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Abstract. Reasoning about change is a central issue in research on human and robot planning. We 
study an approach to reasoning about action and change in a dynamic logic setting and provide a 
solution to problems which are related to the frame problem. Unlike most work on the flame problem 
the logic described in this paper is monotonic. It (implicitly) allows for the occurrence of actions of 
multiple agents by introducing non-stationary notions of waiting and test. The need to state a large 
number of "frame axioms" is alleviated by introducing a concept of chronological preservation to 
dynamic logic. As a side effect, this concept permits the encoding of temporal properties in a natural 
way. We compare the relative merits of our approach and non-monotonic approaches as regards 
different aspects of the frame problem. Technically, we show that the resulting extended systems of 
propositional dynamic logic preserve (weak) completeness, finite model property and decidability. 
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1. Introduct ion 

Agents situated in real-world environments need to reason about action and change. 
In order  to achieve certain goals agents have to develop plans and keep track of  
changes,  either caused by themselves or by other agents present in the domain. 
Problems in reasoning about action and change are either aspects of  or related to 
the " f rame problem".  It was first posed by McCarthy and Hayes  (1969) in attempts 
to formalize consequences of  actions and those facts that remain unaffected by 
actions. The problem consists of  finding an efficient way to formulate axioms (so- 
called " f rame axioms")  which state what remains the same after the performance o f  
an action. Conceived as a combinatorial problem, a solution to the frame problem 
has to avoid writing down frame axioms for each fact-action pair (see Reiter, 1980; 
Georgeff ,  1987a). For, even toy domains like a blocks world scenario require a vast 
number  o f  f rame axioms. For  instance, moving a block changes its position but not 
its color, shape, and so on. 
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The canonical example to illustrate the frame problem is the "Yale Shooting 
Problem" (YSP) due to Hanks and McDermott (1987). The shooting scenario is as 
follows: Mary loads a gun, waits and then shoots at Fred. Here the problem is to 
derive that Fred is dead as a consequence of Mary's actions. Among other things 
one has to guarantee that the gun is still loaded after waiting. This is a candidate 
for a frame axiom: "if the gun is loaded when Mary begins waiting then the gun is 
still loaded when Mary stops waiting." The frame axiom says that the gun's state of  
being loaded is unaffected by the action of waiting. Notice that we use "unaffected'" 
here to suggest a formulation of the frame problem for single-agent domains. On 
the other hand, "unchanging" is more appropriate in case of environments with 
multiple agents. It is easy to see that the combinatorial frame problem turns up in 
both cases. 

Unfortunately, most work on the frame problem (see Lifschitz, 1987; Shoham, 
1988) is conspicuously vague on the distinction between single-agent and multi- 
agent settings and therefore casual when it comes to constructing models where 
the 'right' things happen (that the gun remains loaded, for instance). As a rule, 
some kind of non-monotonic logic is utilized to tackle the problem, usually some 
sort of minimization strategy (see Makinson, 1993). That is, 'abnormalities' are 
minimized such that facts remain unaffected (not changing) in the 'normal' course 
of events (where interference is absent). Global minimization seems inappropriate 
in reasonably complex environments, especially when other agents may contribute 
to changes in the domain. To overcome this problem, more selective minimization 
strategies have been developed, like scoped minimization (see Etherington et al., 
1991). However, it was just this 'global nature' that originally made non-monotonic 
approaches so appealing. This is best captured in the so-called persistence assump- 
tion which states that alI facts usually persist to hold after the performance of  all 
actions, if not stated otherwise. To the best of  our knowledge Georgeff (1987a: 73) 
first noticed that "it is not sensible to try minimizing changes in all world properties 
when told, for example, that a shooting event has occurred." Of course, it is often 
not possible to predict what actions other agents will perform. But the formalism 
should not be overcommitted to the restriction that those actions have not occurred. 
Accordingly, Georgeff (1987a) identifies the overcommitment problem as a second 
subproblem of the frame problem. A solution to the overcommitment problem 
requires that most facts are allowed to vary freely, while only those facts which are 
prerequisites or consequences of  the agent's actions are maintained. 

To clarify terminology: like Georgeff (1987a) we use the term "frame problem" 
in a generalized sense, which consists of  several subproblems. One subproblem is 
the combinatorial frame problem, another one is the overcommitrnent problem. By 
now, many other aspects of  the frame problem have been identified (see Georgeff, 
1987a, 1987b; Shoham, 1988; Ginsberg and Smith, 1988a, 1988b). The extended 
prediction problem concerns the problem of making interferences over extended 
periods of time. A solution to the extended prediction problem should provide 
means to state that, for example, under 'normal' circumstances the gun remains 
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loaded until Mary fired six times (assume a six-shooter). Note that the combinatorial 
frame problem may be considered as a subproblem of the extended prediction 
problem. The qualification problem concerns the conditions under which an action 
is executable. For the shooting action to be executable in the intended way we 
need to verify - in addition to explicit preconditions (that the gun is loaded) 
- an immense number of  implicit qualifications: that the gun has a firing pin, 
that there is no magnet present which distracts the bullet, and so on. But if our 
formalization takes everything into account that could block the performance of an 
action, it will be without practical use. In non-monotonic logics, both the extended 
prediction problem and the qualification problem are handled by a strategy which 
minimizes abnormalities. Observe that a solution to the overcommitment problem 
is undermined, because thereby independent changes of other facts, for instance, 
due to activities of other agents are also minimized, contrary to the observation 
of a complex world.* Again, our criticism only applies to global minimization 
strategies. On the other hand, we will show that systems which scope reasoning run 
into similar problems as we do, for we do not accept the persistence assumption. 

The point we will make in Section 5 is this: our monotonic approach to the frame 
problem and (unscoped) non-monotonic approaches (based on some minimization 
strategy) are complementary in the sense that it is not possible to simultaneously 
minimize the effort to solve the extended prediction problem (which subsumes the 
combinatorial problem) and give a satisfactory solution to the overcommitment 
problem. 

In this paper, we pursue a monotonic approach to the frame problem and con- 
centrate on the combinatorial problem and the overcommitment problem. We will 
propose a solution within the framework of propositional dynamic logic (PDL) 
- the modal logic of actions and of computer programs (see Pratt, 1976, 1980; 
Segerberg, 1980; Harel, 1984). It is based on the idea of associating an operator 
[a] with each action ce, the brackets being reminiscent of the box operator [] of 
ordinary modal logic (see Hughes and Cresswell, 1984). The reading of a formula 
[c~]A is "after every terminating (halting) execution of a,  A is true." PDL provides 
a powerful language for describing compound actions such as sequential composi- 
tions of actions a and fl written c~; fl, (non-deterministic) choice between c~ and fl, 
written c~ + fl, and (non-deterministic) iteration of o<, written a*. Moreover, test, 
written A?, and 'doing nothing',  denoted by A, are considered as actions. 

The following readings are standard (see Segerberg, 1980): 

c~; ~ the action consisting of doing first c~ and then fl 
a + /~  the action consisting of doing a or fl non-deterministically 
o<* the action consisting of doing c~ some finite number of times 
A? the action consisting of  verifying that A holds 
A 'doing nothing' (stationary waiting) 

* Remember that early non-monotonic logics suffered from the overcommitment problem even 
in single-agent domains. As is well known, this gave rise to the 'multiple extensions' problem in 
temporal projection (see Hanks and McDermott, 1987). 
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To our knowledge, nobody so far tried to cope with the combinatorial problem 
and the overcommitment problem in a dynamic logic framework. A notable excep- 
tion is the paper of  Stephan and Biundo (1993) (see also Kautz, 1982; Morreau, 
1992). In the language of first-order dynamic logic they propose frame assertions 
of format A D [a]A (where a is allowed to be a compound action). We extend 
this idea to the intermediate states of a plan (typically a sequential composition of 
actions). Loosely speaking, formulas of type cpres(a,  A) are introduced which are 
intended to mean that fact A is true at all intermediate states of the execution of 
(compound) action or. In this way, we may drastically reduce the number of frame 
axioms. For simplicity, we only consider the propositional case. It will turn out 
that our resulting logic is a natural alternative to temporal logic which is the major 
formalism in the planning literature (see Pnueli, 1981; Manna et al., 1993). 

The rest of  the paper is organized as follows. In Section 2, PDL is introduced 
together with a reminder of the basic steps of its completeness proof. Section 3 
shows that PDL may be modified in order to deal with multiagent domains in a 
uniform way. The resulting logic, non-stationary PDL (NPDL), also includes a 
powerful action concept, the 'any' action. We prove completeness and decidability 
for NPDL. In Section 4, we introduce the concept of  chronological preservation. 
By means of this concept we are in a position to reason about the intermediate 
states of plan execution. Moreover, a border case of chronological preservation, 
called terminal preservation, is proposed. We show that completeness and decid- 
ability results carry over to the resulting extension of NPDL. Section 5 is concerned 
with applications of our framework. First, we demonstrate how the combinatorial 
problem and the overcommitment problem are solved in our framework. Thereby 
an example which is more elaborate than the YSP serves as a testing ground. Here 
we also address the ramification problem, which is a problem related to the frame 
problem. Second, several notions important to planning are formalized, concern- 
ing domain constraints and plan constraints. An example from the manufacturing 
domain will illustrate these notions. We also show how to encode several notions 
from temporalplan theory (Manna et al., 1993) in our logic. Finally, we compare 
our solution of the frame problem to other monotonic and (scoped) non-monotonic 
solutions. 

2. Propositional dynamic logic 

2.1. BASIC CONCEPTS 

We assume as given a set S = {s, t , . . . ,  s', s ' , . . . }  of possible total states of the 
world. A proposition can be identified with the set of states in which it is true. 
An action a is a binary relation Ra on S, that is, a set of ordered pairs (8, t) of  
states where s is the initial state of some execution of a and t is the final state. Of 
course, a final state need not be uniquely determined. Thus the modelling of actions 
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is semantically non-deterministic.* As mentioned above, expressions of the form 
Ionia have the informal meaning "whenever the execution of a halts, A is true on 
termination." Non-terminating 'executions' are said to fail. Since we conceive of 
actions as proceeding from one state to another in a discrete fashion, 'executions' 
with no final state simply do not count in dynamic logic. In fact, they are no 
executions at all. By < a >  verum we can express that there exists a terminating 
execution of  a.  

