
Non-Commutative First-Order Sequent Calculus

Makoto Tatsuta

National Institute of Informatics
2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

tatsuta@nii.ac.jp

Abstract. This paper investigates a non-commutative first-order se-
quent calculus NCLK. For that, this paper extends a non-commutative
positive fragment to a full first-order sequent calculus LK− having
antecedent-grouping and no right exchange rule. This paper shows (1)
NCLK is equivalent to LJ, (2) NCLK with the exchange rule is equiv-
alent to LK, (3) LK− is equivalent to LJ, and (4) translations between
LK− and NCLK.

1 Introduction

Substructural logics, which are logical systems without some of the contraction
rule, the weakening rule, and the exchange rule, have been actively studied in
both mathematical logic and computer science. For example, linear logic, which
is a logical system without the contraction rule, is successful [3].

We will present a first-order sequent calculus NCLK without the exchange
rule, called Non-Commutative First-Order Sequent Calculus. The system has
the same language of the first-order classical sequent calculus LK, but has only
a restricted set of inference rules. We will show the system is equivalent to the
first-order intuitionistic sequent calculus LJ. We will also show the system NCLK
becomes equivalent to LK when the exchange rule is added to the system. This
shows the exchange rule gives a classical principle. We respect order of formulas
in a sequent in the system, but conjunction and disjunction are proved to be
commutative according to its inference rules.

Substructural logic without the exchange rule that has non-commutative
conjunction and disjunction has been studied, but substructural logic without
the exchange rule that has commutative conjunction and disjunction has not
been fully studied yet. Recently several interesting results have been discovered
for this kind of substructural logic. [1] showed a positive fragment of infinitary
Peano Arithmetic without the exchange rule has 1-backtracking game theoretic
semantics. [2] showed a positive fragment of infinitary Peano Arithmetic with-
out the exchange rule is equivalent to a positive fragment of infinitary Heyting
Arithmetic with the law of excluded middle for Σ0

1 -formulas.
This paper will first investigate an underlying logic for those papers. Those

papers discussed arithmetic, but we restrict our attention to only its underlying
logic, and show the logic itself has a surprising property, that is, the equivalence
to LJ. Those papers discussed only a positive system that does not have implica-
tion, but we extend a positive fragment to a full logic LK− with implication. The

system LK− has a sequent having antecedent-grouping and does not have the
right exchange rule. Formulas in the antecedent are grouped and structural rules
can be used only inside a group. This system is proved to be equivalent to LJ.
A key of the equivalence proof is analyzing the minimum length of succedents
of sequents in a given proof.

Secondly, we will give the system NCLK, which is obtained from LK− by
coding grouping information by the length of a sequence of formulas. We will
give translations between NCLK and LK− and show they preserve provability.
Combining the equivalence between LK− and LJ, these translations will prove
the equivalence between NCLK and LJ. On the other hand, when we add the
exchange rule to NCLK, the coding information will be lost and it is proved to
become equivalent to LK.

Technical novelties of this paper are (1) the extension of the non-commutative
positive fragment [1, 2] to the full non-commutative logic LK− with implication,
(2) the equivalence between LK− and LJ, (3) the definition of NCLK by coding
grouping information by the length of a sequence of formulas, and (4) translations
between LK− and NCLK.

[2] showed the fragment of arithmetic without the exchange rule is equivalent
to the fragment of intuitionistic arithmetic with the law EM1 of excluded middle
for Σ0

1 formulas. On the other hand, our system LK− is equivalent to LJ. We can
explain reasons for the difference for EM1 in the following way. The first reason
is that the minimum length of the succedents in the sequents in the proof is a key
for proving the equivalence. When a proof is given in LK−, we can immediately
find the minimum length. On the other hand, when a proof is given in the system
in [1, 2], since it is an infinitary system, we cannot find the minimum, and instead
we can only have flag formulas that are some Π0

1 -formulas. For case analysis by
flag formulas, [2] needed EM1. The second reason is that we can directly show
LK− does not derive EM1, and on the other hand we can drive EM1 in the
system in [1, 2] by using infinitary logic and true atomic formulas.

[4, 5] investigated the sequent calculus obtained from LK by restricting the
implication right rule to only intuitionistic sequents and showed the system is
equivalent to LJ. Our system NCLK will give another way of restriction to LK
so that the resulting system becomes equivalent to LJ.

A potential application of these systems LK− and NCLK will be program
extraction, since it is equivalent to first-order intuitionistic logic.

Section 2 defines and discusses LK−. We give definitions of LK and LJ in
Section 3. Section 4 proves the implication from LK− to LJ and Section 5 proves
the other implication from LJ to LK−. We define and discuss NCLK in Section
6. Section 7 gives the translations between NCLK and LK−, and shows the
equivalence between NCLK and LJ.

