from
illuminant, excitation, and emission. Suppose the illumi-
nant is I and its intensity at wavelength λi is I(λi). Let
Ex and Em represent the normalized excitation and emis-
sion spectrum, respectively. Then the observed spectrum,

1The spectral power distribution is normalized so that the minimum
intensity is 0 and the maximum intensity is 1.0
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P (λ, λi), resulting from the illuminant at λi is

P (λ, λi) = I(λi)Ex
′(λi)Em(λ),

whereEx′(λi) ≡ Ex(λi)∫
Ex(λi) dλi

is the relative intensity of the
excitation caused by the illuminant at wavelength λi. Since
I(λi)Ex

′(λi) is a scalar, all P (λ, λi)’s have the same shape
as Em(λ). Considering illumination at all wavelengths,
the overall observed spectrum is computed by summing up
P (λ, λi)’s for all wavelength λi. i.e.

P (λ) =

(∫
I(λi)Ex

′(λi) dλi

)
Em(λ).

The range of λi depends on the illuminant, and the range of
λ is the range of the observed light we wish to measure. Re-
ferring back to the example of red-orange fluorescent sheet,
Figure 3(Top) is the plot for P (λ, λi)’s.

If we capture the pure fluorescent surface with a CCD
camera, the color of the pixel for each channel is

p =

(∫
I(λi)Ex

′(λi) dλi

)∫
c̄(λ)Em(λ) dλ. (2)

Many objects we see every day are neither pure reflec-
tive nor pure fluorescent; they are composites of ordinary
reflective and fluorescent components. Figure 4(a) shows
the overall change in the observed spectrum of such object.
Each colored line represents the observed spectrum corre-
sponding to the illuminant at a particular wavelength. When
the wavelength of the illuminant falls in the UV range, or
the high-energy range of the object’s excitation spectrum,
fluorescent component dominates, thus we observe fluores-
cence only (Figure 4(b)). When the wavelength of the illu-
minant falls in the visible light range, we observe mixture
of fluorescence and reflectance (Figure 4(c)). When the il-
luminant is in the low-energy range of visible light and falls
outside of the excitation spectrum, fluorescence diminishes
and we only observe reflectance (Figure 4(d)).

Clearly, an object’s reflective and fluorescent compo-
nents behave significantly differently. In the next section,
we will show a unique property of fluorescent component,
and present our findings on how it interacts with illuminants
differently from reflective component.

3.2. Constant Chromaticity

The most intriguing property of fluorescence we discov-
ered is that it has constant color, or chromaticity, under most
illuminants. The proof of this property follows naturally
from Equation 2 in the previous section.

By replacing the camera response functions c̄(λ), we can
compute the CIE tristimulus values of the fluorescent mate-

(a) Measured spectra of the red-orange fluorescent sheet under illuminations
at different wavelength.

(b) Illumination in the UV range:
observe fluorescence only.

(c) Illumination in visible range:
observe both fluorescence and re-
flectance.

(d) Illumination in visible range and
outside of excitation range: observe
reflectance only.

Figure 4. Observed spectra of fluorescent sheet containing both
reflective and fluorescent components.

rial as

X =

∫
I(λi)Ex

′(λi) dλi

∫
x̄(λ)Em(λ) dλ, (3)

Y =

∫
I(λi)Ex

′(λi) dλi

∫
ȳ(λ)Em(λ) dλ, (4)

Z =

∫
I(λi)Ex

′(λi) dλi

∫
z̄(λ)Em(λ) dλ, (5)

where x̄(λ), ȳ(λ), z̄(λ) are the CIE color matching func-
tions. λ is integrated over visible light range 380 nm to
720 nm. Let

X0 =

∫
x̄(λ)Em(λ) dλ,

Y0 =

∫
ȳ(λ)Em(λ) dλ,

Z0 =

∫
z̄(λ)Em(λ) dλ
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be the reference tristimulus values of the normalized emis-
sion spectrum Em. Substituting X0, Y0 and Z0 into Equa-
tions 3 to 5, we have X = kX0, Y = kY0, and Z = kZ0

with k =
∫
I(λi)Ex

′(λi) dλi. Note that k is a scalar and
its value depends on the intensity of the illuminant and the
excitation spectrum of the material.