Note that choice and iteration in dynamic logic are non-deterministic. This 
kind of  non-determinism may be called "non-determinism with respect to control- 
flow" (see Harel, 1987). We will call non-determinism of control-flow procedural  
non-determinism. Since dynamic logic provides no machinery to give priority of 
executing one action over executing the other, choice is non-deterministic. In case 
of  iteration a*, an action a is performed some non-deterministically chosen finite 
number n > 0 of  times. We may summarize the distinction between semantical and 
procedural non-determinism as follows. Semantical non-determinism concerns the 
fact that a (halting) execution of  an action o~ may end up in different states. One 
reason for this is that there exists always a variety of  different ways to perform 
an action. In Section 3 a second reason is given: other agents may interfere and 
thus contribute to state-changes even if the agent is passive. It will be seen from 
the semantic modelling of  actions (see below) that a 'multiagent' reading is inap- 
propriate only for two action constructs, test and 'waiting', which are stationary 
in PDL.  On the other hand, procedural  non-determinism between the execution of  
two actions o~ and ~, for instance, concerns the fact that the modelling of  choice in 
dynamic logic does not fix which action is to be performed. 

In the next subsection we proceed with the explication of what is called the 
standard view of propositional dynamic logic (see Goldblatt, 1987). 

2.2. FORMAL SYNTAX AND SEMANTICS OF PDL 

Language 

Let  790 = {Pl,P2, . . . , p , q , r , . .  .} and .A0 = { a l , a 2 , . . .  , a , b , c , .  . .} be denumer- 
ably infinite sets of propositional variables and action variables, respectively. We 
will use A, A1, B . . . .  to denote arbitrary formulas and a,  a l ,  fl . . . .  to denote 
arbitrary terms (denoting actions). 

Propositional variables: p E 790 
Action variables: a E Ao 
Formulas: A E 12(PDL) 
Action terms: ~ E A 

* This notion of non-determinism must not be confused with procedures non-determinism to be 
introduced momentarily. 
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A ::= p [ ~A [ A1 V A2 I [a]A 
St : :=  a [ al;Ot2 I a l + a 2  I a* [A? 

We assume the usual definitions of A, D, T (verum), _k (falsum), and so on. For 

example, < a > A  def - . [ot]~A. In particular, we define an action constant A called 

stationary waiting by A def T?. 

Semantics 

By a frame ~T we mean a structure .T = (S, {Ra : a E ,A0}} such that S is a 
non-empty set (of world-states), {Ra : a E JIo} is a set of  binary relations, where 
Ra C S x S for each action variable a E ,11o. 

A model .M based on the frame 3 r = (S, {Ra : a E .A0}) is a structure 
.M = (S, {Ra : a E A0}, v) where v is a function v : 7'0 --+ Pow(S) (Pow(S) is 
the powerset of  S). 

A standard model .M = {S, {Ra : a E ,A}, v} is uniquely determined by the 
model (S, {Ra : a E ,,40}, v) through the following conditions that inductively 
define Ra for compound action terms a E .A: Ra;Z = Ra o Rr (the relative 
product of Ra and R/~); Ra+Z = Ra U RZ; Ra,  = (Ra)* (the reflexive and 
transitive closure of Ra); and RA? = {(S, 3) : .A,~, S ~ A}.  From this and the 
definition of A it follows that R~ = {(s, s) : s E S}. 

This is exactly the way Goldblatt (1987) proceeds in defining standard models. 
Fine and Schurz (1996) follow a strategy different from that chosen here. They 
notice that it is already possible to define 'standard' frames by defining Ra;z, 
Ra+~, Ra. ,  and R~ according to the conditions for standard models. But there is a 
notable exception: the relations RA? depend on the valuation function and therefore 
cannot be included in frames. 

The concept of  truth of  a formula at a state s in a standard model A4 is induc- 
tively defined as follows: 

- M ,  s ~ p iff (if and only if) s E V (p) (for p E 7,0). 
-- .h4, s ~ -~A iff M ,  s ~ A. 
- M , s  ~ A V B  iff .M, s ~ AorJ~4, s ~ B. 
- M , s  ~ [a]Aif fVt((s , t}  E R~ ~ M , t  ~ A). 

A formula A is said to be valid in a model .M iff A is true at all states s in 
.M; A is valid on a frame iT iff A is valid in all models based on ~ .  Moreover, A 
is valid with respect to a class of models M, written M ~ A, iff A is valid in all 
models .M E M, and A is valid with respect to a class of frames F iff A is valid on 
all frames .7" E F. 

For convenience, we will use the notion of the truth-set of a formula A (relative 
to a model .M), IIAII ~ ,  which is defined a {s E S : .M, s ~ A}. 
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Logics and axiomatization 

An (action) logic is any subset L C_ f_.(PDL) that contains all instances of the 
following axiom schemes: 

Taut 

K 

Comp 

Union 

Mix 

Ind  

sTest 

all classical propositional tautologies 

[a]A D B) D ([a]A D [alB) 

[a; iliA ~_ [a][fl]A 

[o~ + iliA = ([a]A A [iliA) 

[a*]A D (A A [a][a*]A) 

[a*(A D [a]A D (A D [a*]A) 

[A?]B = (A D B) 

and which is closed under the following rules of  inference: 

MP from f- A and F- A D B infer ~- B 

NEC from ~- A infer ~- [c~]A 

SUBST from ~- A infer ~- aA 

(where aA is the result of a uniform substitution of arbitrary formulas B for 
propositional values p in A). 

Propositional dynamic logic is the smallest subset L C_ s that contains 
the above axiom schemes and is closed under the rules of inference MP and NEC. 
Note that SUBST is not needed since we define PDL in terms of axiom schemes 
rather than instances of schemes. 

The deducibility relation F }-L A between formula sets F and formulas A is 
defined as usual by F b- L A iff (A FF D A) E L for some finite subset FF C_ F, 

where L is a logic and A Ff  is the conjunction of Py's elements; with A 0 de__f T 

and A{A} def A. As is well known, F }-L A (so defined) iff A is provable from F 
and L-theorems by using MP alone. 

Correctness and completeness 

A logic L is correct with respect to a class of models M iff all theorems of L are 
valid in all models in M. A logic L is (weakly) complete with respect to a class of 
models M iff all formulae which are valid in M are theorems of L. Finally, a logic 
L is (weakly) determined (characterised) by a class of models M iff L is correct 
and (weakly) complete with respect to M. 

It is well known that PDL is (weakly) characterised by the class of all standard 
models. This is accomplished by employing a canonical model construction and the 
filtration technique (see Segerberg, 1982; Harel, 1984; Goldblatt, 1987). It is also 
well known tha t -  by the nature of iteration - PDL is not compact and therefore not 
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strongly complete with respect to the class of standard models; and, moreover, that 
PDL has the finite model property which together with the finite axiomatizability 
of PDL implies its decidability. 

OBSERVATION 2.1. The notions of correctness and completeness apply similarly 
to flames. Clearly, PDL is also complete with respect to the class of all frames. 
As noted by Fine and Schurz (1995), the star-flee fragment of PDL is a definition- 
al extension of the underlying stratified multimodal logic containing only atomic 
programs terms. (Fine and Schurz speak of atomic programs rather than action 
variables.) All flame completeness transfer theorems proved there apply to this 
fragment. This means that if certain atomic programs are characterised by addi- 
tional axioms (for example, T, S4, S$) which are complete for their monomodal 
flames, the resulting star-free fragment of PDL will still be flame-complete. 

The next subsection offers the main steps in the standard completeness proof for 
PDL. The proofs are omitted since they are well known (see Segerberg, 1982; 
Goldblatt, 1987). 

2.3. A DETERMINATION RESULT FOR PDL 

THEOREM 2.1 (Correctness). PDL is correct with respect to the class M o f  all 
standard models, that is, for  all formulae A, F- A implies M ~ A. 

By the canonical model M e of PDL we understand the structure .M c = 
(S  e, (R~  : a E ,4}, v c) where (1) S e = (s C s : s is maximally PDL- 
consistent} (in short eDL-maximal), (2) (s, t) E R~ iff (A : [a]A E s} C_ t, and 
(3) vC(p) = {s  s : p s }  (p 7'0). 

One basic step in proving completeness is to establish the 'Truth Lemma' for 
canonical models which implies the following lemma: 

LEMMA 2.1. A is valid in M e iff A is a theorem o f  PDL. 

Indeed, the preceding claim holds for every normal logic. The important proof 
which is specific for PDL is to verify that M e satisfies all the conditions for com- 
pound action terms. Unfortunately, this is not completely true. 

THEOREM 2.2. M e satisfies all conditions of standard models except R~, C_ 
(RD*. 

That is to say, in the canonical model of PDL, (Rc~)* is not the reflexive and 
transitive closure of R~ since the set {[a]np : n >_ O} U (~[a*]p} can be shown 
to be PDL-consistent. Consequently, PDL is not compact (and therefore pruned 
from being strongly complete). Remember that a logic L is said to be compact 
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iff, whenever each finite subset FI  C P is (simultaneously) satisfiable, F itself is 
(simultaneously) satisfiable. Although the canonical model of PDL does not satisfy 
all conditions for standardness, the filtration method produces a new (finite) model 
that rejects any non-theorem of PDL and is in the desired class of standard models. 
This new model is defined as follows. 

The Fischer-Ladner closure of a formula set F is defined as the smallest set 
A such that the following conditions are satisfied (see Fischer and Ladner, 1979): 
(1) F C A; (2) A is closed under subformulas; (3) [a; 13]B E A ~ [a][~]B E A; 
(4) [ a + ~ 3 ] B  E A =~ [a]B,[fl]B E A; (5 ) [a*]B E A =~ [a][ot*]B e A; 
(6) [A?]B e A =~ A E A. 

LEMMA 2.2. (Fischer-Ladner, 1979). The Fischer-Ladner closure A o f  a finite 
set P is finite. 

Let M e = (S e, {R c : a E A}, v e) be the canonical model of PDL, and let 
A C s be any set of  formulas closed under the Fischer-Ladner conditions. 
An equivalence relation "~zx (depending on A) is defined on S e by s -~A t iff 
s M A = t M A. The ,,~A-equivalence class of s, written Is[, is defined as Is[ = 
{t E S e : 8 ,-~A t}, where the subscript ,-~A in Isl~  is omitted for reasons of 
readability only. Finally, the quotient set S A of S e modulo ,,~A is defined as the 
set of  ,,~zx-equivalence classes 181 for all 8 E S c, S A = {181 : 8 e se).  We use 
notation A(s)  for {A E A : A E s}. 

