
Planarity allowing few error vertices in linear time

Ken-ichi Kawarabayashi
National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda-ku

Tokyo 101-8430, Japan
k keniti@nii.ac.jp

Abstract— We show that for every fixed k, there is a linear time
algorithm that decides whether or not a given graph has a vertex set
X of order at most k such that G−X is planar (we call this class
of graphs k-apex), and if this is the case, computes a drawing of the
graph in the plane after deleting at most k vertices. In fact, in this
case, we shall determine the minimum value l ≤ k such that after
deleting some l vertices, the resulting graph is planar. If this is not
the case, then the algorithm gives rise to a minor which is not k-
apex and is minimal with this property. This answers the question
posed by Cabello and Mohar in 2005, and by Kawarabayashi and
Reed (STOC’07), respectively.

Note that the case k = 0 is the planarity case. Thus our
algorithm can be viewed as a generalization of the seminal result by
Hopcroft and Tarjan (J. ACM 1974), which determines if a given
graph is planar in linear time. Our algorithm can be also compared
to the algorithms by Mohar (STOC’96 and Siam J. Discrete Math
2001) for testing the embeddability of an input graph in a fixed
surface in linear time, by Kawarabayashi and Mohar (STOC’08)
for testing polyhedral embeddability of an input graph in a fixed
surface in linear time, and by Kawarabayashi and Reed (STOC’07)
for testing the fixed crossing number in linear time. Note that
deciding the genus of k-apex graphs is NP-complete, even for
k = 1, as shown by Mohar. Thus k-apex graphs are very different
from bounded genus graphs in a sense.

In addition, for any fixed c, k, we apply our algorithm to obtain
a linear time approximation scheme for weighted TSP, and for
minimum weighted c-edge-connected submultigraph, respectively,
for k-apex graphs. (In this case, an embedding of a k-apex graph is
not given in the input). The first result generalizes the recent planar
result by Klein (FOCS’05), while the second result generalizes
Czumaj et al. (SODA’04). We also extend several optimization
results for planar graphs by Baker (J. ACM. 1994) and others to
k-apex graphs.

Keywords-Planarity, Few errors, TSP, Approximation Algo-
rithms and linear time

1. INTRODUCTION

1.1. Planarity Testing and Graph Embeddings

A seminal result of Hopcroft and Tarjan [24] from 1974
is that there is a linear time algorithm for testing planarity
of graphs. This is just one of a host of results on embedding
graphs in surfaces. These problems are of both practical and
theoretical interest. The practical issues arise, for instance,
in problems concerning VLSI, and also in several other
applications of “nearly planar” networks, because planar
graphs and graphs embedded in low genus surfaces can be
handled more easily. Theoretical interest comes from the
facts that there are many generally hard problems which can

be solved in polynomial time (often, even linear time) when
considering planar graphs or “nearly” planar graphs, e.g.,
MAXIMUM CLIQUE, SUBGRAPH ISOMORPHISM [18].
Even for problems that remain NP-hard on planar graphs, we
often have efficient approximation algorithms, e.g, INDE-
PENDENT SET, VERTEX COVER, DOMINATION SET
etc [4], [31]. Recently, some apparently new and nontrivial
linear time algorithms concerning graph embeddings appear:
One [25] is concerning drawing a given graph into the plane
with at most k crossings (for any fixed k), and another one
[26] is concerning embedding a given graph into a surface
with face-width at least k with an application to the graph
isomorphism problem (for any fixed k). Both algorithms
depend on the linear time algorithm for embedding a given
graph into a given surface [27], [33], [34]. Computing
the genus of graphs in certain minor closed families has
mainly theoretical (but also some practical) importance. We
refer to Mohar and Schrijver [36] for a discussion on this
topic. While some minor closed families of graphs allow
polynomial time genus computation, there are some classes
where genus testing is NP-complete. The simplest such
family is the class of all 1-apex graphs [35], i.e, there is
a vertex v in a given graph G such that G− v is planar.

In this paper, we are interested in k-apex graphs, which
is a generalization of 1-apex graphs. Let us say that a
graph is k-apex if it contains a set of at most k vertices
whose removal yields a planar graph. In addition to practical
importance, the class of k-apex graphs is important in
a theoretical sense. K-apex graphs are important in the
seminal structure theorem in graph minor project [44], [45].
In addition, determining whether or not a given graph is k-
apex for any fixed k can be classified in the framework
of parameterized complexity developed by Downey and
Fellows [17]. In the parameterized complexity literature, a
lot of similar vertex-deletion problems have been studied,
for example, the feedback set problem. Let us observe that
if k is as part of input, then this problem is still NP-hard
[30]. Thus k must be fixed. Note that the case k = 0
is the planarity case. Thus determining whether or not a
given graph is k-apex for any fixed k is a quite natural
question in this context. Moreover, k-apex graphs are exactly
the obstructions for “ bounded local tree-width graphs”,
which unify “planar graphs and bounded genus graphs” and



“bounded tree-width graph”, and are drawn much attention
by many researchers [19], [22].

We define the apex number of a graph G as the minimum
k for which G is k-apex. Our main result is to extend the
seminal result of Hopcroft and Tarjan [24] on the planarity
testing to k-apex graphs for any fixed k. We give a linear
time algorithm to test whether or not a given graph G is
k-apex for any fixed k. In addition, we give an embedding
of a k-apex graph if one exists in G, and determine the
apex number (of a k-apex graph). Moreover, we use our
main result to generalize some optimization results for
planar graphs [4], [18], [31] to k-apex graphs. Furthermore,
we generalize some linear time approximation schemes for
planar graphs [5], [11], [29] to k-apex graphs.

The class of k-apex graphs seems very different from
bounded genus graphs, and planar graphs with at most k
edges (i.e, after deleting at most k edges, the resulting
graph becomes planar). There are linear time algorithms to
test whether or not a given graph can be embedded into
a surface of bounded genus [27], [33], [34]. Also, there
is a linear time algorithm to figure out whether or not a
given graph is a planar graph with at most k edges. This
was shown in [25]. Let us observe that its proof depends
on the above mentioned linear time algorithms [27], [33],
[34]. Note that planar graphs with at most k edges can be
embedded into a surface of Euler genus k. On the other hand,
we cannot embed a given k-apex graph on a surface with
low genus, since it is known to be NP-complete to decide the
genus of a k-apex graph (even 1-apex graphs, see [35]). The
difficulty is that some 1-apex graph has huge Euler genus.
For example, Euler genus of the bipartite graph K3,n−3 is
d(n−5)/2e. This makes a huge difference between bounded
genus graphs, planar graphs with at most k edges, and k-
apex graphs, in terms of designing a linear time algorithm
for embedding k-apex graphs, because we cannot use the
above mentioned linear time algorithms [27], [33], [34].