2 The System LK`

Definition 2.1 (language) The language is a first-order language generated
from the following symbols. We have variables x, y, z, We have constants and
function symbols. Terms are constructed from variables, constants, and function

symbols, and denoted by s, t, We have predicate symbols including 0-ary
predicate symbols > and ⊥, which mean the truth and the falsity respectively.
Atomic formulas are constructed from predicate symbols and terms, and denoted
by a, b, Formulas are defined by

A,B, C, D, . . . ::= a|A ∧B|A ∨B|A→B|∀xA|∃xA.

We will write ¬A for A→⊥. A[t/x] is the formula obtained from A by replacing
x by t.

A sequent is of the form Γ ` A1, . . . , An where Γ is a sequence of formulas
and n occurrences of the symbol −.

In the sequent Γ0,−, Γ1,−, Γ2, . . . ,−, Γn ` A1, . . . , An where Γi is a sequence
of formulas and does not contain the symbol −, the group Γ0 means the initial
group, and the i-th group Γi corresponds to Ai.

Γ, ∆, Π, Σ, . . . denote a sequence of both formulas and symbols −. We will
write −n for −, . . . ,− (n times). |Γ | denotes the number of the formulas in Γ .
]−Γ denotes the number of the − symbols in Γ .

We respect order of formulas in a sequence and a sequent.
We have the following inference rules:

Γ1, A, Γ2 ` ∆,A
(Ax)

Γ ` ∆,> (Ax>)
Γ1,⊥, Γ2 ` ∆

(Ax⊥)

Γ,− ` ∆,A ∧B,A Γ,− ` ∆,A ∧B,B

Γ ` ∆,A ∧B
(∧R)

Γ1, A ∧B,Γ2, A ` ∆

Γ1, A ∧B,Γ2 ` ∆
(∧L1)

Γ1, A ∧B,Γ2, B ` ∆

Γ1, A ∧B,Γ2 ` ∆
(∧L2)

Γ,− ` ∆,A ∨B,A

Γ ` ∆,A ∨B
(∨R1)

Γ,− ` ∆,A ∨B,B

Γ ` ∆,A ∨B
(∨R2)

Γ1, A ∨B,Γ2, A ` ∆ Γ1, A ∨B,Γ2, B ` ∆

Γ1, A ∨B,Γ2 ` ∆
(∨L)

Γ, A ` ∆,A→B

Γ ` ∆,A→B
(→R1)

Γ,− ` ∆,A→B,B

Γ ` ∆,A→B
(→R2)

Γ1, A→B,Γ2,− ` ∆,A Γ1, A→B,Γ2, B ` ∆

Γ1, A→B,Γ2 ` ∆
(→L)

Γ,− ` ∆,∀xA,A

Γ ` ∆,∀xA
(∀R)

Γ1,∀xA, Γ2, A[t/x] ` ∆

Γ1,∀xA, Γ2 ` ∆
(∀L)

Γ,− ` ∆,∃xA,A[t/x]
Γ ` ∆,∃xA

(∃R)
Γ1,∃xA, Γ2, A ` ∆

Γ1,∃xA, Γ2 ` ∆
(∃L)

Γ ` ∆
Γ,− ` ∆,A

(weak R) Γ ` ∆
Γ, A ` ∆

(weak L)

where the conclusion does not contain free occurrences of x in the rules (∀R)
and (∃L).

Intuitive meaning of provable sequents is given as follows: If
Γ0,−, Γ1, . . . ,−, Γn ` A1, . . . , An is provable, then (1) Γ0 ` is true, or (2)
Γ0,−, Γ1, . . . ,−, Γi ` Ai is true for some i. Each inference rule is sound by this
interpretation. Theorem 4.1 will provide more information.

We explain this system with some examples.

Example 2.2 The first example shows its conjunction is commutative.

−, A ∧B,−, B ` B ∧A,B
(Ax)

−, A ∧B,− ` B ∧A,B
(∧L2)

−, A ∧B,−, A ` B ∧A,A
(Ax)

−, A ∧B,− ` B ∧A,A
(∧L1)

−, A ∧B ` B ∧A
(∧R)

Example 2.3 The next example shows how this system respects the order of
formulas. We have three provable sequents

−, A,−, B ` A,⊥,
−, A,−, B ` ⊥, A,
−, A,−, B ` ⊥, B.

On the other hand the sequent

−, A,−, B ` B,⊥
is not provable. The first sequent is provable since the initial and the first groups
give the assumption A, which proves the first formula A. The second sequent is
provable since the initial, the first, and the second groups give the assumptions
A,B, which prove the second formula A. The third sequent is provable similarly
to the second sequent, since the initial, the first, and the second groups give the
assumptions A,B, which prove the second formula B. Formally the first sequent
is proved by

−, A ` A
(Ax)

−, A,− ` A,⊥ (weak R)

−, A,−, B ` A,⊥ (weak L)

and the second and the third sequents are proved by (Ax).
On the other hand, ths fourth sequent is not provable, since we have neither of

the following cases: (1) the initial group is empty, which proves the contradiction,
nor (2) the initial and the first groups give the assumption A, which proves the
first formula B, nor (3) the initial, the first, and the second groups give the
assumptions A,B, which prove the second formula ⊥.

Example 2.4 The third example gives an example with implication.