Let 

M = (s  A, : AA}, vA> 

be a model of  the fragment of the language which appears in A and which satisfies 
the following conditions: 

1. S 'x is defined as above, 
2. the set {R~ : a E .A A } satisfies the following conditions: 

a) .A A is defined as the smallest set of action terms such that 
i) (a  E .At: a occurs in amember  of A} C_ ,4".  
ii) {A? : A? occurs in a member of A} C_ .A A. 
iii) o~,/3 E A a =~ a; fl, a + fl, o~* E A a.  

b) for a E A ~  = A a fq .At, Rff is any A-filtration of R~. 
c) for the remaining action terms, 

i) RA~?= {([s[,[s[} : .Me,  s D  A } , i f A ?  E A  a. 
ii) R~  for arbitrary a E .A a is inductively defined according to the condi- 

tions on standard models, that'xs, R~;~lx = R~ o R~;  R~+~A = R~  U R~; 
= 

3. Finally, let 790 zx = 790 n A be the set of propositional variables in A. Then, for 
allpE790A,vA(P) = {Isl : s re(p)}. 
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We defined R ~  for a E .A~ to be any A-filtration of Rca. Every A-filtration 
must satisfy the following 'suitability' conditions (see Hughes and Cresswell, 1984; 
Goldblatt, 1987):* 

(F1) (s, t) E R c implies ([s[, [t[) E Ra ~. 

(f2) (Isl, Itl) ~ R~ implies {A" [a]A E A(s)} C_ t. 

THEOREM 2.3. .M e is a A-filtration o f . M  e. 

The tedious proof of Theorem 2.3 shows that Rff is a A-filtration of R~ for all 
7 E Jt  t' by induction on the complexity of 7. Note that the respective (Fischer- 
Ladner) closure conditions are crucial to prove condition (F2). Given Theorem 2.3, 
the proof of the Filtration Lemma is straightforward by induction on formula com- 
plexity: 

THEOREM 2.4 (Filtration Lemma). For all s E S c, all action terms a E .A A, and 
aUformulas A E A : M e, s ~ A iff ~d/ '  , Isl ~ A. 

COROLLARY 2.1. M e is a standard model. 

Corollary 2.1 holds for a;/3 E j tA, a + /3  E ,,4 A, and a* E Jt/x by definition. The 
only remaining case is A? E A A, for which Corollary 2.1 is proved via Filtration 
Lemma (Theorem 2.4) and the definition of R~? in .A4A; thus RA~? = {(Is[, 181> : 
.M A, ]sl ~ A}. 

A logic L is said to have thefinite modelproperty iff every/:-consistent formula 
A is true at a state in some finite standard model. 

THEOREM 2.5 (Finite model property). PDL has thefinite modelproperty. 

Theorem 2.5 follows in a straightforward way: Lemma 2.1 tells us that for every 
PDL-consistent A there is some s ~ S c with AA c, s ~ A; Lemma 2.2 guaran- 
tees that the Fischer-Ladner closure A of the set (A} is finite, so .M A is a finite 
model which, by Theorem 2.3, is a A-filtration of M e satisfying the conditions for 
standardness (see Corollary 2.1), and by the Filtration Lemma, .M A, [s[ ~ A. In 
effect, we have a model that is bothfinite and standard, and which verifies A. 

COROLLARY 2.2 (Weak Completeness). PDL is (weakly) complete with respect 
to the class o f  finite standard models. 

* It is well known that such a filtration always exists, for example, the 'smallest' filtration, confer 
the definition of .M c in Section 3.2, item 2.b)ii). 
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COROLLARY 2.3 (Determination). PDL is (weakly) determined by the class of 
finite standard models. 

THEOREM 2.6 (Decidability). PDL is decidable. 

3. Non-stationary propositional dynamic logic 

Almost all interesting domains are populated with other agents. When considering 
multiple agents, the standard view of dynamic logic runs into problems for essen- 
tially two reasons: the standard modelling of 'doing nothing' (stationary waiting) 
and of stationary test are feasible only in single-agent environments. Therefore, 
non-stationary propositional dynamical logic (NPDL) is defined below, which over- 
comes these problems and treats multiagent domains in a uniform way. Although 
actions of other agents are not explicit in the language of the logic, we take them 
into account semantically. 

The restriction of stationary waiting A to static domains is mirrored semantically 
by conceiving R~ as the 'diagonal' of S x S. A state-change during waiting is 
excluded by this modelling. However, in dynamic environments some other agent 
may 'cause' a state-transition. Therefore, non-stationary waiting, written ~v, is 
introduced as the dynamic counterpart to stationary waiting. All we know about 
R~ is that R~ C_ S x S; no further condition can be imposed because the dynamic 
environment may cause arbitrary state-changes during the waiting of the agent. 
However, ~v makes good sense within preservation constructs to be introduced in 
the next section. 

Analogously to the case of non-stationary waiting we introduce a dynamic coun- 
terpart of stationary test, called non-stationary test, written ~-A. In the modelling 
of non-stationary test the condition to be verified must hold both at the initial and 
final state. It is not required that the respective states be identical. Generally, non- 
stationary test seems to be a better match with our intuitions on the verification 
of a condition. Think, for example, of verifying that a solution is acid by the aid 
of litmus paper. The crucial point here is that a well known state-change occurs, 
namely that the paper's color turns into red (the example is Moore's 1985). 

However, there is a more subtle point. First, observe that the axiom for stationary 
test, [A?]B ~ (A D B) (sTest), is equivalent to the conjunction of the following 
three axioms: (1) B D [A?]B, (2) -~A D [A?]B, and (3) A A B D < A ? > B  
(note that (1) plus (2) is equivalent to the right-to-left direction of sTest, while 
(3) is equivalent to the left-to-right direction of sTest). For our non-stationary test 
operation we certainly want to keep (2). Observe that (2) is equivalent to -~A D 
< A ? >  T (by modal logic), that is, whenever A is false at the initial state, then there 
does not exist a terminating execution of A?. The contrapositive of this formula is 
< A ? >  1- D A and its non-stationary analogon will be our axiom nTest.1 ( < r A >  
q- D A) below. Next, we have to weaken (1): not every proposition remains true 
after every terminating execution of verifying A, but only A itself- thus we weaken 
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(1) to [~-A]A (nTest.2). The axioms nTest.1 and nTest.2 are mirrored semantically 
by the simple requirement that R~A may be any set of states (s, t) such that A is 
both true at s and t (as will be proved soon). Intuitively, the notion r implies that 
whenever A is true at a state s and the action "verify A" is applied to s then i f  the 
action "verify A" terminates, then A will also be true at its final state(s). However, 
the notion 7- does not guarantee that the action "verify A" indeed always terminates 
if applied to a state s where A is true. Hence, the operation -cA describes an unsafe 
form of testing: the state-change which occurs during testing A may destroy some 
of the preconditions of the test operation such that the test has no outcome at all. 
Imagine that in the above test of acid by means of the litmus paper, the acid's 
concentration is so high that the litmus paper is destroyed before exhibiting some 
test results. 

For several purposes a stronger notion of non-stationary test is needed, call it 7-0: 
the operation 7-~ always terminates if applied to a state in which A is true. We call 
this notion safe non-stationary test. Formally it is characterised by snTest . l -2  (as 
above) plus the additional axiom snTest.3: A ~ <7-~ 7-. snTest.3 is a natural 
weakening of axiom (3) above for stationary test. Semantically it is mirrored by 
the additional condition that for each state s E S where A is true, RrOA contains 
a pair Is, t) with initial state s. (This requirement is consistent with the previous 
requirement that A is true at initial and final state: if A is true at s then at least (s, s) 
is a pair satisfying this requirement.) Observe that snTest.3 and snTest.2 together 
imply A ~ < T~ A> A, and this together with snTest.1 implies A - < 7-~ A> A. The 
operation of safe non-stationary test is stronger than non-stationary test but still 
much weaker than stationary test. For convenience, we introduce both operations 
into our extended language. 

Finally, a natural construct called the 'any' action is included within NPDL 
to enhance the expressiveness of the framework. Following Passy and Tinchev 
(1991), we will use the letter t, to denote the 'any' action. For reasons that will 
become clear momentarily, it is called the universe program in their paper (see 
also Gargov et al., 1987; Gargov and Passy, 1990; Goranko and Passy, 1992). The 
'any'  action will be included in our framework for reasons that are independent of 
considerations on single-agent or multiagent domains. With help of v we become 
able to express that something is true at every state in a generated model, since in 
generated models Rz, is universal, and hence a C R~, for arbitrary action terms (see 
Passy and Tinchev, 1991). The semantic behavior of R~, facilitates the formulation 
of domain constraints, that is, formulas which are assumed to be invariant over 
every performance of every action (see Rosenschein, 1981; Ginsberg and Smith, 
1988a; Stephan and Biundo, 1993; in the knowledgebase literature they are also 
called integrity constraints, see Katsuno and Mendelzon, 1991). A more detailed 
study of this simple yet powerful construct is given in Section 5, when we turn to 
applications of (extended) non-stationary propositional dynamic logic to planning 
problems. 
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3.1. FORMAL SYNTAX AND SEMANTICS OF NPDL 

Language 

The vocabulary of E(PDL) is enriched by the designated action variable w, the 
action constant u, and the (unary) operators ~- and r ~ 

a : : =  a I w I ~' I a l ; a 2  I a l  + a 2  I a*  IA?ITAIT~ 
Here, A E E(NPDL ), a E ,40, and a E ,4. 

Semantics 

An agent frame .~ is a structure .7 r ~- (S, { Ra : a E Aat ) , T, T ~ where (1) S is a 
non-empty set of  world-states, {R,~ : a E .Aat) is the set of  relations corresponding 
to atomic action terms, and the following functions T (and T ~ mirror (safe) non- 
stationary test on the level of frames; (2) T is a function T: Pow(S) -~ Pow(S x S) 
such that for all X E Pow(S), T X  C {(s, t)  : s E X , t  E X}; ( 3 ) T  ~ is like T 
except that it meets the further condition that for each s E X (and X E Pow(S)), 
T ~  contains a pair (s, t) (for t E S). 

A standard agent frame is an agent frame 9 v where Rv is universal. Hence .T" is 
R~-generated and Ra C_ Rv for all o~ E A. 

A standard agent model A4 based on a standard agent frame 5 r is a structure 
M = (S, {Ra : a E .A}, T, T ~ v) where (1) all conditions for standard models 
are satisfied; (2) RrA = TI IAI I~ ;  (3) R~OA ---- T'IIAII : "  (informally speaking, 
T (T ~ assigns to the proposition denoted by A the action consisting of (safely) 
non-stationary verifying that A is true); (4) v is a function v: 790 -+ Pow(S) as 
usual. 