On the other hand, it is easy to check in quadratic time if
a graph is 1-apex - simply test for each vertex v, if G − v
is planar. In fact, it is easy to check in O(nk+1) time if a
graph is k-apex. Robertson and Seymour [44] have already
proved that all classes of graphs that are closed under taking
minors are recognizable in cubic time. Since k-apex graphs
are closed under taking minors, this implies that there is an
O(n3) algorithm for deciding whether G is k-apex for fixed
k. Moreover, Marx and Scholotter [32] gives an O(n2) time
algorithm for recognizing k-apex graphs for any fixed k.
Our algorithm improves the time complexity of their result
to linear time.

1.2. Our main results

In this paper, we prove the following result.
Theorem 1.1: For every k and any graph G, there is a

linear time algorithm which returns one of the following:

(1) an embedding of G into a plane after deleting at most
k vertices, or

(2) a minor of G which is not k-apex and is minimal with
this property.

In fact, if the output is (1), then our algorithm determines the
apex number l ≤ k. The running time is O(f(k)n), where
f(k) is double exponential of k.

This proves a conjecture by Cabello and Mohar [9] and by
Kawarabayashi and Reed ([25], STOC’07), and improves the
O(n2) algorithm given by Marx and Scholotter [32]. This
problem was also discussed by Fellows and Langston [20].
Our proof implies the uniformity, which means that we have
an algorithm which works for all l ≤ k.

We have learned that Cabello and Mohar (private com-
munication) gave a linear time algorithm for the case k = 1
in Theorem 1.1, i.e, 1-apex graphs, but their method is
completely different from ours.

Our algorithm has several appealing features. It applies
techniques which were used in [40], [41] to obtain a linear
time algorithm to solve the k disjoint paths problem for
planar graphs (improving the O(n3) algorithm of Robertson
and Seymour [44] for any fixed k). We also use a result by
Mohar [35] concerning face-cover in a plane graph.

Some applications to TSP and related problems.: The
Traveling Salesman Problem is a classic problem that has
served as a testbed for almost every new algorithmic idea
over the past 50 years. It has been considered extensively in
planar graphs and its generalizations, starting with a PTAS
for unweighted planar graphs [21], then a PTAS for weighted
planar graphs [2], recently improved to linear time [29].
There is also a PTAS [14] for bounded genus graphs.

Our algorithm of Theorem 1.1 can be used to give linear
time approximation schemes.

Theorem 1.2: For any fixed k, any constant c ≥ 2, and
any 0 < ε ≤ 1, given a graph which is k-apex (but an embed-
ding is not given), there is a linear time (1+ε)-approximation
algorithm for weighted TSP, and for minimum-weight c-
edge-connected submultigraph, respectively. (The minimum-
weight c-edge-connected submutigraph problem allows us-
ing multiple copies of an edge in the input graph, and hence
submultigraph, but the solution must pay for every copy.)

In fact, the proof of Theorem 1.2 follows from our
algorithm of Theorem 1.1, together with the results by
Demaine, Hajaghayi and Mohar [14]. Theorem 1.2 gener-
alizes the linear time approximation scheme for weighted
TSP for planar graphs by Klein [29] and the polynomial
time approximation scheme for minimum-weight c-edge-
connected submultigraph for planar graphs when c = 2 by
Berger et al. [5] and Czumaj et al. [11].

TSP and minimum c-edge-connected submultigraph are
examples of a general class of problems called contraction-
closed problems, where the optimal solution only improves
when contracting an edge. Many other classic problems
are contraction-closed, for example, dominating set (and



its many variations) and minimum chordal completion. The
same proof of Theorem 1.2 implies that there are linear time
(1 + ε)-approximation algorithms for these problems.

We also extend several optimization results for planar
graphs to k-apex graphs, using the results in [4], [12], [13].
Details will be in Section 6. Proofs of Theorem 1.2 will be
also give in Section 6.

1.3. Overview of the algorithm
We now turn to our algorithm for constructing an embed-

ding of a given graph G into a plane after deleting at most
k vertices (which we call apex vertex set), if one exists.
Otherwise, we discover a minimal forbidden minor for k-
apex graphs contained in G. The crux of the matter is to
understand which vertices are irrelevant with respect to any
embedding of G into a plane after deleting at most k vertices.
In order to describe this idea, it will be convenient to define
the following;

1) Let AU be a maximum set of vertices in G such that no
matter how we embed G into a plane after deleting at
most k vertices from G, AU is contained in an apex
vertex set. By maximum, we mean that there is no
vertex v in G − AU that can be in AU . Sometimes,
we call AU the universal apex vertex set for G. Any
vertex in AU is sometimes called a universal apex
vertex for G.

2) Let AP be a set of vertices in G such that AP ∩AU =
∅, but for each vertex x ∈ V (AP ), there is a vertex
set A′ with x ∈ A′ whose order is exactly the apex
number l ≤ k of G, such that G−A′ can be embedded
into a plane. (Let us observe that AU ⊆ A′.)

When we say that a vertex v in G is irrelevant, we mean
that v 6∈ (AU ∪ AP ), and furthermore, no matter how we
embed G−v into a plane after deleting l ≤ k vertices (where
l is the apex number of G), we can put the vertex v to this
embedding so that the resulting embedding is still planar.
We shall show the following;

1) If a vertex v in G − AU is contained in a planar
subgraph Q of G − AU , and v is surrounded by a
huge wall (a wall of height at least 2k), then v 6∈ AP ,
and v is irrelevant

2) The removal of all these irrelevant vertices, say a set
Y , yields a graph of bounded tree-width if G is k-
apex. Moreover, if the universal apex vertex set AU

is given, there is a linear time algorithm to find the
vertex set Y in G−AU .

Thus one key is to detect the vertex set AU .
Let us describe our algorithm more precisely. We may

assume that the minimum degree of G is at least 2. For some
small but constant ε > 0, we iteratively find a sequence of
graphs G = G0, G1, . . . , Gb such that Gi is obtained from
Gi−1 by either

1) contracting an induced matching Mi with at least
ε|Gi−1| edges, or

2) deleting a stable set I of ε|Gi−1| vertices, each of
degree l, where l ≤ k + 3.

In the latter case, for every vertex x in I , the following
holds:

1) there are at least l vertices in I such that each of them
has the exactly same neighbors as x.

2) In addition, there are k + 3 vertices in Gi−1 that are
not in I , such that each of them has the exactly same
neighbors as x.

In this case, we also put a clique to Gi−1 for the neighbors
of every x ∈ I . Then Gi is the resulting graph. Note that
the resulting graph Gi is a minor of Gi−1.