.... π1

−,¬(A ∨B),− ` ¬A ∧ ¬B,¬A

.... π2

−,¬(A ∨B),− ` ¬A ∧ ¬B,¬B

−,¬(A ∨B) ` ¬A ∧ ¬B
(∧R)

where the proof π1 is

−,¬(A ∨ B),−, A,−,− ` ¬A ∧ ¬B,¬A, A ∨ B, A
(Ax)

−,¬(A ∨ B),−, A,− ` ¬A ∧ ¬B,¬A, A ∨ B
(∨R1)

−,¬(A ∨ B),−, A,⊥ ` ¬A ∧ ¬B,¬A
(Ax⊥)

−,¬(A ∨ B),−, A ` ¬A ∧ ¬B,¬A
(→L)

−,¬(A ∨ B),− ` ¬A ∧ ¬B,¬A
(→R1)

and the proof π2 is similar to π1.

We will show some structural rules are admissible in this system. (Γ)0 is
defined to be Γ if Γ does not contain −. (Γ,−,Π)0 is defined to be Γ if Γ does
not contain −.

Proposition 2.5 The following are admissible.

Γ1, Γ2 ` ∆

Γ1, A, Γ2 ` ∆
(weak L2)

Γ1, Γ2 ` ∆1,∆2

Γ1,−, Γ2 ` ∆1, A, ∆2
(weak R2)

(]−Γ2 = |∆2|, (Γ2)0 = φ)

Γ ` ∆
Π, Γ ` Σ, ∆

(weak R3)
(]−Π = |Σ|)

Γ1,−, A, Γ2 ` ∆

Γ1, A,−, Γ2 ` ∆
(move)

Γ1, A, Γ2, A, Γ3 ` ∆

Γ1, A, Γ2, Γ3 ` ∆
(cont L)

Γ1, A, B, Γ2 ` ∆

Γ1, B, A, Γ2 ` ∆
(exch L)

These are proved by induction on proofs. For example, in order to prove
(weak L2) is admissible, we assume a proof π of Γ1, Γ2 ` ∆ and construct a
proof of Γ1, A, Γ2 ` ∆. The idea is just adding A to the antecedent in each
sequent in π. Formally we consider cases according to the last rule used in π.

Let the rule be (Ax) and its conclusion be Γ ′1, B, Γ ′2 ` ∆′, B. We have to
show Γ ′′1 , B, Γ ′′2 ` ∆′, B where Γ ′′1 , Γ ′′2 is obtained from Γ ′1, Γ

′
2 by adding A.

Γ ′′1 , B, Γ ′′2 ` ∆′, B is provable by (Ax).
Let the rule be (∨R1) that derives Γ1, Γ2 ` ∆′, B ∨ C from Γ1, Γ2,− `

∆′, B ∨ C, B. We have to show Γ1, A, Γ2 ` ∆′, B ∨ C. By induction hypothesis
we have Γ1, A, Γ2,− ` ∆′, B ∨ C, B. By (∨R1), we have Γ1, A, Γ2 ` ∆′, B ∨ C.
Other cases are proved similarly.

3 First-Order Sequent Calculi

This section gives definitions of LK and LJ in a familiar way.
We define the first-order classical sequent calculus LK. The language is

defined to be the same as that of LK− except its sequents are of the form
A1, . . . , An ` B1, . . . , Bm (n,m ≥ 0) for formulas A1, . . . , An, B1, . . . , Bm.
Γ, ∆, Π, Σ, . . . denote a sequence of formulas.

We have the following inference rules.

A ` A
(Ax) ` > (Ax>) ⊥ ` (Ax⊥)

Γ ` ∆,A Γ ` ∆,B

Γ ` ∆,A ∧B
(∧R)

Γ, A ` ∆

Γ, A ∧B ` ∆
(∧L1)

Γ, B ` ∆

Γ, A ∧B ` ∆
(∧L2)

Γ ` ∆,A

Γ ` ∆,A ∨B
(∨R1)

Γ ` ∆,B

Γ ` ∆,A ∨B
(∨R2)

Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨B ` ∆
(∨L)

Γ, A ` ∆,B

Γ ` ∆,A→B
(→R)

Γ ` ∆,A Γ, B ` Σ

Γ, A→B ` ∆,Σ
(→L)

Γ ` ∆,A

Γ ` ∆, ∀xA
(∀R)

Γ, A[t/x] ` ∆

Γ, ∀xA ` ∆
(∀L)

Γ ` ∆,A[t/x]
Γ ` ∆,∃xA

(∃R)
Γ, A ` ∆

Γ, ∃xA ` ∆
(∃L)

Γ ` ∆
Γ ` ∆,A

(weak R) Γ ` ∆
Γ, A ` ∆

(weak L)

Γ ` ∆,A, A

Γ ` ∆,A
(cont R)

Γ, A, A ` ∆

Γ, A ` ∆
(cont L)

Γ ` ∆1, B, A, ∆2

Γ ` ∆1, A, B, ∆2
(exch R)

Γ1, B, A, Γ2 ` ∆

Γ1, A, B, Γ2 ` ∆
(exch L)

where the conclusion does not contain free occurrences of x in the rules (∀R)
and (∃L).