Observe that the restriction to Rv-generated frames is harmless in the sense 
that it produces no new theorems. For, let A4 be an agent model which satisfies 
all the conditions of standardness except that R ,  is just an equivalence relation 
with R~ C_ R~, for all a E ~A (hence ~ need not be R~,-generated). For any state 
u E S A4 , let .M u be the u-R~,-generated submodel of .M. Then it is a well known 
fact of  modal logic that for all A E E(NPDL) and s E S :'4'~, .h4u, s ~ A iff 
A/I, s ~ A. 

Logics and axiomatization 

Non-stationary propositional dynamic logic is defined as the smallest subset E C 
E(NPDL) which contains all axioms and rules of PDL, and in addition contains all 
instances of the following types of axiom schemes. 

- For (unsafe) non-stationary test: 

nTest.1 <TA> T D A 

nTest.2 [~'A]A 
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- For safe non-stationary test: 

snTest.1 <-r~ T D A 

snTest.2 [-r~ 

snTest.3 A D <-r~ T 
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- For the 'any' action: 

Any.1 [u]A D A 

Any.2 [u]A D [t:][t:]A 

Any.3 < u >  [u]A D A 

Any.4 

NPDL is (weakly) characterised by the class of  all standard agent models, and is 
decidable. Details are provided in the next subsection. 

3.2. A DETERMINATION RESULT FOR NPDL 

We show that the determination result for PDL can be modified to account also for 
non-stationary test and the 'any' action. Thus we build upon previous results and 
other facts from ordinary modal logic. 

THEOREM 3.1 (Correctness). NPDL is correct with respect to the class o f  all 
standard agent models. 

Proof It is easily verified that nTest . l -2,  snTest . l -3  and Any . l -4  are true in 
a standard agent model 3d. For example, in the case of  nTest.1, assume .M, s 
<TA> T. THis means that there exist t E S ~4 with 8RrAt. By definition of  RrA, 
34,  s ~ A. Similarly for nTest.2. For snTest.3, assume 34,  s ~ A. Since RroA 
contains at least one pair (s, t) for t E S, 34, s ~ <-r~ T follows. The proofs 
of  Any . l -4  are well known. [] 

As usual, the completeness part of the proof is opened by the definition of  
canonical structures. 

Let 3d c = <S c, {R~ : a E .A},TC,T ~ vC) be the canonical model of NPDL. 
It is defined like the canonical model of PDL. Of course, the definition of 3,4 c 
includes the new cases a = w, a = I: and a = 7-B or -r~ 

T c X  and T ' c X  are defined in two steps: (i) For those propositions X = [[AI[ zac 
which are denoted by some formula A E s we put TCIIAII ~ c  = R~A and 
T'CIIA[[ Mc = RcoA; !ii) In the other case, that is, when there is no A E I:(NPDL) 
such that X = ]JAIl z4 , just let T c X  and T~ be any subsets of  {(s, t) : s E X,  
t E X},  where T ' c x  satisfies the additional condition that it contains a pair (s, t) 
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for each s E S e. 

LEMMA 3.1. (1) RCrA C_ {(s, t) : M e, s ~ A, 3,t c, t ~ A};  (2) R~o A satisfies (1) 
and for each s E S it contains at least one pair (s, t) (for t E Se; and (3) RCu is an 
equivalence relation on S c and R e C_ R~, for each ~ E .A. 

Proof. (1) Non-stationary test. In case (i) of  the paragraph preceding Lemma 3.1 
we first show that (s, t) E RerA ~ A E s, t (thereby exploiting the power of the 

e Truth Lemma). For s, assume that (s, t) E R~A. We have that T E t. Therefore, 
< r A >  T E s. By nTest.1 and maximality we have that (<~-A> T D A) E s. 
Thus, A E s. For t, suppose that (s, t) E /:~CrA. Then [TA]A E S by maximality, 
and because [rA]A is in the logic (nTest.2). Therefore, A E t. In case (ii) of  the 
paragraph preceding Lemma 3.1, the claim holds by definition. In summary, .M e 
satisfies T c X  C_ {(s, t) : s E X, t E X} in all cases. 

(2) Safe non-stationary test. It remains to prove the additional semantic condition 
for the case (i), because in the case (ii) it holds by definition. Assume s E S e and 
A c s. We must show that there exists t E S e such that sRCroA t (for arbitrary 
formula A) which means that we have to prove that the set {B �9 [r~ E s} is 
NPDL-consistent. For reduction, assume the opposite. Hence, by modal logic and 
maximality of s, s must contain [T~ However, because of snTest.3 and A E s, 
s contains also <-r~  T, that is, ~[T~ which contradicts the fact that s is 
NPDL-consistent. 

(3) The 'any' action. Axioms Any. l -3  guarantee that R~ is an equivalence 
relation on S c (see, for example, Hughes and Cresswell, 1984). The addition of 
axiom Any.4 guarantees that R~ C_ R c for all a E A: assume sRXt and [u]A E s. 
Then, for all a E .A, [a]A E s by Any.4 and maximality. Therefore, A E t. [] 

It is easy to see that NPDL (like PDL before) is not compact. There is thus 
no escape from applying the filtration technique again. However, we do not apply 
filtration directly to A4 c, but rather take an Rv-generated submodel of 3.4 c, call it 
.M cu. The reason is that filtration preserves universality (see Chellas, 1980: 103). 
A4 cu is Ru-universal and equivalent with M e  for all its states. Hence, by Lemma 3.1 
Nt  cu is a standard agent model. Any filtration of  .M cu through a given A will 
preserve universality because of the first suitability condition:sRcv ' 't => I slR  I tl. 

The definition of the Fischer-Ladner closure A of a formula set P within 
s has to be extended vis-~t-vis its definition within s by the follow- 
ing conditions: (1) [rA]B E A => A E A and (2) ['r~ E A ~ A E A. It is 
easy to see that the Fischer-Ladner closure A of a finite formula set P continues 
to be finite in the new setting (compare Lemma 2.2). The set .A/x is defined as the 
least set of action terms such that 

- {~ E .Aet" ~ occurs in a member of A} C .A:'. 

- a , /3  ~ A:'  ~ o~;/3,~ + fi, c~* ~ A: ' .  
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In the structure to be introduced momentarily, we write IA[ A for the set {IsJ �9 
S r' : .M cu, s ~ A),  if A is in A. 

Take .h4 cu = (Scu, {R~ u : c~ �9 A},  T cu, T ~ v cu) and let A C_ s be 
any Fischer-Ladner closed set. Define the model 

.h4 h = (sA, . [R~ : a E A A } , T A , T * A , v A ) ,  

where 

1. as before, S zx is the quotient set of Scu modulo "~z~, 
2. the set {Ra ~ : a �9 .A h } satisfies the following conditions: 

a) for a �9 J[~, R~  is any A-filtration of Ra cu, 
b) for action terms A?, 7-A, T~ ~, �9 .A A, 

i) R~? = (<lsl, Isl) : M ~,  s p A) (as before), 
ii) in case of R~ZX A and h Rro A, we take the smallest A-filtration, that is, 

R~zXA = TZXlAlZX = {(Isl, Itl) : 3s' �9 Isl3t' �9 I t l (s ' , t ' )  �9 TCllAll~C~), 

and similar for ,x R~_o A which is defined with help of T ~ Otherwise, 
for X C S A where there is no A �9 A such that X = [AI ~, let T A X  and 
T~ be subsets of  {(Isl, Itl) : Isl �9 x ,  ttl �9 x } ,  where T ~  satisfies 
the additional condition that for each Isl �9 s ~ it contains a pair (Isl, Itl) 
(for some Itl �9 SA), 

iii) R~  is any A-filtration, 
iv) R~  for compound action terms is inductively defined as before; 

3. vZX(p) (p �9 790) is defined as before. 

The next statement extends Theorem 2.3. 

THEOREM 3.2..hal zx is a A-filtration of  .h4 cu. 
Proof. We show that R~  is a A-filtration of R~ u for all 7 E ,A h. Thereby, we 

only consider cases not already covered by Theorem 2.3. 
Non-stationary waiting. The case 7 = w is given by the definition of _R~. 

Remember that w is considered as an action variable. 
Non-stationary test. We have to show that the filtration conditions (F1) and 

(F2) are satisfied. (F1): Assume TA E ,,A, A. Suppose that (s, t) E R ~  4. Then, 
by definition, (s, t) E Tc~IIAII~~ The definition of T~IAI A yields ([s[, Itl) �9 

zx (F2): Assume 181R~altl. Then for some s' �9 181 and t' �9 Itl, (8',t ') �9 R~- A �9 
Tc~'IIAII ~c~. Hence (s~,t I) �9 R ~  4 by definition. Suppose [TA]A �9 A(s).  We 
have s ,'~h S ~ and .M cu ~ [TA]A. So A is in tC Moreover, because A is closed 
under the Fischer-Ladner conditions, A �9 A and so, for t ~ ~zx t, A �9 t as desired. 

For safe non-stationary test the proof is the same. 
The 'any' action. Again, this case holds by definition. [] 
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The Filtration Lemma may now be proved as before and reads as follows: 

THEOREM 3.3 (Filtration Lemma). For all s �9 Scu, and all formulas A �9 A : 
34 c', s ~ A iff A4 A, Isl ~ A. 

COROLLARY3.1.(1)TzxX C_ (<lsl, Itl>" 181 �9 x ,  Itl �9 X}( fo reveryX  C_ SA); 
(2) T 'A  x satisfies (1) plus the condition that for all Is[ �9 S A it contains a pair 
<181, Itl> (for some Itl �9 s/' ); (3) R~ is universal on SA; and(4) Ad zx is a standard 
agent model. 

Proof. (1) Non-stationary test. Assume that there is some A �9 A such that X = 
I AI A (in the other case, the claim holds by definition). Assume <Is I, It I> �9 T A I AI A. 
There exist st �9 I s] and t' �9 Itl such that (s', t ') �9 T~"IIAII z"~ By Lemma 3.1, 
s ' � 9  IlZll ~c"  and t' �9 IIAII ~ '~  so Is'l, It'l �9 IAI A by Theorem 3.3. But Isl = 18'1, 
Itl = It'l. Therefore, Isl, Itl �9 IAI A. 

(2) Safe non-stationary test. We must show in addition that T'AIAI A contains for 
each Isl �9 s ~' apair  <lsl, Itl> (for some Itl �9 SA). Given Isl �9 S A, then s �9 S c~, 
and sRCrUOA t for some t �9 Scu by Lemma 3.1, whence by definition 2(b)(ii), 
<lsl, Itl> �9 T~ 

(3) The 'any" action. Assume Isl, Itl �9 S A. Because R(~ u is universal on Scu, 
sR~,Ut. By suitability condition (F1), IslR.altl follows. Hence, R ~  is universal on 
S A . 