We stop after b steps, where b is minimum value such that
Gb has fewer than B vertices for some constant B. Clearly
b ≤ log1/ε(n/B) and hence it turns out that the sum of the
sizes of all encountered graphs Gi is O( 1

ε n).
For each i, we will either construct a desired embedding

for Gi with an apex vertex set Ai of order at most k, or give
a minimal forbidden minor of k-apex graphs in Gi, in time
O(|Gi|). It is easy to do this for Gb in constant time, since
it has bounded size. We will work backwards from b to 1
using the embedding of Gi+1−Ai+1 to help in constructing
an embedding for Gi − Ai, if one exists. The key idea is
that when we construct the embedding of Gi+1, we make
a reduction to get a subgraph G′i+1 of Gi+1, which has
bounded tree-width. The important property of G′i+1 is that
the apex number l ≤ k of Gi+1 is the exactly same as that
of G′i+1. Moreover, all the vertices in AU must be in G′i+1,
and no vertex in V (Gi+1) − V (G′i+1) is in AP . Actually,
every vertex v in V (Gi+1)−V (G′i+1) is irrelevant, i.e, Gi+1

is k-apex if and only if Gi+1 − v is.
For the reader’s convenience, we shall give a sketch how

to construct the graph G′i+1 from Gi+1. Suppose a planar
embedding of Gi+1 − Ai+1 is given for some apex vertex
set Ai+1 of order at most k. Then there are two steps to
find the graph G′i+1.

Step 1. Detecting the vertex set AU for G′i+1.

To find such a vertex set, we need an idea by Mohar
[35].

Roughly, it says the following: Suppose the apex number
of G is k, and let an apex vertex set be A with |A| = k.
Suppose a planar embedding of G − A is given. Let x be
a vertex in A, and let U be the neighbors of x in G − A.
A set F of facial walks of G − A is a face cover of U if
each vertex of U belongs to a member of F . If a vertex x
is contained in the apex vertex set A, then either

1) face-cover of its neighbors in G − A is large, and
the neighbors of x in G−A are covered by bounded
number of disks of G−A, each of whose graphs inside
these disks is of small radius in G−A (in which case,
it is easy to fix the embedding because the graph in



the union of these disks has bounded tree-width), or
2) face-cover of its neighbors in G−A is large, and there

are many pairwise disjoint faces in G−A that have a
neighbor of x. Moreover, face-distance of any two of
them is at least 7. (in which case, no matter how we
embed this graph into a plane after deleting at most k
vertices, x must be in the apex vertex set A. Thus x
must be in AU .).

3) face-cover of its neighbors in G−A is small.

In the second case, we shall conclude that x must be in
the set AU because x is contained in at least k + 1 copies
of kuratowski graphs, i.e, a K3,3-minor or a K5-minor,
that share only x (thus if x is not in the apex vertex set,
then one of the kuratowski graphs still remains). Let us
remark that the idea to detect the universal apex vertices,
i.e, a vertex set AU , was adapted in Graph Minors papers
[44], [45] to detect the universal apex vertex set in the
seminal Graph Minor structure theorem [45] (The universal
apex vertex set corresponds to the “tips of horns” in the
languages of [45]). Detecting the vertex set AU in G is one
of the keys in our algorithm, too.

Step 2. Performing the reduction.

Once we get the universal apex vertex set AU , then
we can perform the reduction in Gi+1 − AU to get a
subgraph of bounded tree-width. If Gi+1 − AU has large
tree-width, then there is a huge wall W , and almost all
subwalls of W must be planarly embedded in Gi+1 − AU .
Note that Gi+1−AU may not be planar, but each non-planar
part must be local because there is no universal apex vertex
in Gi+1 − AU . Thus large portion of Gi+1 − AU has a
planar embedding, except for small number of areas. In
fact, we shall prove the following;

There are only bounded number of disks in Gi+1−
Ai+1, each of whose graphs inside them is of
bounded radius, such that they cover all the neigh-
bors of the vertices of Ai+1−AU in Gi+1−Ai+1.

Thus after deleting these disks and all the vertices in
Ai+1 − AU , the resulting graph G′ is a planar graph with
the universal apex vertex set AU .

We also prove that the deleted graph Gi+1 − G′ (that
consists of bounded number of planar graphs of bounded
radius in the disks, together with all the vertices in Ai+1 −
AU ) has bounded tree-width. Intuitively, this is because each
disk we have deleted in Gi+1 − Ai+1 is a planar graph of
bounded radius (and we have only bounded number of the
deleted disks), thus the deleted graph Gi+1−G′ cannot have
a huge wall. This fact is needed when we make a reduction
in G′.

We now make a reduction to delete the vertices in deep
inside the subwall of W in G′ − AU to get a bounded
tree-width graph. Let us remind that G′ − AU has a planar

embedding. Thus each subwall W ′ of W in G′−AU induces
a planar graph, i.e, letting C be the outer face boundary of
W ′, the graph drawn inside C is planar. In Section 3, we
shall prove that each vertex v surrounded by a 2k-wall is
irrelevant, i.e, Gi+1 is k-apex if and only if Gi+1 − v is.
Thus each of them is not in AP . It can be shown that after
performing the reduction, we can destroy all the walls that
have 2k nested cycles in G′ − AU . The resulting graph,
together with the deleted graph Gi+1 −G′ (that consists of
bounded number of planar graphs of bounded radius in the
disks, together with all the vertices in Ai+1−AU ), is G′i+1.
We shall prove that this graph G′i+1 has tree-width at most
h(k) for some function h of k. Intuitively, this is because
each disk we have deleted to make up the graph G′ has
bounded radius, and we have deleted only bounded number
disks (and hence the deleted graph Gi+1 −G′ cannot have
a huge wall), thus the graph G′i+1 cannot have a huge wall.

Let us observe that Gi+1−G′i+1 consists of disjoint planar
graphs such that each of them is contained in some disk
in G′i+1. In addition, each vertex in V (Gi+1) − V (G′i+1)
is not in AU nor in AP . Actually, every vertex v in
V (Gi+1) − V (G′i+1) is irrelevant, i.e, Gi+1 is k-apex if
and only if Gi+1 − v is. Since G′i+1 has tree-width at most
h(k), so we can compute the apex number of G′i+1 and all
the vertices of G′i+1 that are in AP . Since we only delete
the vertices of G that are not in AP ∪ AU , thus the apex
number of G′i+1 is exactly same as that of Gi+1. Moreover,
we can compute all the vertices of Gi+1 that are in AP

(from the graph G′i+1).

In the above overview, we did not care about the un-
contraction of an induced matching. In this paper, we need
to uncontract the induced matching Mi of Gi in Gi+1 to
obtain the graph Gi. Note that Gi+1 may be obtained from
Gi by deleting a stable set I of ε|Gi| vertices of degree l
(l ≤ k + 3). In this case, it is actually easy to construct an
embedding of Gi from Gi+1 since all the deleted vertices
of degree l are adjacent to all the vertices of a clique of
order exactly l in Gi+1. In addition, for each vertex x in I ,
there are k+3 vertices of Gi that are not in the stable set I ,
but each of these vertices have exactly the same neighbors
as x. Thus it is easy to fix the embedding of Gi from the
embedding of Gi+1. Therefore, we shall only concentrate
on the case when Gi+1 is obtained from Gi by contracting
the induced matching Mi.