We define the first-order intuitionistic sequent calculus LJ. The language
is the same as that of LK except that its sequents are intuitionistic sequents
A1, . . . , An ` B or A1, . . . , An `. The inference rules are the same as those of
LK except that their sequents are restricted to intuitionistic sequents.

4 Implication from LK` to LJ

This section proves the direction from LK− to LJ.
For a given proof π, we define ||π|| as the minimum length of the succedents

of the sequents in π. We define (Γ0,−, Γ1,−, Γ2, . . . ,−, Γn)+ as Γ0, Γ1, Γ2, . . . , Γn

if Γ0, . . . , Γn do not contain any − symbol.

Theorem 4.1 If we have a proof of the sequent Γ0,−, Γ1,−, Γ2, . . . ,−, Γn `
A1, A2, . . . , An in LK− where n ≥ 0 and Γ0, . . . , Γn do not contain any − symbol,
and i is the minimum length of the succedents of the sequents in the proof, then
we have the following:

(1) i = 0 and Γ0 ` is provable in LJ, or
(2) i > 0 and Γ0, . . . , Γi ` Ai is provable in LJ.

The idea is analyzing the uppermost sequent Γ ` ∆,A with its succedent
of length i in the proof. We sketch the proof. Suppose the sequent Γ ` ∆,A is
such a sequent. Since left rules and (→R1) do not change the length of some
succedent, right logical rules except (→R1) decrease the length of succedents by
1, and (weak R) increases the length of the succedent by 1, the inference rule
deriving Γ ` ∆,A must be axioms or right logical rules except (→R1). Then we
can show Γ ` A is provable in LJ. If it is an axiom, Γ ` A is provable in LJ by
the corresponding axiom. If it is a right logical rule, we use induction hypothesis
for its subproofs. For example, if it is

A,B,−,− ` A ∧B,A
(Ax)

A,B,−,− ` A ∧B,B
(Ax)

A,B,− ` A ∧B
(∧R)

and i = 1, then the minimum length of succedents in each subproof is 2. By
induction hypothesis for each subproof, we have A,B ` A and A,B ` B in LJ,
so we have A,B ` A ∧B in LJ by (∧R).

Since right logical rules except (→R1) decrease the length of succedents by
1, possible inference rules under Γ ` ∆,A are left rules, (→R1), or (weak R).
Those inference rules preserve provability of the i-th formula A from the first
i + 1 groups of its antecedent in LJ. Hence, in the conclusion of the given proof,
the sequent of the i-th formula A from the first i + 1 groups of its antecedent is
provable in LJ.

Theorem 4.2 If LK− proves Γ0,−, Γ1 ` A, then LJ proves Γ0, Γ1 ` A.

Proof. Let π be the proof and i be ||π||. Then i is 0 or 1. By Theorem 4.1
with n = 1, we have (1) i = 0 and Γ0 ` is provable in LJ, or (2) i = 1 and
Γ0, Γ1 ` A is provable in LJ. If i = 1, we have the claim. If i = 0, by weakening
to Γ0 `, we have the claim. 2

5 Implication from LJ to LK`

This section proves the implication from LJ to LK−.

Proposition 5.1 If Γ ` ∆ is provable in LJ where |∆| = 0, 1, then −|∆|, Γ ` ∆
is provable in LK−.

The proof idea is simulating each inference rule of LJ by inference rules of
LK−. One difference is that a logical rule in LK− has a redundant principal
formula. For example, the right conjunction rule in LK− is

Γ,− ` ∆,A ∧B,A Γ,− ` ∆,A ∧B,B

Γ ` ∆,A ∧B
(∧R)

and on the other hand the right conjunction rule in LJ is

Γ ` A Γ ` B
Γ ` A ∧B

(∧R)

This difference is covered by putting A∧B by (weak R2) in Proposition 2.5. The
other difference is the existence of −, which is handled by moving − by (move)
in Proposition 2.5.

Theorem 5.2 (Equivalence between LK− and LJ) −, Γ ` A is provable
in LK− if and only if Γ ` A is provable in LJ.

Proof. The implication from the left-hand side to the right-hand side is proved
by Theorem 4.2. The implication from the right-hand side to the left-hand side
is proved by Proposition 5.1. 2

6 Non-Commutative Sequent Calculus NCLK

This section discusses NCLK and shows it becomes equivalent to LK when we
add the exchange rule to it.

We define Non-Commutative First-Order Sequent Calculus NCLK.

Definition 6.1 (NCLK) Its language is the same as that of LK. Note that its
sequents are of the form A1, . . . , An ` B1, . . . , Bm (n,m ≥ 0) where Ai, Bi are
formulas. Γ, ∆, Π, Σ . . . denote a sequence of formulas.

The inference rules are given as follows.