(4) Follows immediately from (1), (2) and Corollary 2.1. This finishes the proof. 
[] 

THEOREM 3.4 (Finite model property). NPDL has thefinite modelproperty. 

Proof. Take any NPDL-consistent formula A. The relevant steps are as follows: 
First, by Lemma 2.1 A is true at some state u in the canonical mode .M c. Next, let 
A,t cu be the u-Rv-generated submodel of .Me; A is true at u in .h,l cu. Theorems 3.2 
and 3.3 guarantee that A is true in ]u I in the A-filtration .M A of .Ad cu and Corol- 
lary 3.1 (4) tells us that .M A is a standard agent model. Since the Fischer-Ladner 
closure A of {A} is finite, .A4 A is finite. Analogously to Theorem 2.5 we have 
gained a verifying model for A that exhibits both the features of finiteness and 
standardness. [] 

The following statements are consequences of Theorems 3.1 and 3.4. 

COROLLARY 3.2 (Determination). NPDL is (weakly) determined by the given 
class of  finite standard agent models. 

THEOREM 3.5 (Decidability). NPDL is decidable. 
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Figure 1. A proposition is terminally preserved with respect to the sequence of actions a , /3  
and 7. (Filled circles indicate that the proposition is true at the respective states.) 

4. Preservation 

Real-world planning often requires that some facts are protected from an action, 
or put differently, preserved with respect to an action.* Concerning the frame 
problem, the decisive problem is to offer an economic way to reason about what 
remains true during an action which is composed by sequencing actions. A method 
that covers that problem efficiently may count as a solution to the combinatorial 
frame problem. In this section, we define the logic resulting from the inclusion of 
preservation formulas in formal terms. It will be called extended non-stationary 
propositional dynamic logic (NPDL +) Applications to both the frame problem and 
planning are discussed in the next section. 

Depending on whether facts have to hold in a particular situation, for example, 
where they figure as preconditions ('initial conditions') for the execution of an 
ensuing action, or whether they have to be true at all states of an action sequence 
(as 'boundary conditions'), two concepts of preservation are distinguished: ter- 
minal preservation and chronological preservation. These facilities are obtained 
by introducing formulas of type tpres(tx, A) and cpres(a ,  A). In case of terminal 
preservation the formula tpres(a ,  A) is intended to mean that a fact A is terminally 
preserved with respect to a (possibly compound) action: if A is true when the exe- 
cution of c~ begins, A is true upon termination of a. For chronological preservation 
the formula epres(a ,  A) is intended to mean that a fact A is chronologically pre- 
served with respect to a (possibly compound) action a: whenever A is true initially, 
A is true not only terminally but at the intermediate states of the execution of  a as 
well. 

Figure 1 illustrates the case of a proposition being terminally preserved with 
respect to an action consisting of first doing a ,  then fl and finally 7. The filled 

* On naming: we eventually decided to speak of "preservation with respect to an action" rather 
than "protection from an action" as only the former seems to support the multiagent reading. 
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Figure 2. A proposition is chronologically preserved with respect to the sequence of actions 
a,/3 and ../. (Filled circles indicate that the proposition is true at the respective states.) 

circles (denoting states) in the figure indicate that the proposition is true at the 
final states of the relation Ra;~;-r which corresponds to the sequence of actions 
a , /3  and 7 (in that order). As chronological preservation requires in addition that 
a proposition be true at intermediate states, application to the sequence a;/3; 3, 
results in the proposition holding at all states, that is, whenever the performance 
of a ,  a;  fl or a;/3; 7 terminates, the proposition is true. This case is illustrated in 
Figure 2. Note that here all circles are filled. So, 'non-terminating beginnings' of 
the sequence a;/3; 7 count as well. 

Several researchers have suggested notions that bear a close similarity to our 
preservation operators (see Pratt, 1978; Segerberg, 1980). Pratt (1978) introduces 
formulas t h roughou t ( a ,  A) to mean that formula A is true throughout (at every 
state of) the execution of action a.  In Pratt's framework the meaning of  an action 
is realized as a set of trajectories, that is, k + 1-tuples ( s o , . . . ,  8k) of states rather 
than binary relations. Accordingly, t h roughou t ( a ,  A) is true at a state (in a model) 
iff A holds at every state in every trajectory corresponding to a.  Although the 
conception of the meaning of actions as sets of trajectories seems reasonable in 
the particular case of a (chronological) preservation operator, it leads to fairly 
complicated logics in the general case, so-called process logics (see Harel et al., 
1982). In our account, a definitional extension of action models (see the function #c) 
does the job. Segerberg (1980) suggests a notion of preservation, written a-presA,  
which is essentially that of  Pratt (1978). 

4.1. FORMAL SYNTAX AND SEMANTICS NPDL + 

Language 

The operations tpres  and epres  are added to the vocabulary of s 

A ::= p [ --,A I AI V A2 [ [a]A [ tpres(a ,  A) [ epres(a ,  A) 
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(wherep E 790, A E L(NPDL+),and~ E A). 
For the following, recall the definitions of special term sets already given in the 

previous section. 

Semantics 

An extended standard agent frame ~ is a structure jz = (S, {Ra : a �9 r T, 
T ~ #> where (1) (S, {Ra : v~ �9 .Aat}, T, T ~ is a standard agent frame; and (2) # 
is called the smoothness function. It is a definitional extension of standard agent 
frames, a function # : {Ra : ol �9 .Aat) • Pow(S) ~ Pow(S) such that for all 
s �9 S, X �9 Pow(S), 

8 E # ( R a ,  X)  iff s � 9  � 9  

An extended standard agent model .A4 based on .Y" is a structure 

A/I = (S, {R,~ : c~ �9 A},T ,T ' , I~ t ,#~ ,v ) ,  

where 

1. all conditions for standard agent models are satisfied; and 
2. the following functions are introduced: 

a) #t is the function #t : {Ra : o~ �9 A} • Pow(S) --+ Pow(S) such that 

8 � 9  iff s E X ~ ( { t : ( s , t ) � 9  

Note that #t ( Ra, X)  = #( Ra, X)  for atomic action terms a �9 Aat. 
b) #c is the function #c : {Ra : a E A)  x Pow(S) --+ Pow(S) such that 

u~(R~, x )  = m(n~, x )  

for all elementary action terms a �9 Act. For compound action terms, #c is 
inductively defined as follows: 

.c(R~.~, X) = Uc(2%, X) n {8 : {t: <8, t> �9 R~} c_ uc(R~, X)} 
uc(R~+~, X) = uc(R~, X) n ~c(R~, X) 

n > 0  

3. Finally, v is a function v : 7~0-+ Pow(S). 

Terminal preservation (#,) takes care only of initial and final states: s C 
#t(Ra, X)  iff whenever s is an initial state of Ra starting from s. Chronologi- 
cal preservation (#c) forces X to be preserved also at all intermediate states - it 
gains its power when applied to compound actions, otherwise it reduces to terminal 
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preservation.* Note also that models for s +) are definitional extensions of 
models for s since #t and/zc are defined parameters. 

Given any fixed standard agent model .M, we define the meanings of formulas 
and terms by adding the following clauses: 

- .h4, s ~ t p r e s ( a ,A)  i f f s  �9 #t(Ra, IIAII ), 
- .h4, s ~ epres(a ,  A ) i f f s  �9 #c(Ra, [[AII~). 

It follows that the following conditions are satisfied by .hal (the reference to 
models is left tacit): For all s, t �9 S, a �9 .A: 

Ilcpres(a;/~,A)ll = Ilcpres(~,A)ll n {s : { t :  (s , t )  E R~} c Ilcpres(/3,A)ll} 

Ilcpres(a +/3,  A) II --- Ilepres(a, A) II n Ilcpres(/3, A) II 

IIcpres(~*, A) It = A Ilcpres(an, A) II. 
n>0 

Logics and axiomatization 

The extended logic is defined as the smallest subset L _C f_.(NPDL +) which is 
closed under the rules of PDL, contains all axioms of NPDL and in addition all 
instances of the following two new axiom schemes, tPres  and cPres. 

- For terminalpreservation: 
tPres  tpres(a ,  A) -- (A ~ [a]A) 

The formulation of an appropriate axiom scheme for expressions of the form 
epres(a ,  A) is more involved. We define I as a function I : .,4 --+ Pow(.A) that 
assigns to each action term o~ E ,4 the set of all action terms that denote initial 
strings of Ra.  For elementary action terms, o~ E .Ael, we have I(c~) = {oL}, that 
is, an elementary action term has itself as its only initial string. In order to define 
initial strings for compound action terms, we need the auxiliary definition 

; (Z) )  : ' r  e ;(/3)}. 

Then for all ~ E .,4: 

I(c~; ~) = I ( a )  U (o~; I (3) )  

+ Z) = u 

I (a*)  = (o~*;I(o~)). 

* A note on naming: smoothness is to be understood always with respect to the envisaged facts 
whose truth is 'preserved'. 
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Hence, the initial strings of Ra;a are all those of Ra plus all those obtained from 
concatenating initial strings of RZ to Ra; the initial strings of Ra+z are those of 
Ra and those of RZ; the initial strings of Ra* are all those obtained by sequencing 
Ra, with an initial string of Ra. 

We now introduce the following axiom scheme 

- for chronologicalpreservation: 

cPres cpres(a'a)==-(ADA~eI(~) [/~]A) 

Correctness and completeness 

Because of the nature of the proof-procedure pursued in this section, it is advisable 
to distinguish notions of NPDL and NPDL +. Let F- denote the deducibility relation 
of NPDL and b- + the deducibility relation of NPDL+. Likewise, models of NPDL + 
are indexed by "+",  and models of NPDL have no index. For convenience, we 
abbreviate s by E and L(NPDL +) by E +. 

The main steps of the argument are as follows: First, we translate each formula 
A E E + into a formula O(A) E E and prove that 

F-+ A - O(A). 

Then we show that if A is NPDL+-consistent then O(A) is NPDL-consistent. Next, 
for each model A4 for E, E-model for short, we define the corresponding E +-model 
.h4 + and show that for each A E g +, and a E S: 

A4+,s ~ A iff A4,8 ~ O(A). 

For each A E E +, the translation 0 : E + --+ E is given by the following recursive 
conditions: 

0(io) = p (forp E 790) 

O(-~A) = -~O(A) 

O(A V B) = O(A) V O(B) 

O([a]A) = [~]0(A) 

0(tpres(o~, A)) = O(A) D [a]0(A) 

0(epres(a,A)) = O(A) D A M0(A) �9 
ZeI(~) 

We now begin the completeness argument. 