It remains to find a subgraph G′i of Gi with the property,
which is exactly the same as that of G′i+1, i.e., G′i has
tree-width at most h(k), and the apex number l ≤ k of Gi

is the exactly same as that of G′i. Moreover, all the vertices
in AU must be in G′i, and no vertex in V (Gi) − V (G′i)
is in AP . Actually, every vertex v in V (Gi) − V (G′i)
is irrelevant, i.e, Gi is k-apex if and only if Gi − v is.
Otherwise, we need to find a minimal forbidden minor for
k-apex graphs in Gi. This is our main challenge in this



algorithm, and we shall describe more details in the full
version of this paper. We continue with this procedure until
we reach G = G0.

In order to achieve properties as claimed for our main
algorithm, we need the following ingredients:

1) Finding an induced matching of large size. This was
originated in Bodlaender [8].

2) Finding a universal apex vertex set. We need the idea
by Mohar [35].

3) Reducing the tree-width by deleting irrelevant vertices.
For the second ingredient, Mohar [35] used the idea to

prove that determining Euler genus of 1-apex graphs is NP-
complete. For the third ingredient, we first use the idea in
Graph Minors [44], [45]. We shall then use the technique
in [40], [41]. The results in [40], [41] show that there is a
linear time algorithm for the k disjoint paths problem for any
fixed k when an input graph is planar. This algorithm handles
planar graphs more quickly than the seminal algorithm of
Robertson and Seymour in [44] which solves the same
problem for arbitrary graphs in cubic time. The proof in [40],
[41] uses several ideas underlying Robertson and Seymour’s
algorithm.

This paper is organized as follows. In Section 2, we
discuss how to detect the universal apex vertex set (and
its relation to face-cover). This section contains one of the
most important ingredients in the algorithm of Theorem 1.1.
In Section 3, we show how to delete irrelevant vertices
quickly to reduce the tree-width. This technique was also
used in [25], [26], [27] to design linear time algorithms for
some graph embedding problems. In Section 4, we give our
reduction theorem. In Section 5, we describe our linear time
algorithm for Theorem 1.1. In Section 6, we prove Theorem
1.2, and give more applications.

2. FACE COVER AND UNIVERSAL APEX

Suppose the apex number of G is k, and let A =
{x1, . . . , xk} be an apex vertex set. Thus G−A has a planar
embedding. In this section, we shall look at face-cover of
the neighbors of each xi in G−A. We need some definition.

A facial walk of a face is a walk taken around the face in
clockwise order, recording the edges and vertices bordering
the face as they are encountered. Given a graph Z embedded
in a plane and a subset U of its vertices, a set F of facial
walks of Z is a face cover of U if each vertex of U belongs
to a member of F . Let τ(U) be the size of the smallest face
cover of U . It is known (see [35]) that computing τ(U) is
NP-complete if U is as part of the input.

Face-distance of two points u,w (not necessarily vertices)
in a plane graph G is the number of faces that the shortest
curve between u and w in G passes. Face-distance radius
can be defined as “radius” in a usual sense, except distance
is replaced by face-distance.

Our purpose of this section is to prove the following.

For each xi ∈ A, if face-cover of its neighbors in
G−A is large, and there are many disjoint faces
that have a neighbor of xi in G−A (and moreover,
face-distance between any two of them is at least
7), then xi ∈ AU .

Intuitively, this is because xi is contained in k +1 copies
of kuratowski graphs, i.e, a K3,3-minor or a K5-minor, that
share only xi. Thus if xi is not in the apex vertex set, then
one of the kuratowski graphs still remains. Thus xi ∈ AU .

We now try to detect all the vertices in AU . Detecting the
universal apex set AU is a significant step in our algorithm,
as this allows us to make a reduction, see overview. This idea
is inspired by the arguments in the proof of the main Graph
Minor structure theorem [45]. (The universal apex vertex set
corresponds to the “tips of horns” in the languages of [45]).
Detecting the universal apex vertices is one of the keys in
our algorithm, too.

We need the following result in [35].
Theorem 2.1: Let G be a 3-connected planar graph and

let F be a collection of facial cycles of G. Then F contains
a subset F’ such that any two cycles in F’ either is disjoint
or shares at most one vertex, and |F ′| ≤ |F|

40 .
We now prove the following result:
Theorem 2.2: Let G be a 3-connected plane graph and

let U ⊆ V (G). We now add a vertex v to G so that v is
adjacent to all the vertices in U . Let G′ be the resulting
graph. Suppose there are at least 2k + 1 pairwise disjoint
faces Fi that are needed to cover all the vertices in U in G.
Then either

1) no matter how we delete k vertices from G, there is
a kuratowski graph, i.e, a K5-minor or a K3,3-minor,
in the resulting graph of G′, or

2) there are at most 2k disks in G, each of whose graphs
inside them is of face-distance radius at most 8, such
that they cover all the vertices in U .

Proof of Theorem 2.2. In order to prove it, we need the
following lemma. If C is a cycle in a graph on a plane, then
int(C) denotes the set of vertices and edges inside C (but
not on C). By inside here, we will specify in each case.
The union of int(C) and C is denoted Int(C). Hereafter, a
kuratowski graph means either a K5-minor or a K3,3-minor.

We need one more lemma, which is easy to prove.
Lemma 2.3: Suppose G is a 3-connected planar graph.

Let C1, C2, C3 be three disjoint cycles such that C1 is a face
in int(C2) (and in G, too), and Int(C2) is a subgraph of
int(C3). (Thus, C1, C2, C3 are nested cycles in this order.)
Let x be a vertex in C1, and y be a vertex in C3. If we
add the edge xy, then Int(C3) together with the edge xy
gives rise to a non-planar graph, and hence it contains a
kuratowski graph.
Proof. Let R = Int(C3)+xy. Since G is 3-connected, there
are three disjoint paths P1, P2, P3 from V (C1) to V (C3)
in Int(C3). By a result in [28] (or see [16]), the paths



P1, P2, P3 and the cycle C2 can be chosen so that each
path of P1, P2, P3 intersects C2 by a path (possibly only
one vertex). Then it is easy to see that this configuration
together with the edge xy, for any vertex x in C1 and for
any vertex y in C3, gives rise to either a K5-minor or a
K3,3-minor (hence a kuratowski graph). ¤

We are now ready to prove Theorem 2.2. Until the end of
the proof, we shall focus on the graph G. We now greedily
construct disjoint disks D1, . . . , Dl such that each disk Di

has a center in a face Fi that contains a vertex in U , and in
addition, each disk Di contains all the vertices whose face-
distance is at most 4 from the center in Fi. (Let us observe
that the center here is a point contained in the face Fi.) We
also assume that each disk does not contain a vertex whose
face-distance from the center of the disk is at least 5. Since
G is 3-connected, each disk Di contains three disjoint cycles
C1, C2, C3 that satisfy the assumption of Lemma 2.3 with
C1 = Fi. We take such disjoint disks D1, . . . , Dl so that no
more such a disk is possible to create.

Suppose l ≤ 2k. Then by our construction, every face,
which is outside these disks D1, . . . , Dl and has a vertex in
U , has face-distance at most 4 from some disk Di. Then we
can add all these faces (call them F’), together with the faces
that have face-distance at most three from a face in F’, and
the faces that have face-distance at most three from a face
in some of disks D1, . . . , Dl, to some disks in D1, . . . , Dl,
so that all the vertices in the resulting disk Di have face-
distance at most 8 from the center of Di. In this way, all
the faces that have a vertex in U are contained in some of
the new disks D1, . . . , Dl. Then we are done, as the second
conclusion of Theorem 2.2 holds.