Γ1, A, Γ2 ` ∆,A
(Ax)

Γ ` ∆,> (Ax>)
Γ1,⊥, Γ2 ` ∆

(Ax⊥)

Γ,> ` ∆,A ∧B,A Γ,> ` ∆,A ∧B,B

Γ ` ∆,A ∧B
(∧R)

Γ1, A ∧B,Γ2, A ` ∆,D, D

Γ1, A ∧B,Γ2 ` ∆,D
(∧L1)

Γ1, A ∧B,Γ2, B ` ∆,D, D

Γ1, A ∧B,Γ2 ` ∆,D
(∧L2)

Γ,> ` ∆,A ∨B,A

Γ ` ∆,A ∨B
(∨R1)

Γ,> ` ∆,A ∨B,B

Γ ` ∆,A ∨B
(∨R2)

Γ1, A ∨B,Γ2, A ` ∆,D, D Γ1, A ∨B,Γ2, B ` ∆,D, D

Γ1, A ∨B,Γ2 ` ∆,D
(∨L)

Γ, A ` ∆,A→B,A→B

Γ ` ∆,A→B
(→R1)

Γ,> ` ∆,A→B,B

Γ ` ∆,A→B
(→R2)

Γ1, A→B,Γ2,> ` ∆,D, A Γ1, A→B,Γ2, B ` ∆,D, D

Γ1, A→B,Γ2 ` ∆,D
(→L)

Γ,> ` ∆,∀xA,A

Γ ` ∆,∀xA
(∀R)

Γ1,∀xA, Γ2, A[t/x] ` ∆,D, D

Γ1,∀xA, Γ2 ` ∆,D
(∀L)

Γ,> ` ∆,∃xA,A[t/x]
Γ ` ∆,∃xA

(∃R)
Γ1,∃xA, Γ2, A ` ∆,D, D

Γ1,∃xA, Γ2 ` ∆,D
(∃L)

Γ ` ∆
Γ, A ` ∆,B

(sweak)
>, Γ ` ∆

Γ ` ∆
(>E)

Γ ` ⊥,∆

Γ ` ∆
(⊥E)

where the conclusion does not contain free occurrences of x in the rules (∀R)
and (∃L).

(sweak) means symmetric weakening.
Intuitive meaning of provable sequents is given as follows: If Π, A1, . . . , An `

B1, . . . , Bn is provable, then (1) Π ` is true, or (2) Π, A1, . . . , Ai ` Bi is true
for some i. If A1, . . . , An ` C1, . . . , Cm, B1, . . . , Bn is provable, then (1) ` Ci is
true for some i, or (2) A1, . . . , Ai ` Bi is true for some i.

This system is obtained from LK− by coding grouping information by the
length of a sequence of formulas. We explain it by example.

Example 6.2 The sequent

A1,−, A2, A3,−, A4,−, A5, A6 ` B1, B2, B3

in LK− is coded by the sequent

A1,>, A2, A3,>, A4,>, A5, A6 ` B1, B1, B1, B2, B2, B3, B3, B3

in NCLK. The atomic formula > is used for separating groups. The group
>, A5, A6 corresponds to B3, B3, B3. The group >, A4 corresponds to B2, B2.
The group >, A2, A3 corresponds to B1, B1, B1. We can decode this information
by counting formulas from the right to the left on both sides. This translation
is formally defined in Definition 7.5.

We explain this system by the same examples as those in Section 2.

Example 6.3 The first example shows its conjunction is commutative.

A ∧B,>, B ` B ∧A,B, B
(Ax)

A ∧B,> ` B ∧A,B
(∧L2)

A ∧B,>, A ` B ∧A,A, A
(Ax)

A ∧B,> ` B ∧A,A
(∧L1)

A ∧B ` B ∧A
(∧R)

Example 6.4 The next example shows how this system respects the order of
formulas. We have three provable sequents

A,B ` A,⊥,
A,B ` ⊥, A,
A,B ` ⊥, B.

On the other hand the sequent

A,B ` B,⊥
is not provable. The first sequent is provable since A ` A is true. The second
sequent is provable since A,B ` A is true. The third sequent is provable since
A,B ` B is true. Formally the first sequent is proved by

A ` A
(Ax)

A,B ` A,⊥ (sweak)

and the second and the third sequents are proved by (Ax). On the other hand,
the fourth sequent is not provable, since A ` B is not true and A,B ` ⊥ is not
true.

Example 6.5 The third example gives an example with implication.
.... π1

¬(A ∨B),> ` ¬A ∧ ¬B,¬A

.... π2

¬(A ∨B),> ` ¬A ∧ ¬B,¬B

¬(A ∨B) ` ¬A ∧ ¬B
(∧R)

where the proof π1 is

¬(A ∨ B),>, A,>,> ` ¬A ∧ ¬B,¬A,¬A, A ∨ B, A
(Ax)

¬(A ∨ B),>, A,> ` ¬A ∧ ¬B,¬A,¬A, A ∨ B
(∨R1)

¬(A ∨ B),>, A,⊥ ` ¬A ∧ ¬B,¬A,¬A,¬A
(Ax⊥)

¬(A ∨ B),>, A ` ¬A ∧ ¬B,¬A,¬A
(→L)

¬(A ∨ B),> ` ¬A ∧ ¬B,¬A
(→R1)

and the proof π2 is similar to π1.