LEMMA 4.1. For all A E E + '- : ~+ O(A) -- A. 
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Proof As is well known, the rule of replacement of logically equivalent sub- 
formulas holds in all classical modal logics. Now, O(A) results from A by a finite 
number of such replacements of NPDL +-equivalent subformulas. [] 

COROLLARY 4.1. I f  A E E + is NPDL+-consistent, then O(A) is NPDL-consis- 
tent. 

Proof Suppose otherwise, that O(A) is not NPDL-consistent. Since all axiom 
schemes and rules of inference of NPDL are also in NPDL +, if }- O(A) D • then 
b+ O(A) D I ,  whence k-+ A D I follows by Lemma 4.1. Therefore, A is not 
NPDL + -consistent. [] 

LEMMA 4.2. For given Ad = (S , (Ra  : ~ E . A } , T , T ' , v )  define AA + = 
(S, {Ra : a E .A}, T, T ~ #t, #c, v) such that #t and #c are defined as above 
(in Section 4.2). Then for all A E E + and s E S"  A4 +, s ~ A iff Ad, s ~ O(A). 

Proof By induction on the formulation of A. The case A = p is given because 
.M + and M agree on the valuation function. The cases for 4, V and [a] are 
straightforward. The only critical cases are A = tpres(a,  B) and A = epres(a,  B). 

It is important to note that the operation + is reversible. For each E+-model 
can be viewed as an extended model .M + of some E-model, that is, .M + has a 
E-reduction. 

We start the proof with the case A = tpres(o~, B). 

M + s  ~ t p r e s ( a , B )  .'. '.. (s ~ IIBII ~ §  ~ ( t :  (,,t> ~ Re c_ IIBII~+}) 

by definition of #t and the semantic condition for tpres(a ,  B)-formulas. So 

.,. ,.. ( ~ + , ,  ~ B ~ (Vt. (,, t) ~ Re ~ M +, t ~ B)). 

Applying induction hypothesis we conclude (since .M and A/l + are based on the 
same frame) that 

., '.. ( M ,  ~ ~ O(B) ~ (Vt. (~, t) ~ R~ ~ M , t  ~ 0(B)), 

hence by the truth condition for boxed formulas 

-', :- (.M, s ~ O(B) =:> .M, s ~ [a]O(B)) 

which gives us 

-: :- M , s  ~ (O(B) D [a]O(B)) 

and thus, by the recursive clauses for O, 

-' :- M/t, s D O(tpres(a, B)).  

The case A = cpres(a,  B)  is proved by (nested) induction on the complexity 
of a.  
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Elementary action terms. By definition of initial strings for elementary action 
terms a E JteZ, I(~) = {a}. Hence, the proof is as for A = tpres(a, B). 

Sequential composition. Assume c~ = al;  c~2. Then .M +, s ~ cpres(al; a2, B) 

.'. :../t4+,s ~ cpres(cel,B)&Vt : sR~lt ~ ~r ~ cpres(ot2, B) 

by the truth condition for cpres(a;/3, A)-formulas, then 

.'. '. eV[, s ~ 0(epres(al, B))&Vt : sRalt ~ 2~4, s ~ 0(cpres(a2, B)) 

by induction hypothesis, which gives 

JV~'s ~ ( O(B) ~ A~e,(a,) [/3]O(B)) & (1) 

Vt : sRalt ~ M ' t  ~ ( O(B) ~ ATe,(~2)[7]O(B)) (2) 

by definition of 0. Since I(al; a2) = I(al ) tO I(a2)) by definition of initial strings, 
(1) and (2) yield 

.' ' d~,8 ~ (O(S) ~ A~El(al;a2)[~]O(S)) 

which gives 

.'. :. Azl, s ~ O(cpres(al;a2,B)) 

by definition of 0. 
Non-deterministic choice. In a similar way, the proof for the case a = al + a2 

uses the truth-clause for cpres(a +/3, B)-formulas, induction hypothesis, definition 
of 0 and the definition of I(al + c~2). 

Non-deterministic iteration. The remaining case is a =/3*. By the truth condi- 
tion for cpres(a*, A)-formulas, .hi +, s ~ cpres(/3*, B) 

-'. '...h4 +, s ~ cpres(/3 n, B) for all n >_ 0, 

and 

.'. '~ J~4, s ~ Ocpres(/3 n, B) for all n > 0, 

by induction hypothesis, which yields 

>Jk4, s ~ ( O ( B )  D A7~1(3 '~ ) [7]0(B)) for all n > 0, (3) 

by definition of 0. 
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To proceed, we insert the following 

LEMMA 4.3 (Initial String Lemma for the star operation). The following sets are 
identical: {(s, t) E R 7 : 3' E I(/3n), n > 0} = {(s, t) E R 7 : 3' E (/3", I(/3))}. 

Proof. For the C_-part, assume 7 E I(/3n). Then 3" has the form (/3m; e) for some 
e E I(/3) and rn _> 0. So R~-~;~ C_ R~.;~. Thus each (s, t) E / L / f o r  such a 3' will 
be in the set at right hand side. 

For the _D-part, suppose (s, t) E R- r for 3" E (/3*, I(fl)). Then there will be some 
rn _> 0 such that (s, t) E Rfl,~;e with e E I(/3). Hence (s, t} E R 7 belongs to the 
set at the left hand side. [] 

With the help of the preceding lemma we may continue the proof of Lemma 4.2 
as follows: 

[3 ]̀0(B)) 

and, since 1(/3") = (/3*; 1(/3)) by definition of initial strings, 

"" " M's (~ D , 
which gives 

*'. ;- 34,  s ~ 0(epres(/3*, B))  

by definition of 0. This ends the proof of Lemma 4.2. [] 

THEOREM 4.1 (Correctness). NPDL + is correct with respect to the class of  
extended standard agent models. 

Proof We have to show that tPres and ePres are valid in all NPDL+-models. 
For tPres,  34 +, s ~ tpres(a ,  A) -'. '.- 3,t, s ~ 0tpres(a ,  A)) (by Lemma 4.2) 
.'. ~..A4, s ~ O(A) D 0([a]A) (by definition of 0). Then, trivially .'. ' . . .M +, 
s ~ O(A) ~ O([a]A) (because the valuation function for the s does not 
depend on the functions #t and #c), so ~ 34 +, s ~ A D [a]A (by Lemma 4.1). 
The argument for ePres  takes essentially the same steps. [] 

THEOREM 4.2 (Finite model property). NPDL + has the finite model property. 
Proof Take a NPDL+-consistent formula A. Then, by Corollary 4.1, O(A) is 

NPDL-consistent. So, O(A) is true at a state s in the finite (standard agent) model 
A/ / for  NPDL. Hence, A is true at 8 in a finite (extended standard agent) model 
3,l + for NPDL + by Lemma 4.2. [] 
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As immediate consequences we obtain 

COROLLARY 4.2 (Determination). NPDL + is (weakly) determined by the class 
of  all finite extended standard agent models. 

THEOREM 4.3 (Decidability). NPDL + is decidable. 

5. AppHcations 

This section is dedicated to applications of our framework. We do not describe 
how our approach handles the simple Yale Shooting problem (see Hanks and 
McDermott, 1987), because our approach yields no significant advantages here 
as compared, for example, with the handling of this problem in the situation 
calculus of McCarthy and Hayes (1969). Our'approach is profitable as soon as 
(pre)conditions have to be 'transported' over action sequences of reasonable length. 
This is the case in planning. We give an example which involves more actions and 
properties than the shooting problem. Then, it is shown that domain and plan 
constraints are naturally encoded in NPDL + if the ongoing behavior of a plan is 
considered. The usefulness of these notions is illustrated by way of an example 
from the manufacturing domain. Finally, it is shown how the (temporal) properties 
of temporalplan theory (see Manna et al., 1993) are expressed in NPDL +. Finally, 
we compare our solution to some aspects of the frame problem to monotonic and 
non-monotonic solutions, respectively. 

5.1. THE FRAME PROBLEM: A TV EXAMPLE 

The following example confronts us with the (nowadays easy) problem of installing 
a TV set. Consider the following definitions concerning the actions and effects 
(preconditions) of the installation procedure: 

plug_in = 

connect : 

press_on = 

scan = 

select = 

GUIDE = 

CURRENT = 

SIGNAL = 

TV_ON = 

PROG = 

FAV_PROG ffi 

(the action consisting of) plugging in the TV set 
connecting the signal feed 
pressing the "on" button 
scanning the signal for programs 
(by initiating the automated programming systems (APS)) 
selecting a program 
a TV guide is at hand 
the TV set is provided with a current 
the tuner is provided with a signal 
the TV set is on 
the tuner is ready to receive all programs 
a (favorite) program is selected. 
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The initial situation is described by a single statement, 

(INI) GUIDE. 

We want to deduce that after every terminating execution of the action sequence 
consisting of plugging in the TV set, connecting the signal feed, pressing the "on" 
button, initiating APS, waiting (since waiting became so popular in the AI literature 
on the frame problem), and finally selecting a program, a (favorite) program is 
selected. 

The assumptions on the preconditions and effects of actions are as follows: 

(A1) [plug_in]CURRENT 
(A2) [/)](CURRENT D [connect]SIGNAL) 
(A3) [u](CURRENT A SIGNAL D [press_on]TV_0N) 
(A4) [u](CUKRENT A SIGNAL A TV_0N O [scan]PROG) 
(A5) [u](CUKRENT A SIGNAL A TV_0N A PROG A GUIDE D [select]FAV_PROG) 

For instance, the fourth assumption states that in all situations we consider as possi- 
ble, the tuner may receive all programs after initiating the automated programming 
system, if the TV set is provided with a current, the tuner is provided with a signal 
and the TV set is on. Observe that all actions mentioned in the example have effects 
which figure as preconditions for all ensuing actions. For instance, if current breaks 
down at some intermediate state, all later actions will not be feasible. Here we have 
a situation where the epres  operator becomes important. 

The following conditions ensure that preconditions of subsequent actions are 
met. 

(el) 
(C2) 
(C3) 
(C4) 
(CS) 

[u](cpres(eonne c t  ; press_on; scan; Od, CURRENT)) 
[u](cpres(press_on; scan ;w, SIGNAL)) 
[u](epres(scan; o J, TV_0N)) 
[u](epres(w, PROG)) 
[u](tpres(plug_in ;connect;press_on ;scan;u), GUIDE)) 

In condition (C4), the epres operator collapses to the tpres  operator, since w is 
an elementary action term. In (C5), we only need tpres  because the presence of a 
TV guide is interesting only when the agent selects a program; at the intermediate 
states of the installation procedure, some other agent may carry the guide to another 
room, etc. 