Now define reference chromaticity as

x0 =
X0

X0 + Y0 + Z0
and y0 =

Y0
X0 + Y0 + Z0

.

Then the chromaticity of the object under an arbitrary illu-
minant becomes

x =
X

X + Y + Z
=

kX0

kX0 + kY0 + kZ0
= x0.

Similarly, y = y0. Thus the chromaticity of the fluorescent
material is independent of both the illuminant and excitation
spectrum; it only depends on the emission spectrum.

We verified our findings with carefully designed experi-
ments. The results are shown in APPENDIX. In summary,
the color appearance of reflective component varies with il-
lumination dramatically, whereas the appearance of fluores-
cent component stays constant except for intensity. In the
next section, we propose a method for separating ordinary
reflective and fluorescent components, in which the only in-
puts required are two images of objects taken under two
illuminants.

4. Separating Reflective and Fluorescent Com-
ponents of an Image

4.1. The Model

When we take an image of composite objects with
both ordinary reflective and fluorescent components using
a CCD camera, the color of each pixel p on the final im-
age for each channel c = {R,G,B} is the sum of the pixel
color for reflective component pO and fluorescent compo-
nent pF . i.e. p = pO + pF . Substitute in Equation 1 and 2
for pO and pF , we have

p =

∫
c̄(λ)I(λ)R(λ) dλ

+

∫
I(λi)Ex

′(λi) dλi

∫
c̄(λ)Em(λ) dλ (6)

We assume that the responses of a CCD camera have
fairly narrow bandwidth, that is, light goes through the cam-
era at a particular wavelength to reach the sensor [5]. The
narrowband assumption is often used in color constancy al-
gorithms, so we can simplify Equation 6 as

pn = c̄(λn)I(λn)R(λn)

+

(∫
I(λi)Ex

′(λi) dλi

)
c̄(λn)Em(λn), (7)

where λn for n = {R,G,B} is set to be the wavelength of
each R,G,B channel of the camera.

Now for each channel, p is represented as a linear combi-
nation of the reflective component R and fluorescent com-
ponent Em. Both R and Em are unknown to us. The spec-
tral distribution of the illuminant under which p is taken, is
also unknown. To tackle the problem of blindly separating
R and Em from the only known variable p, we make the
assumption that the two components are independent. This
assumption is reasonable since in our case, the spatial dis-
tribution of fluorescent component provides no prediction
of the spacial distribution of the ordinary reflective com-
ponents; we expect no correlation between images of the
two components. Based on this assumption and Equation 7,
we solve the blind separation problem by applying indepen-
dent component analysis (ICA) [10] to images of the objects
taken under different illuminants.

Since ICA requires the number of measurements to be
greater than or equal to the number of independent compo-
nents, we take images p1 and p2 of a fluorescent object un-
der two distinct illuminants I1 and I2. Formulate the prob-
lem based on Equation 7 for each n = {R,G,B} channel
as [

pj1(λn)

pj2(λn)

]
=

[
r1(λn) f1(λn)
r2(λn) f2(λn)

] [
Rj(λn)
Emj(λn)

]
,

where pji is the jth pixel value for ith illumination, Rj

and Emj are the ordinary reflectance and fluorescence
at the jth pixel, ri(λn) = c̄(λn)Ii(λn), and fi(λn) =
c̄(λn)

∫
Ii(λi)Ex

′(λi) dλi. Let Pn = MnSn be the short
form of the matrix equation above. We call Pn the in-
put matrix, Mn the mixing matrix, and Sn the signal ma-
trix. If we input Pn to ICA 2, ICA will first estimate Mn,
and Sn is computed as M−1n Pn. To obtain the image with
only reflective component, we combine Rj(λn) in Sn for
n = {R,G,B}. Similarly to obtain the image with only
fluorescent component, we combine Emj(λn) in Sn.