Suppose finally l ≥ 2k + 1. It is well-known that every
3-connected planar graph is 1

2 -tough (see [6]). Thus no
matter how we delete k vertices from G, there are two disks
of D1, . . . , Dl, say D1, D2, such that they do not contain
any deleted vertex, and they are in the same component
R of the resulting graph. Moreover, the disk D2 contains
three disjoint cycles C1, C2, C3 that satisfy the assumption
of Lemma 2.3 with C1 = F2. By contracting vertices in
V (R) − V (Int(C3)) to the cycle C3 in the disk D2, and
then contracting the vertex v to C3 as well, we can get the
configuration as described in Lemma 2.3. So, no matter how
we delete k vertices from G, the resulting graph of G′ has a
kuratowski graph that involves the vertex v. This completes
the proof of Theorem 2.2. ¤

We now prove our main theorem in this section.
Theorem 2.4: There is a nondecreasing integer function

f1 : N → N such that the following holds. Let G be a 3-
connected plane graph and let U ⊆ V (G). We now add a
vertex v to G so that v is adjacent to all the vertices in U .
Let G′ be the resulting graph. Suppose there are at least
f1(k) faces that are needed to cover all the vertices in U in
G. Then either

1) no matter how we delete k vertices from G, there is a
kuratowski graph, which involves the vertex v in the
resulting graph of G′, or

2) there are at most 2k disks in G, each of whose graphs
inside them is of face-distance radius at most 9, such
that they cover all the vertices in U .

Proof of Theorem 2.4. Until the end of the proof, we shall
focus on the graph G. Set f1(l) ≥ 80k+40. By Theorem 2.1,
there are at least |f1(k)|

40 ≥ 2k + 1 faces that contain at least
one vertex in U such that any two faces either is disjoint
or shares at most one vertex. Let F be such faces. We may
assume that each face that contains a vertex in U , but is not
contained in F, shares at least one vertex with a face in F.
If there are at least 2k + 1 pairwise disjoint faces in F, then
by Theorem 2.2, we get a desired conclusion. Otherwise,
we now greedily construct disjoint disks D1, . . . , Dl such
that each disk Di has a center in a face Fi in F, and in
addition, each disk Di contains all the vertices whose face-
distance is at most 4 from the center in Fi. (Let us observe
that the center here is a point contained in the face Fi.)
We also assume that each disk does not contain a vertex
whose face-distance from the center of the disk is at least
5. We take such disks D1, . . . , Dl so that no more disk is
possible to create. As we did in the proof of Theorem 2.2,
if l ≥ 2k +1, we are done by Lemma 2.3. Otherwise, as we
did in the proof of Theorem 2.2, there are at most 2k disks,
each of whose graphs inside them is of face-distance radius
at most 8, such that they cover all the faces in F. We now
need to add all the faces that contain a vertex in U , but are
not contained in F. As remarked above, each of those faces
must share a vertex with a face in F. Thus by adding these
faces to some disks, we can get at most 2k disks D1, . . . , Dl

(l ≤ 2k), each of whose face-distance radius is at most 9,
such that they cover all the vertices in U . ¤

3. BOUNDING THE TREE-WIDTH INSIDE FLAT PARTS

Suppose that G is k-apex and the universal apex vertex
set AU for G is given. In this section, we are given a planar
subgraph Q of G − AU . We want to bound its tree-width
by deleting many vertices at once, and our goal is to do this
in linear time. Moreover, we want that the deleted vertex
set U is irrelevant in the sense that U ∩ AP = ∅, and in
addition, no matter how we embed G−U into a plane after
deleting at most k vertices, the vertices in U can be put back
to this planar embedding so that the resulting embedding is
still planar. We prove the following result.

Theorem 3.1: Suppose the universal apex vertex set AU

for G is given, where |AU | ≤ k. Suppose that G − AU

contains a planar subgraph Q and that C is the outer cycle of
a planar embedding of Q. Suppose also that for every vertex
in Q\C, all its neighbors in the graph G−AU are contained
in Q. If Q contains an h-wall W , where h ≥ 2k + 1, then
the set X of vertices of W , that have face-distance in the
wall W at least k from the outer cycle of W , is irrelevant.



In particular, every vertex surrounded by a 2k-wall in Q is
irrelevant. Furthermore, no matter how we embed G−A−X
into a plane for any apex vertex set A, where AU ⊆ A and
|A| ≤ k, the embedding of G − A −X can be changed at
vertices of Q such that any vertex in X is contained in a
disk of the embedding of G−A−X . Furthermore, we can
put all the vertices of X back to the above mentioned disk
so that the resulting embedding of G−A is still planar.

Proof. Suppose G−A has an embedding in a plane. Since
|A| ≤ k, thus W−A still has a k-wall W ′. The embedding of
the wall W ′ in a plane is unique, since W ′ is a subdivision of
a 3-connected graph (it is well known that every 3-connected
planar graph has a unique embedding). Thus each face of
the wall W ′ bounds a disk. This implies that no matter how
we embed G − A − X into a plane, the wall W ′ induces
a planar graph, i.e, the outer face boundary of W ′ bounds
a disk D in G − A − X (so the subgraph of G − A − X
embedded in this disk is a plane graph). In particular, the
embedding in the disk D can be changed (using Whitney
switch, see [37]. Note that given two planar embeddings
M, N of a planar graph, M can be obtained from N by
repeatedly applying Whitney switch.), so that it becomes a
subembedding of Q. Thus for each vertex x in X , there is
a face in G − A − X that corresponds to a disk D′ of Q
that contains x. Moreover, since the graph embedded in this
disk D′ is a plane graph in Q, thus x can be put back to
this disk D′, so that the resulting embedding of G − A is
still planar. Thus the vertices in X are irrelevant. ¤

Theorem 3.1 says that for any planar subgraph Q (in G−
AU , where G is k-apex), if there is a (2k + 1)-wall in Q,
then we can delete the middle vertex which is irrelevant, and
actually, we can keep deleting irrelevant vertices until there
is no (2k + 1)-wall in the resulting graph of Q. So, as long
as there is a 2k-wall in Q, we can delete all the vertices
deep inside this 2k-wall. The problem here is that, how can
we perform this operation in linear time? Fortunately, there
is a way to do it. This method was first adapted by Reed,
Robertson, Seymour and Schrijver [40], [41], who proved
that there is a linear time algorithm for the k disjoint paths
problem for planar graphs (for any fixed k). So we shall use
this method to delete vertices until the resulting graph has
no (2k + 1)-wall. Let us state this as a lemma.