The problem of installing a TV set may now be solved as follows (t- is the 
deducibility relation of NPDL+): 

(INI), (A1-5), (C1-5) 

[plug_in; connect ; press_on ; scan ; w;select]FAV_PROG (4) 



236 H. PRENDINGER AND G. SCHURZ 

The following argument sketch shows the relevant steps. 

i. [plug_in[(CURRENT D [connect]SIGNAL) 
(A2); Any.4. 

2. [plug_in] [connect ]SIGNAL 
(A1), 1; modal logic. 

3. [plug_in][connect](CURRENT A SIGNAL D [press_on]TV_0N) 
(A3); Any.4, Comp. 

4. [plug_in] [connect ] CURRENT 
(C1), (A1); Any.4, cPres, and modal logic. 

5. [plug_in[connect]  [pres  s_on]TV_0N 
2, 3, 4; modal logic. 

6. [plug_in][connect][press_on](CURRENT A SIGNAL A TV_0N D [scan]PROG) 
(A4); Any.4, Comp. 

7. [plug_in] [connect ] [press_on] CURRENT 
(el) ,  (A1); Any.4, ePres, Comp, and modal logic. 

8. [plug_in] [connect] [press_on]SIGNAL 
(C2), 2; Any.4, cPres, Comp, and modal logic. 

9. [plug_in] [connect] [press_on] [s can]PROG 
5, 6, 7, 8; modal logic. 

10. [plug_in] [connect]  [pres  s_on] [scan] [w]CURRENT 
(C 1 ), (A 1); Any.4, cPres, Comp, and modal logic. 

11. [plug_in] [connect] [press_on] [scan] [w]SIGNAL 
(C2), 2; Any.4, cPres, Comp, and modal logic. 

12. [plug_in] [connect] [press_on] [scan] [w]TV_0N 
(C3), 5; Any.4, ePres, Comp, and modal logic. 

13. [plug_in] [connect] [press_on] [scan] [w]PROG 
(C4), 9; Any.4, ePres, Comp, and modal logic. 

14. [pluglin] [connect] [press_on] [scan] [w]GUIDE 
(C5), (INI); Any.l, tPres, Comp, and modal logic. 

15. [plug_in][connect][press_on][scan][w](CURKENT A SIGNAL A TV_0N A 
A PROG A GUIDE D [select]FAV_PROG) 
(A5); Any.4, Comp. 

16. [plug_in; connect ; press_on; scan; W ; select]FAV_PROG 
10, 11, 12, 13, 14, 15; Comp and modal logic. 

In our formalization, the combinatorial problem and the extended prediction prob- 
lem are solved by stating conditions which preserve facts over sequences of actions. 
Thereby we exploit the power of the preservation operators. We will discuss these 
problems at greater detail momentarily. 

Now assume that the initial situation is described by the more elaborate formula 

GUIDE A FRED_ALIVE A TWEETY-FLYING 
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where, apart from the TV guide being at hand, Fred is alive and Tweety is flying. We 
do not force these (possibly unrelated) facts be true after the installation procedure. 
So other facts may vary freely, dependent on activity of other agents; maybe Fred 
is shot or Tweety has its wing broken. In this way, the overcommitment problem is 
solved. 

Concerning the qualification problem, we cannot offer a solution within our 
framework. We have no means to differentiate the treatment of explicit precon- 
ditions from the treatment of qualifications. Consider assumption (A2) of the 
installation example: the TV set being provided with current figures as an explicit 
precondition for the action consisting of connecting the signal feed. On the other 
hand, qualifications which may generally be assumed to hold (the antenna is not 
broken, there is reception, and so on) have to be made explicit too. If we take into 
account qualifications, our second premise has the rather unattractive format 

[u](CURKENT A -~BROKEN A RECEPTION A ... D [connect]SIGNAL). 

The problem is that we need to verify all qualifications which is notoriously ineffi- 
cient. Here, non-monotonic logics are clearly superior to our approach. They handle 
qualifications by the (defeasible) assumption that abnormalities (the antenna is bro- 
ken, for instance) do not arise. For a probabilistic justification of this assumption, 
see Schurz (1994). 

A problem related to the frame problem is the ramification problem (also called 
consistency constraint problem in Georgeff, 1987a). It is the problem of stating all 
(known) effects of actions. In case of the action of selecting a (favorite) program 
we should be able to say that the action selects the program without having to 
specify the consequences of the selection, for example, that watching a (favorite) 
program makes the person happy. But our formalism seems easily amenable to 
that problem. By means of the 'any' action we may express the following (self- 
explaining) formula 

[v](FAV_PROG D HAPPY) 

and thereby avoid to make the fact HAPPY an explicit result of selecting a favorite 
program. We simply state the fact as a domain constraint (for more discussion on 
constraints, see Section 5.2). A similar route to solve the ramification problem is 
taken by Ginsberg and Smith (1988a: 170--172). 

5.2. PLANNING 

We are now going to demonstrate that NPDL + is an appropriate tool to formalize 
concepts essential to planning. Planning is a discipline that concentrates on prob- 
lems adherent to the specification, verification, and synthesis of plans (see Manna 
and Waldinger, 1980; Rosenschein, 1981; Georgeff, 1987b; Stephan and Biundo, 
1993). Plan synthesis concerns the composition ('synthesis') of a plan, usually a 
compound action term, to achieve some specified goal or goals. The process that 
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checks if the proposed plan meets its specification, is called verification. By spec- 
ification one understands certain properties that describe the desired behavior of 
the plan, in the first place, and the goal is satisfied. 

In this subsection, our concern is specification. To obtain consistent axioma- 
tizations of planning domains where the 'clean' behavior of a plan is important, 
constraints of essentially two kinds need to be considered. Domain constraints 
make assertions about the whole scenario, while the range of plan constraints is 
restricted to the plan under consideration. Constraints on plans typically express 
assertions about the ongoing behavior of a plan, and consequently regard interme- 
diate states of the execution. It will come as no surprise that domain constraints 
and plan constraints in NPDL + are dealt with by the 'any' action and the concept 
of chronological preservation, respectively. 

Domain constraints will have format [v]C'. If C is a term-free formula, the 
constraint is called static, otherwise dynamic (see Rosenschein, 1981). For instance, 
the (dynamic) constraint "if a block is not clear then moving another block to its 
top fails" is expressed by the formula [~](<o~> T D A). Plan constraints will be 
expressed as 'boundary' conditions and defined via the cpres operator. 

In order to illustrate these notions, we give an example from the manufacturing 
domain. 

A manufacturing example 

Consider an agent (robot) working at a car-manufacturing plant. The agent is 
supplied with a driver and a camera. The agent's task consists in turning screws 
until they are flush with the car-body. 

The manufacturing domain is described as follows: 

acrew = the action consisting of turning the screw 
FULL -- the batteries are fully charged 
Sn -- the screwhead is r~ units apart from the car-body 

Observe that the screwhead is flush with the car-body, if n = 0. Of course, we 
assume that the Si's are mutually exclusive, that is, ~(Si A Sj) whenever i ~ j .  

We define 7 -o> de___f .rO(_~80) and 7-0= de f 7.O(s0). Hence we assume our camera's 
operations of testing whether the screwhead is still apart from the car-body or not 
are safe. 

The entire plan our robot has to execute is ((7-0>; screw)*; 7-0=). Clearly, this 
plan, if it terminates, will terminate in So (else 7-0= will abort). But under which 
conditions will this plan terminate? The crucial point is to ensure that for both the 
driver and the camera to work the batteries must be loaded during the whole perfor- 

mance of the plan. For convenience, we define bound(c~, A) def A A cpres(c~, A), 
that is, A is a boundary condition during the performance of a.  Hence our boundary 
condition is (the plan constraint) 

bound((7-~ screw)*; 7-o= FULL). (5) 
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We also assume the dynamic domain constraint 

[V]((FULL ASn) D (<screw>i A [screw]Sn-l)) (for all n > 0), (6) 

that is, the action screw applied to a state where the batteries are full and the 
screwhead is n units away from the car-body will terminate and after termination 
the screwhead is n - 1 units away from the car-body. Since our test operation -r ~ 
is non-stationary, we must explicitly add a further assumption (dynamic domain 
constraint), namely that the test operation performed by the camera has no effect 
on the position of  the screw, that is, 

[v]tpres(r ~ Sn) (for all n > 0). (7) 

This sounds trivial, but clearly, a defective robot which clashes with the screwdriver 
whenever it tests whether n > 0 such that the screw is turned some unit off the car, 
would never be able to execute the plan. 

Within NPDL +, we may now prove our desired result, namely 

(5), (6), (7), S n [- [(r~ screw)n]S0A <TO>; screw)n; T ~ > "1-, (8) 

that is, first, whenever the action consisting of n times verifying n > 0 and then 
turning the screwhead terminates, the screwhead is fixed (flush with the car-body) 
and second, the entire plan of performing this action some number of times and 
then verifying that the screwhead is fixed, will terminate if this number is n. 

Here is a sketch of the proof. We first prove by induction of m that 

< (7"0>; screw) m > T (9) 

[(T ~ > ; S crew)ra] Sn--m (10) 

follow from the premises (5), (6), (7) and Sn for each 0 < m < n. 

ra = 1: Sn implies (1 .a) < r  ~ > T by snTest.3 and the assumption that the Si's 
are mutually exclusive, and is, Sn-m D ~So for m < n. (7) implies (1.b) [r~ 
by Any. l ,  t i r e s  and Sn. (5) implies (1.c) [r~ by the definition of bound  
and the axiom for epres. (1.b) and (1.c) give us (1.d) [r~ ASn) by modal 
logic. (1.a) and (1.b) yield (1.e) < r ~  sn by modal logic. (1.c) and (1.e) give 
(1.f) < r ~  (FULL ASn) by modal logic. (6) implies (1.g) [r~ A Sn) D 
( < s c r e w > T  A [screw]Sn_l)) by Any.4. By standard PDL, (1.f) and (1.g) imply 
<'r~ screw> -7, and (1.d) and (1.g) imply [r~ screw]Sn_l, which proves the 
case for m = 1. 

m =*- m + 1: We assume (9) and (10) for a given ra as induction hypothesis and 
show that (9) and (10) hold for m + 1. (5) implies (2,) [(r~ screw)m; ~-~ 
by the definition of bound,  t i r e s  and the PDL-theorem [oL*]A D [an]A. (3.) 
[(r~ D < r ~  T) follows from snTest.3 by modal logic 
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and the assumption that the Si's are mutually exclusive. (9) and (10) imply (4.) 
<(7-o>, screw)m> Sn-m and (4.) and (3.) imply (5.) <(7-0>; screw)m; 7-0>> T by 
standard PDL. (6.) [(7-0>; screw)m]tpres(7-o>, Sn) follows from (7) by Any.4. (10) 
and (6.) imply (7.) [(7-0>; screw)m; .rO>]Sn_m by the axiom for tpres. Now, (5.) and 
(7.) imply (8.) <(-r~ screw)m; 7"~ Sn-m by modal logic. From (2.), (8.) and 
modal logic it follows that (9.) < ('r~ screw)m; 7 -0> > (FULL A Sn-m). (6.) implies 
(10.) [(7-0>; screw)m; 7-o>]((FUL L A Sn_m) D ( < s c r e w > T  A [screw]Sn-m-1)) by 
Any.4. Finally, by standard PDL, (9.) and (10.) imply <(7-0>; screw)m+l > -[ and 
(7.) and (10.) imply [(7-0>; s crew)m+l]Sn_m_ 1, which was to prove. 