4.2. Ambiguities of ICA

Even though ICA works well for solving our problem,
it imposes two ambiguities. First, we cannot determine the
“order” of the independent componentsR andEm. In other
words, we do not know which resulting component is for
fluorescence and which is for reflectance. The reason is that
both mixing matrix and signal matrix are unknown; for the
same set of data Pn, ICA could recover the pair Mn and Sn
as either

Mn =

[
r1 f1
r2 f2

]
, Sn =

[
Rj

Emj

]
,

2We used the FastICA package in MATLAB in our experiments.
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Figure 5. Top: colored sheets under white illuminant. Middle: col-
ored sheets under green and pink illuminants. Bottom: fluorescent
sheets seen under UV light.

Figure 6. Recovered fluorescent and reflective components using
images taken under green and pink illuminants

or

Mn =

[
r2 f2
r1 f1

]
, Sn =

[
Emj

Rj

]
.

The second ambiguity is “scaling”. ICA recovers the mix-
ing matrix within a scale factor of the true mixing matrix.
In other words, we cannot compute the absolute intensity
of the pixels for each component. Again, the reason is that
both Mn and Sn are unknown; any multipliers in Mn can
be canceled out by dividing the same scalars in Sn. i.e.[
r1 f1
r2 f2

] [
Rj

Emj

]
=

[
r1/α f1/β
r2/α f2/β

] [
αRj

βEmj

]

4.2.1 Solving the “ordering” ambiguity

We solve the ordering ambiguity by using the unique prop-
erty of fluorescent component. Let xji and yji represent the
x,y-chromaticity of the jth pixel in the ith image. Compute
the chromaticity difference at the jth pixel between two in-

put images as

dj =

√
(xj1 − x

j
2)2 + (yj1 − y

j
2)2.

In Section 3, we showed that dj is very small if j shows
the brightness of fluorescent component. Let sj1 and sj2 be
the recovered intensities at the jth pixel in the two images
computed by ICA. Normalize them as

s′
j
1 =

(sj1)2∑
i(s

i
1)2

, s′
j
2 =

(sj2)2∑
i(s

i
2)2

.

Then multiply the relative intensities by the chromaticity
difference dj , and sum over all pixels

t1 =
∑
j

s′
j
1 d

j , t2 =
∑
j

s′
j
2 d

j .

If t1 is smaller than t2, then the image represented by s1
is the fluorescent component. Otherwise the image repre-
sented by s1 is the fluorescent component. Intuitively, if
the jth pixel contains the fluorescent component, s′j will
be big but dj is small. Therefore, the overall t value for
image with fluorescent component is always smaller. This
technique assumes that the objects have much stronger flu-
orescent component than ordinary reflective component.

4.2.2 Solving the “scaling” problem

In the mixing matrix, the integral part of scalar f1(λn) =
c̄(λn)

∫
Ii(λi)Ex

′(λi) dλi depends only on the spectral
distribution of the illuminant and excitation of the fluores-
cent component and thus must be the same among all RGB
channels. This fact can be used for solving the scaling
ambiguity of fluorescent component if c̄(λn) are known.
For each n = {R,G,B}, we scale the computed sn by
f1/c̄(λn). i.e.

Em′
j
(λn) = sn ∗ c̄(λn)/f1.

Em′
j
(λn)’s estimate the relative intensities in RGB chan-

nels and provide the necessary color balance in the final im-
age for fluorescent component. While in theory, this solu-
tion works for a scene consists of one type of fluorescent
surface where f1 is uniform for the entire image, it works
fine for scenes with multiple types of fluorescent surfaces in
our experiments shown in Figure 6. In the case of multiple
types of fluorescent surfaces, we may have better solutions,
and we will investigate the issue more in the future.