Lemma 3.2: Let G,AU , k be as in Theorem 3.1. Suppose
that G − AU contains a planar subgraph Q and that C is
the outer cycle of a planar embedding of Q. Suppose also
that for every vertex in Q \C, all its neighbors in the graph
G−AU are contained in Q. Then, given the graph Q, there
is a linear time algorithm to find a maximal vertex set X ⊆
V (Q) such that

1) the graph Q−X does not contain a (2k + 1)-wall,
2) deleting the vertices of X from G − AU does not

change the problem of finding an embedding of G−A
into a plane for any apex vertex set A, where AU ⊆ A,

|A| ≤ k and A∩X 6= ∅, by a sequence of applications
of Theorem 3.1, and

3) no matter how we embed G − A − X into a plane
for any apex vertex set A, where AU ⊆ A, |A| ≤
k and A ∩ X 6= ∅, the embedding of G − A − X
can be changed at vertices of Q such that each vertex
in X is contained in some disk of the embedding of
G − A − X , and we can put all the vertices of X
back to some of the above mentioned disks so that
the resulting embedding of G−A is still planar.

(by a maximal vertex set here, we mean that any vertex of
Q −X that is adjacent to a vertex in X is not surrounded
by a 2k-wall in Q−X . It follows that each vertex in Q−X
that is adjacent to a vertex in X is surrounded by a (2k−1)-
wall.)

The proof of Lemma 3.2 is inspired by Reed, Robertson,
Schrijver and Seymour’s work [40], [41]. In fact, Lemma 3.2
was used in [25], [26], [27] to design linear time algorithms
for the graph embedding problems. Let us observe that when
Lemma 3.2 is needed, the universal vertex set AU and the
planar subgraph Q are already given. Thus we do not have
to take the universal apex set AU into account. We just need
to focus on the planar graph Q.

We shall need the following extension of Lemma 3.2.
Lemma 3.3: Let l ≥ 0 be a fixed integer and G,AU , k

be as in Theorem 3.1. Suppose that G − AU contains a
planar subgraph Q and that C is the outer cycle of a planar
embedding of Q. Suppose also that for every vertex in Q\C,
all its neighbors in the graph G − AU are contained in Q.
Let C1, . . . , Cl be disjoint faces of Q. Then, given the graph
Q, there is a linear time algorithm to find a maximal vertex
set X ⊆ V (Q) such that

1) each vertex in X is surrounded by a 2k-wall in Q−X
that does not contain any face of C1, . . . , Cl,

2) deleting the vertices of X from G − AU does not
change the problem of finding an embedding of G−A
into a plane for any apex vertex set A, where AU ⊆ A,
|A| ≤ k and A∩X 6= ∅, by a sequence of applications
of Theorem 3.1,

3) Q−X contains no 2kl-walls, and
4) no matter how we embed G − A − X into a plane

for any apex vertex set A, where AU ⊆ A, |A| ≤
k and A ∩ X 6= ∅, the embedding of G − A − X
can be changed at vertices of Q such that each vertex
in X is contained in some disk of the embedding of
G − A − X , and we can put all the vertices of X
back to some of the above mentioned disks so that
the resulting embedding of G−A is still planar.

(by a maximal vertex set here, we mean that any vertex of
Q −X that is adjacent to a vertex in X is not surrounded
by a 2k-wall that does not contain any face of C1, . . . , Cl in
Q−X . It follows that each vertex in Q−X that is adjacent
to a vertex in X is surrounded by a (2k− 1)-wall that does



not contain any face of C1, . . . , Cl in Q−X .)
The proof of Lemma 3.3 is similar to the proof of Reed,

Robertson, Schrijver and Seymour, and that of Lemma 3.2.
Lemma 3.3 was also used in [25], [26], [27] to design linear
time algorithms for some graph embedding problems.

4. FINDING A RELEVANT SUBGRAPH OF BOUNDED
TREE-WIDTH

Let us recall that our algorithm produces first a sequence
of graphs G = G0, G1, . . . , Gb, where each Gi+1 is obtained
from Gi either by contracting a large induced matching Mi

or by deleting a large set of vertices of degree l ≤ k + 3
(in which case we shall write Mi = ∅). In this section,
an integer i is fixed such that Mi 6= ∅ and the following
hypothesis is assumed.

Hypothesis 4.1: The apex number of the graph Gi+1 is
l ≤ k. The graph Gi is obtained from Gi+1 by uncontracting
the matching Mi and |Mi| ≥ ε|Gi|, where ε > 0 is some
small but fixed constant. Moreover, we have a subgraph
G′i+1 of Gi+1, and the set AU

i+1 satisfying the following
conditions:

1) AU
i+1 is the universal apex set for Gi+1, and the apex

number of G′i+1 is l. Actually, we slightly modify the
definition of the universal apex vertex set AU

i+1. Each
vertex in AU

i+1 is obtained as in the first conclusion of
Theorem 2.4.

2) G′i+1 has tree-width at most h(k) for some function
h of k (to be determined later, but h(k) = O(k3)).

3) Gi+1 − G′i+1 is planar. More precisely, it consists
of disjoint disks D1, D2, . . . , Dl for some l, and all
the vertices in these disks are irrelevant for the graph
Gi+1, and hence they are not in AP for Gi+1.

The objective of this section is to start with Gi+1, G
′
i+1,

AU
i+1 satisfying the hypothesis, and then to either construct

G′i satisfying the hypothesis for i with the universal apex
vertex set AU

i , or to find a minimal forbidden minor for
k-apex graphs in time O(|Gi|).

A proof for constructing G′i, A
U
i will be given in the full

paper.

5. ALGORITHM

Finally, we are ready to present the complete algorithm.

Algorithm for Theorem 1.1
We assume a positive integer k.
Input: A graph G of order n.

Output: Either an embedding of G in a plane after
deleting at most l ≤ k vertices or a minor of G which
is not k-apex and is minimal with this property, where l is
the apex number of G.

Running time: O(f(k)n) for some function f : N→ N.

Description:

Initially, we delete all vertices of degree at most 1.
Hereafter, we assume that G has minimum degree at least
2.

Step 1. Find a sequence of graphs G = G0, G1, ..., Gb

such that Gi is obtained from Gi−1 by either contracting
an induced matching Mi−1 with at least ε|Gi−1| edges for
some small but constant ε > 0, or deleting a stable set I of
ε|Gi−1| vertices, each of degree l ≤ k+3. In the latter case,
for every vertex x in I , the following holds:

1) x has the same neighbors as at least l other vertices
in I .

2) In addition, there are k+3 vertices in Gi−1 that are not
in I such that each of them has exactly same neighbors
as x.

In this case, we also put a clique to Gi−1 for the neighbors
of every x ∈ I .

This step can be done (details will be discussed in the
full paper). If we find a minimal forbidden minor for k-
apex graphs, we stop and output the minor. Otherwise, we
keep doing it b steps, where b is minimum integer such that
Gb has fewer than B vertices for some constant B. Then
b ≤ log1/εn and the sum of the sizes of all Gi is O(n).

At each step i, we can either find a desired induced
matching or a desired stable set in time O(|Gi|). A short
computation implies that we can do it in linear time.