Putting m = n, (10) gives us [(~-~ screw)his0, thefirst conjunct we wanted to 
prove; and this together with (9) gives (11 .) < (7-0>; screw)n> "q0. snTest.3 implies 
(12.) [(7-~ screw)hi(s0 D < 7 -0= > 7-) by modal logic. Finally, (11.) and (12.) 
yield < (-r~ screw)n; 7-0=> T, the second conjunct we wanted to prove. [] 

Temporal plan theory 

Recently, Manna et al. (1993) stressed the importance of 'safety' properties which 
are required to be true at intermediate states of plan execution. They call them 
temporalproperties, and the proposed theory temporalplan theory. In our frame- 
work, plan constraints figure as dynamic logic counterparts to temporal properties 
(see also Rosenschein, 1981). As opposed to domain constraints, the range of plan 
constraints is restricted to the plan under consideration. Manna et al. (1993) orga- 
nize temporal properties into a hierarchy of several classes, whereby each class 
is associated with a characteristic formula scheme. Within NPDL +, all canonical 
schemes mentioned in Manna et al. (1993) are easily adapted. Recall our definition 
of a boundary condition, bound(a, A) de=f A A cpres(a, A). 

Let 7r = al ; . . .  ; aj; ak; . . .  ; an be a fixed plan such that for all 1 < i < n, ai is 
an elementary action term,/3 an arbitrary action term, and A, B term-free formulas. 

Safety 
Guarantee 

Obligation 
Response 
Persistence 

Reactivity 

bound(r,  A) 

A V VTEI(Tr)[7]A 
the disjunction of safety and guarantee 
bound(Tr, A D </3> B) 
[ a l ; .  �9 �9 ; a ~ ] b o u n d ( a k ; . . .  ; a~, A) 
the disjunction of response and persistence 

The safety property has already been used, in the TV installation example and in the 
manufacturing example. Guarantee asserts that A is initially true or holds after some 
initial string of R~-, and obligation is the disjunction of the safety and the guarantee 
property. The response property states that always during the performance of the 
plan, where A holds, some state satisfying/3 is attainable via action/3. Persistence 
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is of  importance when the agent aims to achieve several goals simultaneously. It 
may be the case that a certain subgoal A results from (successfully) executing the 
subplan a l ;  �9 �9 �9 ; aj,  and after the final state of this subplan (also called a protection 
point by Waldinger, 1977), A is preserved throughout the rest of the plan, say, 
a k ; . . .  ; an. The disjunction of the two previous properties is called reactivity (see 
also Pnueli, 1981). 

5.3. COMPARISON TO MONOTONIC SOLUTIONS 

As mentioned in the Introduction, a solution to the combinatorial frame problem 
has to avoid writing down frame axioms of format p D [alp for each fact-action 
pair p - a  (p E 790 a propositional variable, a E .Act an elementary action term). 
In the original formulation of McCarthy and Hayes (1969), for a domain with 
m propositional variables and n (elementary) action terms, m • n frame axioms 
are needed.* Recently, more efficient monotonic solutions have been proposed in 
the situation calculus. Schubert (1990) needs at most 2 x rn (explanation closure) 
axioms and Reiter's (1991) axiomatization of action and frame axioms requires 
m + n axioms in total (rn the number of fluents and n the number of actions). 

If we make no assumptions on the domain, the number of frame axioms needed 
in our approach is equally large as in the original formulation of McCarthy and 
Hayes (1969). In the worst case, we have to state rn x n assertions of the form 

[u]tpres(a, p), 

where p E 79o, a E ~4et. With help of non-deterministic choice we may reduce this 
number of rn axioms of the form 

[u]tpres (c,~A~ a ' P  ) " 

The above axioms will guarantee that every state of affairs specified in terms of 790 
is preserved over every sequence of actions from ~4el. 

However, this is rather unrealistic. In planning contexts, the termination (or 
success) of actions always depends on the outcomes of previous actions. Therefore, 
the ordering of elementary actions is essential for the success of the plan, while 
most permutations of these actions will lead into non-sensical or at least non- 
terminating action sequences. For instance, the TV installation problem is of that 
sort. As another example, take the problem of attaching a new wheel to a car. First, 
the car is lifted by means of a (lifting) jack. Second, the wheel is removed from 
the car. Third, a new wheel is attached to the car. Finally, the jack is removed. It 
is important to perform the individual actions in exactly that order. For instance, if 
the jack is removed after removing the wheel, the whole plan aborts. 

* McCarthy and Hayes (1969) formulate the frame problem in the language of situation calculus. 
In the terminology of situation calculus, propositional variables are called propositionalfluents. 
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In the context of  planning, therefore, preservation axioms are not required for 
arbitrary action sequences, including all permutations, but only for that sequence of 
actions which constitutes the plan (or in the worst case, for all subsequences of that 
sequence). As seen from the proof in the TV installation example, we formulate 
our preservation conditions by the combination of the 'any' and the cpres operator. 
Assume al  ; . .  �9 ; an is the sequence defining the entire plan.* In the best case, we 
have just one precondition to be preserved over the entire plan. This holds in the 
manufacturing example (condition 5, batteries are fully charged). In the worst case, 
we have a distinct precondition Pi necessary for the termination of each action ai  
and all of  its successor actions.** 

Then our preservation requirements are expressed by n axioms of  the form 

[g ]ep re s ( a i ; . . . ; an ,p i )  (1 < i < n). 

Typically, Pi will be the outcome of action ai-1; but conditions Pi may also be 
externally given (like GOIDE in our TV example). 

5.4. COMPARISON TO NON-MONOTONIC SOLUTIONS 

Non-monotonic logics circumvent the computational problem of stating a large 
number of frame axioms by introducing a 'blanket' frame axiom which covers all 
(atomic) facts and (elementary) actions. If one abstracts from the different syntac- 
tical appearance of the blanket frame axiom in non-monotonic logics, an informal 
rendering of the frame assertion might read (see Ginsberg, 1991): 

(FA) if a fact p is true in a situation s and the action a is not abnormal with respect 
to p when performed in s, then p is still true after termination of a. 

An action a is called abnormal with respect to p in s if a reverses the truth-value of 
p. According to the policy of causal minimization (of abnormalities), a fact changes 
its truth-value if and only i fa terminating action (performed by the agent) causes 
it to do so (see Lifschitz, 1987). The circumscriptive approach (a non-monotonic 
logic based on some sort of  minimization) became very popular, since it solves 
the flame problem correctly and is robust as regards various aspects of the frame 
problem (see the '  standard' solution of Baker, 1991). After all, the circumscriptive 
policy usually minimizes the extension of the 'abnormality' predicate which seems 
unnatural to us when multiagent domains are considered. 

Our approach does not depend on normality assumptions. On the contrary, 
we only force certain facts to persist, generally those which are preconditions to 
ensuing actions or effects of  actions while other facts may vary due to activity of 
other agents. 

* Note that in our framework the c~'s need not be elementary but may themselves be composed. 
** This is the simplest case; instead of pi we might also have a conjunction of propositional 

variables p] A ... A p~ .  
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Etherington et al. (1991) observe that non-monotonic reasoning mechanisms fix 
the truth-value of too many facts. Hence, they introduce a methodology of scoped 
non-monotonic reasoning which restricts the scope of reasoning to some pre- 
defined extension of a predicate. If applied to the blanket frame axiom (FA), their 
approach does not suffer from the overcommitment problem: instead of minimizing 
'globally', that is, minimize changes of all facts if not forced otherwise,scoped 
circumscription only minimizes abnormalities concerning certain properties p E 
Pscope. Of course, a scope adequate for a specific problem has to be determined in 
advance. In the context of non-monotonic solutions to the frame problem, Miller 
and Shanahan (1994) began to make up criteria how to actually determine scope. 
For instance, the criterion of causal independence states that actions can only 
affect facts (fiuents in their terminology) within a specific region. In our approach, 
a process similar to the identification of a scope consists in finding a set of facts 
which are to be preserved over sequences of actions. 

We may now substantiate the claim made in the Introduction: in our monotonic 
approach and (unscoped) non-monotonic logic (possibly based on the minimization 
strategy) there is an opposite trade-off between a satisfactory solution to the over- 
commitment problem and the problems of extended prediction and qualification. 
To solve the extended prediction problem, non-monotonic logic employs a blanket 
frame axiom which by default forces the domain to be maximally stable, that is, 
all facts remain unchanged over actions. Deviations from stability must be made 
explicit by stating abnormality assertions. In this way, instability is introduced to 
the domain. In scoped non-monotonic logic, in addition to instability, ignorance of 
the truth-value of certain facts can be introduced by scope restrictions. We approach 
the extended prediction problem from the opposite side. If we are to maintain facts 
over actions, we have to state frame axioms explicitly. As a consequence of the 
monotonic character of our approach, we remain ignorant on facts not (syntacti- 
cally) appearing in the frame axioms. We have the choice of formulating weaker 
or stronger frame axioms. Weak frame axioms allow for independent activity of 
other agents, that is, a minimum amount of facts is preserved. On the other hand, 
stronger frame axioms impose increasing stability on the domain. 

Observe that (chronological) preservation formulas are very compact repre- 
sentations of frame axioms. Frame axioms which 'transport', say an atomic fact 
over an elementary action are monotonic consequences of [t,,] (cpres(t~, A)) for- 
mat formulas (a a compound action term, A an arbitrary formula). Thereby, our 
approach avoids computational difficulties resulting from repeatedly applying a 
blanket frame axiom. For a different strategy to avoid the computational problem 
with complex facts and sequences of actions, see Ginsberg (1991). 
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