Remark. (1) Every rule except (>E) and (⊥E) preserves |Γ | − |∆|.
(2) (⊥E) is necessary for making a binary left logical rule for the empty

succedent admissible. It is used in the proof of Theorem 7.6. For example, the
following is admissible.

Γ1, A ∨B,Γ2, A ` Γ1, A ∨B,Γ2, B `
Γ1, A ∨B,Γ2 ` (∨L)

(3) (>E) is necessary since ` > ∨ ⊥,⊥ would not be provable otherwise,
though it is indeed provable by

> ` > ∨ ⊥,> (Ax >)

` > ∨ ⊥ (∨R1)

> ` > ∨ ⊥,⊥ (sweak)

` > ∨ ⊥,⊥ (>E)

Proposition 6.6 (1) The following are admissible.

Γ1, Γ2 ` ∆1,∆2

Γ1, A, Γ2 ` ∆1, B, ∆2
(sweak2)

(|Γ2| = |∆2|)
Γ1, A, A, Γ2 ` ∆1, B, B, ∆2

Γ1, A, Γ2 ` ∆1, B, ∆2
(scont)

(|Γ2| = |∆2|)
Γ1, Γ2 ` ∆

Γ1, A, Γ2 ` ∆
(weak L) Γ ` ∆

Γ ` ⊥,∆
(⊥I)

Γ1,>, Γ2 ` ∆

Γ1, A, Γ2 ` ∆
(replace L)

(2) The following is admissible.

Γ ` ∆1, A, A, ∆2

Γ ` ∆1, A, ∆2
(cont R)

(3) The following is admissible.

Γ1,>, A, Γ2 ` ∆1, B, B, ∆2

Γ1, A, Γ2 ` ∆1, B, ∆2
(>E2)

(|Γ2| = |∆2|)

The claims in (1) are proved by induction on the proof. The claim (2) is
proved by induction on the proof by using (weak L) in (1). The claim (3) is
proved by (scont) and (replace L) in (1).

We define the system NCLK+EX as NCLK with (exch L) and (exch R).

Γ ` ∆1, A, B, ∆2

Γ ` ∆1, B, A, ∆2
(exch R)

Γ1, A, B, Γ2 ` ∆

Γ1, B, A, Γ2 ` ∆
(exch L)

Proposition 6.7 The following are admissible in NCLK+EX.
Γ, A, A ` ∆

Γ, A ` ∆
(cont L) Γ ` ∆

Γ ` ∆,A
(weak R)

Proof. (cont L) is proved by

Γ, A, A ` ∆

Γ, A, A ` ⊥,⊥,∆
(⊥I)twice

Γ, A, A ` ∆,⊥,⊥ (exch R)several times

Γ, A ` ∆,⊥ (scont)

Γ, A ` ⊥,∆
(exch R)several times

Γ, A ` ∆
(⊥E)

(weak R) is proved by

Γ ` ∆
Γ,> ` ∆,A

(sweak)

>, Γ ` ∆,A
(exch L)several times

Γ ` ∆,A
(>E)

2

We will write Γ `T ∆ to denote that the sequent Γ ` ∆ is provable in the
system T .

Theorem 6.8 (Equivalence between NCLK+EX and LK)
Γ `NCLK+EX ∆ if and only if Γ `LK ∆.

Proof. From the right-hand side to the left-hand side. The claim is proved
by induction on the proof.

If the last rule is a logical rule, then add some formulas by weakening in
Propositions 6.6 and 6.7 and use the corresponding logical rule. We give some
interesting cases.

Case (→R). We suppose

Γ, A ` ∆,B

Γ ` ∆,A→B
(→R)

Then we have
.... IH

Γ, A ` ∆,B

Γ, A,> ` ∆,A→B,A→B,B
(weak L)(weak R)(exch R)

Γ, A ` ∆,A→B,A→B
(→R2)

Γ ` ∆,A→B
(→R1)

Case (→L). We suppose

Γ ` ∆,A Γ, B ` Σ

Γ, A→B ` ∆,Σ
(→L)

Then we have
.... IH

Γ ` ∆,A

Γ, A→B,> ` ∆,Σ,⊥, A
(W)

.... IH

Γ, B ` Σ

Γ, A→B,B ` ∆,Σ,⊥,⊥ (W)

Γ, A→B ` ∆,Σ,⊥ (→L)

Γ, A→B ` ⊥,∆, Σ
(exch R)several times

Γ, A→B ` ∆,Σ
(⊥E)

where (W) denotes several steps of (weak L), (weak R), and (exch R).
If the last rule is a structural rule, then it is covered by Propositions 6.6 and

6.7
From the left-hand side to the right-hand side. It is proved by induction on

a proof since every rule is sound in LK. 2

7 Translations between LK` and NCLK

This section shows the equivalence between LK− and NCLK by giving transla-
tions which preserve provability.