To achieve correct color balance for the reflective com-
ponents, we look for or include a reference patch with white
reflectance in the input images. The recovered images for
RGB channels are combined in a way such that the white
patch remains white in the reflectance-only image. If we
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have a material of known fluorescence such as white pa-
per with bluish fluorescence, we can utilize the known flu-
orescence for achieving correct color balance of fluorescent
component.

5. Results and Analysis
We tested our method with images taken with an ordi-

nary CCD camera. The first scene is an image made with
color sheets. The sheets contain different amount of fluo-
rescence and reflectance (Figure 5 Top). The top two flow-
ers are made of fluorescent sheets that appear bright yellow
and bright red-orange under white light. The flower in the
middle and the leaves are made of dark red and dark green
non-fluorescent sheets. The background is made of non-
reflective light purple sheet.

We first recovered fluorescent and reflective components
using images taken under a green illuminant and a pink
illuminant (Figure 5 Middle). The recovered fluorescent
component (Figure 6 Left) shows that the color of fluores-
cent component of the yellow fluorescent sheet is in fact
green. In Section 3, we showed the measured emission
spectrum of the sheet (Figure 3 Bottom), which suggests
that the color of the fluorescent component is green. Fur-
thermore, we took images of the fluorescent flowers under
UV light, which provided “ground truth” for the color of the
fluorescent components (Figure 5 Bottom). Our recovered
appearance agrees with experimental results, as well as the
“ground truth”. The dark red and dark green sheets used
in making the scene have ordinary reflectance only since
the color of the middle flower and the leaves in the recov-
ered reflective component (Figure 6 Right) is the same as
the color seen under white light. It is also worth noting that
the yellow fluorescent flower appears to be orange in the
recovered image for reflective component. Combining the
orange color with the green color in the fluorescent compo-
nent gives the flower its final yellow appearance. Moreover,
the red-orange fluorescent sheet has much stronger fluores-
cence compare to the yellow fluorescent sheet. Therefore,
its color appearance is almost all contributed by the fluores-
cent component.

Our method is effective on scenes with complex color
patterns, and scenes consist of objects as well. Fig-
ure 7 consists of two fluorescent sheets on top of a non-
fluorescent background image with complex color patterns.
Our method succeeded in identifying the green and red-
orange color of the fluorescent sheets. The recovered image
for fluorescent component (Figure 7(b) Left) does not show
the background image at all, which clearly demonstrates the
correctness and effectiveness of our method. Figure 8 are
the recovered results for a scene consists of objects. The
fluorescent sticks and non-fluorescent jar are separated into
two images. The color of the sticks (Figure 8(b)) matches
with the ground truth (Figure 8(c)).

(a) Ground truth (seen under white light) and input images.

(b) Recovered images.

Figure 7. Fluorescent objects on top of reflective image with com-
plex color patterns.

(a) Ground truth (seen under white light) and input images.

(b) Recovered images.

(c) Fluorescent sticks seen under UV light.

Figure 8. Examples of real fluorescent objects.

6. Discussions and Conclusions
We explained the difference in appearance between flu-

orescence and reflectance and proposed a method for sepa-
rating fluorescent and reflective components of objects us-
ing images captured under two illuminants. Three issues
are worth further attention. First, the intensity of fluores-
cence varies proportionally to the illuminant; we may be
able to use this property to infer information about the il-
luminant. Secondly, we assume that for an image, there is
no correlation between the spatial distributions of reflective
and fluorescent components. In the future, we will explore
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Figure 9. Surfaces with ordinary reflectance and fluorescence.

(a) CIE standard daylights. (b) CIE standard indoor lights.

Figure 10. Illuminants used in the experiments.