Step 2. Apply a brute force algorithm to find either an
embedding of Gb or a minimal forbidden minor for k-apex
graphs in Gb. Since |Gb| < B, this can be done in constant
time.

We recursively apply Step 3 for i = b, b− 1, . . . .
Step 3. For the ith iteration, either find a subgraph G′i of

Gi satisfying Hypothesis 4.1 or a minimal forbidden minor
for k-apex graphs. We also need to detect the universal apex
vertex set AU

i as in Hypothesis 4.1.
Step 4. Extend the embedding of G′0 to G0 = G.
This can be done in time O(V (|G|)) by applying the

planarity algorithm [7], [10], [24], [48]. Note that all vertices
of G−G′0 can be embedded into disks D1, D2, . . . in any
planar embedding of G′0−AU

0 . Let us observe that any vertex
in AU

0 is contained in V (G′0). Therefore, we just need the
planarity algorithm for this task, and hence we can do this
in linear time.

Since b ≤ log1/εn and the sum of the sizes of the Gi is
O(n), we can get a linear time algorithm to output a desired
conclusion in Theorem 1.1.

Let us finally estimate the constant f(k). The expensive
part is the sum of the sizes of the Gi, which can be written
as c(ε)n for some function c of ε. Another expensive part
is to construct the graph G′i, which takes O(c′(k)|Gi|),
where c′(k) is double exponential of k. Essentially, the
most expensive part is the dynamic programming part. It
was mentioned in [32] that the time complexity of this part



is O(f ′(k)n), where f ′ is double exponential of k. The
tree-width bound in constructing the graph G′i is O(k9).
Therefore, f(k) only depends on c(f ′(k)), and the algorithm
shows that f(k) = Poly(f ′(k)), because c(ε) is single
exponential. Thus, f(k) is double exponential of k as we
claimed. This completes the proof of Theorem 1.1. ¤

6. SOME APPLICATIONS

6.1. TSP and related problems

To obtain the linear time approximation schemes for
weighted TSP and minimum c-edge-connected submulti-
graph for Theorem 1.2, as well as general family of ap-
proximation algorithms for contraction-closed problems, we
study a structural decomposition problem introduced in
[14]: partition the edges of a graph into l pieces such that
contracting any one of the pieces results in a bounded-
treewidth graph (where the bound depends on l). Such a
result has been obtained for bounded-genus graphs [14]
and for planar graphs with a variation of contraction called
compression (deletion in the dual graph) [29]. In fact, the
following result is already proved in [14] for k-apex graphs:

Theorem 6.1: Suppose an embedding of a k-apex graph
is given for any fixed k. For any integer l ≥ 2, the edges
of G can be partitioned into l sets such that contracting any
one of the sets results in a graph of treewidth at most f(k, l)
(for some function f of k, l). Furthermore, such a partition
can be found in linear time.

Let us observe that the most expensive part in the proof
of Theorem 1.1 in [14] is to find a shortest non-contractible
cycle in the fixed surface. On the other hand, we only
need Theorem 1.1 in [14] for planar graphs, which can
be done in linear time (this was observed in [14], but
the proof essentially follows from [29]). Note that dealing
with the edges with one endvertex in the apex vertex set
is easy. Thus Theorem 6.1 follows. In [14], it is shown
how Theorem 6.1 leads to a general family of linear time
approximation schemes for any contraction-closed problem
satisfying a few simple criteria, including weighted TSP and
minimum c-edge-connected submultigraph. Thus Theorem
6.1, together with Theorem 1.1, which gives an embedding
of a given k-apex graph in linear time (for any fixed
k), proves Theorem 1.2. Many other classic problems are
contraction-closed, for example, dominating set (and its
many variations) and minimum chordal completion. The
same proof of Theorem 1.2 implies that there are linear time
(1 + ε)-approximation algorithms for these problems.

6.2. Other applications

A fundamental way to design graph algorithms is using
Lipton and Tarjan’s divide-and-conquer separation decompo-
sition for planar graphs [31]. A generalization of this decom-
position approach leads to PTASs for many minimization
and maximization problems, such as vertex cover, minimum
color sum, and hereditary problems such as independent

set and max-clique [4], [19]. This approach can be used
to k-apex graphs. Firstly, Theorem 1.1 implies that there is
a linear time algorithm to find an embedding of a k-apex
graph G (for any fixed k). Secondly, after deleting the apex
vertex set A (of order at most k), we can find a separator
in G − A by a result in [31]. Thus this separator, together
with the apex vertex set A, gives rise to a separator in G.
This separator allows us to use (and generalize) Lipton and
Tarjan’s divide-and-conquer separation decomposition [31]
for k-apex graphs. Thus all the applications that are carried
out in [4], [19] can be extended to k-apex graphs. In fact,
the following result was proved in [13]:

Theorem 6.2: Suppose an embedding of a k-apex graph
is given for any fixed k. For any integer l ≥ 2, the vertices
of G can be partitioned into l sets such that deleting any one
of the sets results in a graph of tree-width at most f(k, l)
(for some function f of k, l). Furthermore, such a partition
can be found in linear time.

Note that in [13], Theorem 6.2 was obtained for “almost”
embeddable graphs (for the definition of “almost” embed-
dable graphs, see in [13]), which include k-apex graphs.
In [13], it is shown how Theorem 6.2 leads to a general
family of linear time approximation schemes for many
minimization and maximization problems. Thus, together
with Theorem 1.1, which gives an embedding of a given k-
apex graph in linear time (for any fixed k), we get linear time
approximation schemes for many such minimization and
maximization problems for k-apex graphs, such as vertex
cover, minimum color sum, and hereditary problems such
as independent set and max-clique.

REFERENCES

[1] S. Arnborg and A. Proskurowski, Linear time algorithms for
NP-hard problems restricted to partial k-trees, Discrete Appl.
Math. 23 (1989), 11–24.

[2] S. Arora, M. Grigni, D. Karger, P. Klein and A. Woloszyn,
A polynomial-time approximation scheme for weighted pla-
nar graph TSP, Proc. 9th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’98), 33–41, (1998).

[3] I. Adler, M. Grohe and S. Kreutzer, Computing excluded
minors, Proc. 19th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’08), 641–650, (2008).

[4] B. S. Baker, Approximation algorithms for NP-complete prob-
lems on planar graphs, J. ACM, 41 (1994), 153–180.

[5] A. Berger, A. Czumaj, M. Grigni and H. Zhao, Approximation
schemes for minimum 2-connected spanning subgraphs in
weighted planar graphs, Proc. 13th Annual European Sympo-
sium on Algorithms, 3669, Lecture Notes in Computer Science,
472–483, (2005).

[6] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
[7] K. S. Booth and G.S. Lueker, Testing for the consecutive ones

property, interval graphs and graph planarity using PQ-trees,
J. Comput. System Sci., 13 (1976), 335–379.

[8] H. L. Bodlaender, A linear-time algorithm for finding tree-
decomposition of small treewidth, SIAM J. Comput., 25 (1996),
1305–1317.