First we prepare several admissible rules in LK− for the equivalence proof.

Proposition 7.1 The following are admissible in LK−.

Γ1,>, Γ2 ` ∆

Γ1, Γ2 ` ∆
(>E)

Γ1,−, Γ2 ` ∆1, A, A, ∆2

Γ1, Γ2 ` ∆1, A, ∆2
(cont R)

(]−Γ2 = |∆2|)
Γ1,−, Γ2 ` ∆1,⊥,∆2

Γ1, Γ2 ` ∆1,∆2
(⊥E)

(]−Γ2 = |∆2|)

They are proved by induction on the proof.
We give a translation from NCLK to LK−. To translate Γ ` ∆, we insert

the same number of − symbols as |∆| into Γ in front of each formula from the
rightmost formula of Γ . For example, the sequent A1, A2, A3, A4 ` B1, B2 in
NCLK is translated into the sequent A1, A2,−, A3,−, A4 ` B1, B2 in LK−.

Definition 7.2 (Translation from NCLK to LK−) Γ ` ∆ is
mapped to Γ−|∆| ` ∆, where (Γ0, A1, A2, . . . , An)−n is defined as
Γ0,−, A1,−, A2, . . . ,−, An and (A1, A2, . . . , Am)−n (m < n) is defined
as −n−m,−, A1,−, A2, . . . ,−, Am.

Theorem 7.3 Γ `NCLK ∆ implies Γ−|∆| `LK− ∆.

Proof. By induction on the proof. Cases are considered according to the last
rule.

If the last rule is (Ax), (Ax>), and (Ax⊥), it is proved by (Ax), (Ax>), and
(Ax⊥) respectively.

If the last rule is a right logical rule except (→R1), we first use (>E) in
Proposition 7.1, and then use the corresponding logical rule.

If the last rule is a left logical rule except (→L) or (→R1), we first use
(cont R) in Proposition 7.1, and then use the corresponding logical rule.

If the last rule is (→L), we suppose

Γ1, A→B,Γ2,> ` ∆,D, A Γ1, A→B,Γ2, B ` ∆,D, D

Γ1, A→B,Γ2 ` ∆,D
(→L)

Let n be |∆,D|. We have

.... IH

(Γ1, A→B, Γ2)
−n,−,> ` ∆, D, A

(Γ1, A→B, Γ2)
−n,− ` ∆, D, A

(>E)

.... IH

(Γ1, A→B, Γ2)
−n,−, B ` ∆, D, D

(Γ1, A→B, Γ2)
−n, B ` ∆, D

(cont R)

(Γ1, A→B, Γ2)
−n ` ∆, D

(→L)

If the last rule is (sweak), we have

Γ ` ∆
Γ,− ` ∆,B

(weak R)

Γ,−, A ` ∆,B
(weak L)

If the last rule is (>E) and (⊥E), the claim is proved by (>E) and (⊥E) in
Proposition 7.1 respectively. 2

Example 7.4 The NCLK-proof of A∧B ` B ∧A in Example 6.3 is translated
into the LK−-proof

−, A ∧ B,−,>,−, B ` B ∧ A, B, B
(Ax)

−, A ∧ B,−,>, B ` B ∧ A, B
(cont R)

−, A ∧ B,−,> ` B ∧ A, B
(∧L2)

−, A ∧ B,− ` B ∧ A, B
(>E)

−, A ∧ B,−,>,−, A ` B ∧ A, A, A
(Ax)

−, A ∧ B,−,>, A ` B ∧ A, A
(cont R)

−, A ∧ B,−,> ` B ∧ A, A
(∧L1)

−, A ∧ B,− ` B ∧ A, A
(>E)

−, A ∧ B ` B ∧ A
(∧R)

Next, we define a translation from LK− to NCLK. To translate Γ ` ∆, we
replace − by > in Γ , and the succedent is produced from ∆ by multiplying the
i-th formula by ni + 1 when the i-th group in Γ has ni formulas. An example is
given in Example 6.2. An denotes A, . . . , A (n times).

Definition 7.5 (Translation from LK− to NCLK) Γ ` ∆ is mapped to
Γ> ` ∆Γ , where Γ> is defined as Γ0,>, Γ1,>, Γ2, . . . ,>, Γn and (A1, . . . , An)Γ

is defined as A
|Γ1|+1
1 , A

|Γ2|+1
2 , . . . , A

|Γn|+1
n if Γ is Γ0,−, Γ1,−, Γ2, . . . ,−, Γn and

Γi does not contain −.

Theorem 7.6 Γ `LK− ∆ implies Γ> `NCLK ∆Γ .

Proof. By induction on the proof.
Case (→L). We suppose

Γ1, A→B,Γ2,− ` ∆,A Γ1, A→B,Γ2, B ` ∆

Γ1, A→B,Γ2 ` ∆
(→L)

Case 1. ∆ is not empty. Let D be the last formula of ∆ and Γ be Γ1, A→B,Γ2.
We use (→L) with induction hypothesis in the following way.