Figure 11. x-chromaticity(top) and y-chromaticity(bottom) of flu-
orescent and ordinary reflective surfaces under various illumi-
nants. Left: fluorescent surfaces vs illuminants. Right: reflective
surfaces vs. illuminants.

statistical evidence to support the assumption. Thirdly, the
proposed separation method assumes that a CCD camera
has narrowband responses. Even though this assumption is
made by many color constancy algorithms, it remains con-
troversial. It is worth studying the effectiveness of the pro-
posed method without making the narrowband assumption.
Overall, this paper presented ideas pioneering a new direc-
tion of research in computer vision and image processing.
APPENDIX: Appearance of Ordinary Reflectance and
Fluorescence under Various Illuminants

The changes in color of eight fluorescent and non-
fluorescent surfaces (Figure 9) were examined under stan-
dard daylight and indoor illumination. Figure 10 shows the
spectra of the illuminant, which cover a wide range of illu-
mination conditions. The x,y-chromaticity vs illuminants
plots (Figure 11) clearly show that surfaces with strong
a fluorescent component are more prone to illumination
changes. The x-chromaticity of fluorescent yellow sheet
varies more because it contains a stronger reflective com-
ponent compare to fluorescent red-orange sheet. The ap-
pearance of surfaces with only reflective component varies
greatly with illumination.

References
[1] V. Agarwal and B. R. Abidi. An overview of color constancy

algorithms. Journal of Pattern Recognition Research, 1:42–
54, 2006.

[2] M. Alterman, Y. Schechner, and A. Weiss. Multiplexed fluo-
rescence unmixing. In Computational Photography (ICCP),
2010 IEEE International Conference on, pages 1–8, 2010.

[3] K. Barnard. Color constancy with fluorescent surfaces. In
Proceedings of the IS&T/SID seventh Color Imaging Confer-
ence: Color Science, Systems and Applications, pages 257–
261, 1999.

[4] K. Barnard, V. Cardei, and B. Funt. A comparison of com-
putational color constancy algorithms. IEEE Transactions
on Image Processing, 11(9):972–996, 2002.

[5] M. Ebner. Color Constancy. Wiley Publishing, 2007.
[6] P. Emmel and R. D. Hersch. Spectral colour prediction

model for a transparent fluorescent ink on paper. In Pro-
ceedings of the sixth IS&T Color Imaging Conference, pages
17–20. Society for Imaging Science and Technology, 1998.

[7] H. Farid and E. Adelson. Separating reflections and lighting
using independent components analysis. In Computer Vision
and Pattern Recognition, volume 1, pages 267–275, 1999.

[8] D. A. Forsyth. A novel algorithm for color constancy. Inter-
national Journal of Computer Vision, 5(1):5–36, 1990.

[9] M. B. Hullin, J. Hanika, B. Ajdin, H.-P. Seidel, J. Kautz, and
H. P. A. Lensch. Acquisition and analysis of bispectral bidi-
rectional reflectance and reradiation distribution functions.
ACM Trans. Graph., 29:97:1–97:7, July 2010.

[10] A. Hyvärinen and E. Oja. Independent component analy-
sis: Algorithms and applications. The Official Journal of
the International Neural Network Society, 13(4–5):411–430,
2000.

[11] G. M. Johnson and M. D. Fairchild. Full-spectral color calcu-
lations in realistic image synthesis. IEEE Computer Graph-
ics and Applications, 19:47–53, 1999.

[12] H. Kaneishi and R. Kamimura. Modeling and estimation
spectral reflectance of fluorescent object. Japan Hardcopy,
pages 427–428, 2002.

[13] T. Nakajima and S. Tominaga. Spectral reflectance estima-
tion of fluorescent materials by using camera images. In
Proceedings of Color Science Association of Japan, pages
74–75, 2010.

[14] S. Nayar, X.-S. Fang, and T. Boult. Removal of specularities
using color and polarization. In Proceedings of Computer
Vision and Pattern Recognition, pages 583–590, 1993.

[15] A. Springsteen. Introduction to measurement of color of flu-
orescent materials. Analytica Chimica Acta, 380(2-3):183–
192, 1999.

[16] S. Tominaga and E. Takahashi. Spectral image processing by
a multi-channel camera. In ICIP99, pages 575–579, 1999.

[17] N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu,
H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake. Image-
based skin color and texture analysis/synthesis by extract-
ing hemoglobin and melanin information in the skin. SIG-
GRAPH 03, pages 770–779. ACM, 2003.

192