[9] S. Cabello and B. Mohar, Problem of months, Fall 2005,
http://www.fmf.uni-lj.si/˜mohar/

[10] N. Chiba, T. Nishizeki, S. Abe and T. Ozawa, A linear
time algorithm for embedding planar graphs using PQ-trees,
J. Comput. System Sci., 30 (1985), 54–76.

[11] A. Czumaj, M. Grigni, P. Sissokho and H. Zhao, Approx-
imation schemes for minimum 2-edge-connected and bicon-
nected subgraphs in planar graphs. Proc. 13th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’04), 496–
505, (2004).

[12] E. D. Demaine, F. Fomin, M. Hajiaghayi, and D. Thilikos,
Subexponential parameterized algorithms on bounded-genus
graphs and H-minor-free graphs, J. ACM, 52 (2005), 1–29.

[13] E. D. Demaine, M. Hajiaghayi, and K. Kawarabayashi, Al-
gorithmic graph minor theory: Decomposition, approximation
and coloring, Proc. 46th Symposium on Foundations of Com-
puter Science, (FOCS’05), 637–646, (2005).

[14] E. D. Demaine, M. Hajiaghayi, and B. Mohar, Approximation
algorithms via contraction decomposition, Proc. 18th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’07),
278–287, (2007).

[15] R. Diestel, K. Yu. Gorbunov, T. R. Jensen, and C. Thomassen,
Highly connected sets and the excluded grid theorem, J.
Combin. Theory Ser. B, 75 (1999), 61–73.

[16] R. Diestel, K. Kawarabayashi and P. Wollan, The Erdős-
Pósa property for clique minors in highly connected graphs,
submitted.

[17] R.G. Downey and M.R. Fellows, Parameterized complexity,
Springer-Verlag, 1999.

[18] D. Eppstein, Subgraph isomorphism in planar graphs and
related problems, J. Graph Algor. Appl., 3 (1999), 1–27.

[19] D. Eppstein, Diameter and tree-width in minor-closed graph
families, Algorithmica, 27 275–291, (2000).

[20] M.R. Fellows and M. A. Langston, On serach, decision
and the efficiency of polynomial time algorithms (extended
abstract), Proc. 21th ACM Symposium on Theory of Computing
(STOC’89), 501–512, (1989).

[21] M. Grigni, E. Koutsoupias, and C. Papadimitriou, An approx-
imation scheme for planar graphs TSP, Proc. 36th Symposium
on Foundations of Computer Science, (FOCS’95), 640–646,
(1995).

[22] M. Grohe, Local tree-width, excluded minors, and approxi-
mation algorithms. Combinatorica 23, (2003), 613–632.

[23] J. E. Hopcroft and R. E. Tarjan, Dividing a graph into
triconnected components, Siam J. Comput., 3 (1973), 135–158.

[24] J. E. Hopcroft and R. Tarjan, Efficient planarity testing, J.
ACM, 21 (1974), 549–568.

[25] K. Kawarabayashi and B. Reed, Computing crossing number
in linear time, Proc. 39th ACM Symposium on Theory of
Computing (STOC’07), 382–390, (2007).

[26] K. Kawarabayashi and B. Mohar, Graph and Map Isomor-
phism and all polyhedral embeddings in linear time, Proc.
40th ACM Symposium on Theory of Computing (STOC’08),
471–480, (2008).

[27] K. Kawarabayashi, B. Mohar and B. Reed, A simpler linear
time algorithm for embedding graphs into an arbitrary surface
and the genus of bounded tree-width graphs, Proc. 49th
Annual Symposium on Foundations of Computer Science
(FOCS’08), 771–780, (2008).

[28] K. Kawarabayashi, S. Norine, R. Thomas and P. Wollan, K6

minors in large 6-connected graphs, submitted.
[29] P. N. Klein, A linear time approximation scheme for TSP for

planar wieghted graphs, Proc. 46th Symposium on Foundations
of Computer Science (FOCS’05), 146–155, (2005).

[30] J. M. Lewis and M. Yannakakis, The vertex-deletion problem
for hereditary propeties is NP-complete, J. Comput. System
Sci., 20 (1980), 219–230.

[31] R.J. Lipton and R. E. Tarjan, Applications of a planar
separator theorem, Siam J. Comput., 9 (1980), 615–627.

[32] D. Marx and I. Schlotter, Obtaining a planar graph by
vertex deletion, Proc. the 33rd Workshop on Graph-Theoretic
Concepts in Computer Scienece, (2007), 292–303.

[33] B. Mohar, Embedding graphs in an arbitrary surface in linear
time, Proc. 28th ACM Symposium on Theory of Computing
(STOC’96), 392–397, (1996).

[34] B. Mohar, A linear time algorithm for embedding graphs in
an arbitrary surface, SIAM J. Discrete Math., 12 (1999), 6–26.

[35] B. Mohar, Face covers and the genus of apex graphs, J.
Combin. Theory Ser. B, 82 (2001), 102–117.

[36] B. Mohar, A. Schrijver, Blocking nonorientability of a sur-
face, J. Combin. Theory Ser. B 87 (2003), 2–16.

[37] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns
Hopkins University Press, Baltimore, MD, 2001.

[38] L. Perković and B. Reed, An improved algorithm for finding
tree decompositions of small width, International Journal on
the Foundations of Computing Science, 11 (2000), 81–85.

[39] B. Reed, Tree width and tangles: a new connectivity measure
and some applications, in “Surveys in Combinatorics, 1997
(London)”, London Math. Soc. Lecture Note Ser. 241, Cam-
bridge Univ. Press, Cambridge, 87–162, (1997).

[40] B. Reed, Rooted Routing in the Plane, Discrete Appl. Math.,
57 (1995), 213–227.

[41] B. Reed, N. Robertson, A. Schrijver and P. D. Seymour,
Finding disjoint trees in planar graphs in linear time. Graph
structure theory (Seattle, WA, 1991), 295–301, Contemp. Math.
147, Amer. Math. Soc., Providence, RI, 1993.

[42] B. Reed and D. Wood, A linear time algorithm to find a
separator in a graph with an excluded minor, submitted.

[43] N. Robertson and P. D. Seymour, Graph minors. V. Excluding
a planar graph, J. Combin. Theory Ser. B, 41 (1986), 92–114.

[44] N. Robertson and P. D. Seymour, Graph minors. XIII. The
disjoint paths problem, J. Combin. Theory Ser. B, 63 (1995),
65–110.

[45] N. Robertson and P. D. Seymour, Graph minors. XVI. Exclud-
ing a non-planar graph, J. Combin. Theory Ser. B, 89 (2003),
43–76.

[46] N. Robertson, P. D. Seymour and R. Thomas, Quickly ex-
cluding a planar graph, J. Combin. Theory Ser. B, 62 (1994),
323–348.

[47] C. Thomassen, The graph genus problem is NP-complete, J.
Algorithms 10 458–476, (1988).

[48] S. G. Williamson, Depth-first search and Kuratowski sub-
graphs, J. ACM 31 (1984), 681–693.