.... IH

Γ>1 , A→B,Γ>2 ,> ` ∆Γ , A

.... IH

Γ>1 , A→B,Γ>2 , B ` ∆Γ , D

Γ>1 , A→B,Γ>2 ` ∆Γ
(→L)

Case 2. ∆ is empty.
.... IH

Γ1, A→B,Γ2,> ` A

Γ1, A→B,Γ2,> ` ⊥, A
(⊥I)

.... IH

Γ1, A→B,Γ2, B `
Γ1, A→B,Γ2, B ` ⊥,⊥ (⊥I)twice

Γ1, A→B,Γ2 ` ⊥ (→L)

Γ1, A→B,Γ2 ` (⊥E)

Case (∧L1) and ∆ = φ.

Γ1, A ∧B,Γ2, A `
Γ1, A ∧B,Γ2, A ` ⊥,⊥ (⊥I)twice

Γ1, A ∧B,Γ2 ` ⊥ (∧L1)

Γ1, A ∧B,Γ2 ` (⊥E)

Cases of other left logical rules with the empty succedent are similarly proved.
Case (weak R).

Γ> ` ∆Γ

Γ>,> ` ∆Γ , A
(sweak)

Case (weak L). If ∆ is not empty, this is proved by (sweak). If ∆ is empty,
this is proved by (weak L) in Proposition 6.6. 2

Example 7.7 The LK−-proof of −, A∧B ` B∧A in Example 2.2 is translated
into the NCLK-proof

>, A ∧ B,>, B ` B ∧ A, B ∧ A, B, B
(Ax)

>, A ∧ B,> ` B ∧ A, B ∧ A, B
(∧L2)

>, A ∧ B,>, A ` B ∧ A, B ∧ A, A, A
(Ax)

>, A ∧ B,> ` B ∧ A, B ∧ A, A
(∧L1)

>, A ∧ B ` B ∧ A, B ∧ A
(∧R)

Actually these two translations are the inverses of each other with respect
to provability. Let the sequent Γ ` ∆ in NCLK be translated into the sequent
(Γ ` ∆)1 in LK− and the sequent Π ` Σ in LK− be translated into the sequent
(Π ` Σ)2 in NCLK. By (>E2) in Proposition 6.6 (3) and (>E), we can show
that if ((Γ ` ∆)1)2 is provable in NCLK, then Γ ` ∆ is provable in NCLK. By
(cont R) and (>E) in Proposition 7.1, we can also show that if ((Π ` Σ)2)1 is
provable in LK−, then Π ` Σ is provable in LK−.

Finally we show the equivalence.

Theorem 7.8 (Equivalence between NCLK and LJ) Γ `NCLK A if and
only if Γ `LJ A.

Proof. From the left-hand side to the right-hand side.
By Theorem 7.3, Γ−1 `LK− A. By Theorem 4.2, Γ `LJ A.
From the right-hand side to the left-hand side.
By Proposition 5.1, −, Γ `LK− A. By Theorem 7.6, >, Γ `NCLK A|Γ |+1.

By (>E) and (cont R) in Proposition 6.6 (2), we have Γ `NCLK A. 2

8 Concluding Remarks

We gave the non-commutative first-order sequent calculus NCLK and showed
that it is equivalent to the first-order intuitionistic sequent calculus LJ. We also
showed that it becomes equivalent to the first-order classical sequent calculus LK
when we add the exchange rule to the system. In order to do that, we extended
the non-commutative positive fragment to the system LK− having antecedent-
grouping and no right exchange rule. We showed the equivalence between LK−

and LJ. We also gave translations between LK− and NCLK.
The cut elimination theorem holds in LK−. It is proved by extending The-

orem 4.1 and using the cut elimination theorem for LJ. The cut elimination
theorem is also proved to hold for NCLK by using that for LK− and the trans-
lations.

The systems NCLK and LK− give a starting point for research on logical
systems based on non-commutative sequents. They will clarify those systems
and enable us to extend them.

Acknowledgments

We would like to thank Prof. Stefano Berardi and Prof. Kazushige Terui for
discussions and comments. We would also like to thank the anonymous referees
for valuable comments.

References

1. S. Berardi and Y. Yamagata, A sequent calculus for Limit Computable Mathematics,
Annals of Pure and Applied Logic 153 (1-3) (2008) 111–126.

2. S. Berardi and M. Tatsuta, Positive Arithmetic without Exchange is a Subclassical
Logic, In: Proceedings of the Fifth Asian Symposium on Programming Languages
and Systems (APLAS 2007), Lecture Notes in Computer Science 4807 (2007) 271–
285.

3. J.Y. Girard, Linear logic, Theoretical Computer Science 50 (1) (1987) 1–102.

4. S. Maehara, Eine Darstellung der intuitionistischen Logik in der Klassischen, Nagoya
Mathematical Journal 7 (1954) 45–64.

5. H. Nakano, A Constructive Formalization of the Catch and Throw Mechanism, In:
Proceedings of Seventh Annual IEEE Symposium on Logic in Computer Science
(1992) 82–89.

