
Polynomial Space and Delay Algorithms for Enumeration of
Maximal Motifs in a Sequence

Hiroki Arimura1? and Takeaki Uno2

1 Hokkaido University, Kita 14-jo, Nishi 9-chome, Sapporo 060-0814, JAPAN
arim@ist.hokudai.ac.jp

2 National Institute of Informatics, Tokyo 101–8430, JAPAN
uno@nii.jp

Abstract. In this paper, we consider the problem of finding all maximal motifs in an input
string for the class of repeated motifs with wild cards. A maximal motif is such a rep-
resentative motifs that is not properly contained in larger motifs with the same location
lists. The enumeration problem for maximal motifs with wild cards has been introduced in
(Parida et al., SODA’00, CPM’01), and has been studied in (Parida et al., CPM’01), (Pisanti
et al.,MFCS’03) and (Pelfrene et al., CPM’03). However, its output-polynomial time com-
putability, in particular, with polynomial space and delay is still open. The main result of this
paper is a polynomial space polynomial delay algorithm for the maximal motif enumeration
problem for the repeated motifs with wild cards. This algorithm enumerates all maximal
motifs in an input string of length n with O(n3) time per motif with O(n2) space and O(n3)
delay by depth-first search. The key of the algorithm is a tree-shaped search route over all
maximal motifs based on a technique called prefix-preserving closure extension, which en-
able us to enumerate all maximal motifs without storing all discovered motifs. We also show
exponential lower bound and succinctness results on the number of maximal motifs, which
indicate the limit of a straightforward approach.

Keywords: enumeration problems, sequence pattern discovery, basis of tiling motifs,
bioinformatics, output-polynomial time algorithms

Correspondence:
Hiroki Arimura
Graduate School of Information Science and Technology
Hokkaido University
N14 W9, 060-0814 Sapporo, Japan
e-mail: arim@ist.hokudai.ac.jp
phone: +81-11-706-7678, fax: +81-11-706-7890

? This work is done during the first author’s visit in LIRIS, University Claude-Bernard Lyon 1, France.

1 Introduction

Pattern discovery is to find all patterns within a class of combinatorial patterns that appear
in an input data satisfying a specified constraint, and it is a central task in computational
biology, temporal sequence analysis, sequence and text mining [3]. We consider the pattern
discovery problem for the class of patterns with wild cards, which are strings consisting
of constant symbols (called solid letters) drawn from an alphabet and variables ’◦’ (called
wild cards) that matches any symbol [8, 12]. For instance, B◦AB and B◦AB◦◦B are examples
of patterns. Given a positive integer θ called quorum, a frequent motif (or motif , for short)
in an input string s is a pattern that appears at least θ times in s.

Frequent motif discovery has a drawback that a huge number of motifs are often
generated from an input string without conveying any useful information. To overcome
this problem, we focus on discovery of maximal motifs [8]. The semantics of a pattern x is
given by the location list L(x) consisting of the positions in s at which the pattern occurs.
A motif is said to be maximal if it is not properly contained by other motifs with the
equivalent location lists allowing position shift. In Fig. 1, we show all maximal motifs and
all motifs with θ = 3 on input sting s = ABBCABRABRABCABABRABBC and quorum θ = 3.
For example, the pattern R◦B with location list {6, 9, 17} is a motif but not maximal since
there is another motif ABRAB with location list {4, 7, 15} obtained from {6, 9, 17} by shifting
leftward with 2. In this example, we can also observe that there are only 10 maximal motifs
among 50 motifs. In general, the number of maximal motifs can be exponentially smaller
than the number of motifs. while the former is exponential in the input size.

In this paper, we study the problem of enumerating all maximal motifs in an input
string of length n. In particular, from practical viewpoint, we are interested in those
algorithms that have small space and delay complexities independent from the output size
in addition to polynomial amortized time per motif. However, the output-polynomial time
computability for maximal motif discovery with polynomial space and delay is still open.

First we show exponential lower bound and succinctness results on the number of
maximal motifs, which show the limit of a straightforward approach. By examining the
previous approaches [8, 12, 11], we present a simple output-polynomial time algorithm for
maximal motif enumeration by breadth-first search, which possibly requires exponential
space and delay. Then, we present an efficient algorithm that enumerates all maximal
motifs in an input string of length n with O(n3) time per motif with O(n2) space and
O(n3) delay. A key of the algorithm is depth-first search on a tree-shaped search route for all
maximal motifs build by prefix-preserving closure extension, which enable us to enumerate
all maximal motifs without storing discovered motifs for duplication and maximality tests.
To the best of our knowledge, this is the first result on a polynomial space polynomial
delay algorithm for maximal pattern discovery for sequences.

The organization of this paper is as follows. In Section 2, we give definitions and
basic results. In Section 3 gives lower bound results on the number of maximal motifs.
In Section 4, we prepare tools for studying maximal motifs. In Section 5, we review the
previous results on maximal motif enumeration. In Section 6, we present our algorithm
MaxMotif that enumerates all maximal motifs with polynomial space and polynomial
delay from an input string. In Section 7, we conclude this paper.

2 Preliminaries

2.1 Maximal Motifs

We briefly introduce basic definitions and results on maximal pattern enumeration ac-
cording to [12, 11]. We denote the set of all integers by Z. Given an alphabet ∆, a string
over ∆ is a consecutive sequence of letters s = a[0] · · · a[n − 1] ∈ ∆∗, where n ≥ 0 and
a[i] ∈ ∆ for every 0 ≤ i ≤ n − 1. The length of s is |s| = n and the empty string is the
string ε of length 0. If s = uvw for some u, v, w ∈ ∆∗, then we say that u is a prefix , v is a
substring , and w is a suffix of s. For every 0 ≤ i ≤ j ≤ n− 1, s[i..j] denotes the substring

1

[BooBooB] 3
[BooooAB] 3
[ABoooooB] 3
[BoooooB]* 4
[BoABoooooB]* 3
[AooooooB] 3
[BoAooooooB] 3
[BooBoooooB] 3
[BooooooooB] 3

[AooA] 4
[BRA] 3
[BRAB] 3
[BRoB] 3
[BoAB]* 5
[BooB] 5
[ABoAB]* 4
[ABooB] 4
[AooAB] 4
[AoooB] 4

[BoA] 5
[BoABoA] 3
[BoAooA] 3
[BooBoA] 3
[BooooA] 3
[BoABoAB]*3
[BoABooB] 3
[BoAooAB] 3
[BoAoooB] 3
[BooBoAB] 3

[]* 21
[B]* 9
[AB]* 7
[BC]* 3
[ABRAB]* 3
[BoAB]* 5
[ABoAB]* 4
[BoABoAB]* 3
[BoooooB]* 4
[BoABoooooB]* 3

50 motifs (frequent motifs)10 maximal motifs

A B B C A B R A B R A B C A B A B R A B B C
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

10 2000

input string s quorum θθθθ = 3

[]* 21
[B]* 9
[AB]* 7
[A] 7
[BC]* 3
[C] 3
[ABRAB]* 3
[R] 3
[RA] 3
[RAB] 3

[RoB] 3
[BR] 3
[ABR] 3
[ABRA] 3
[ABRoB] 3
[ABoA] 4
[AoR] 3
[AoRA] 3
[AoRAB] 3
[AoRoB] 3

Fig. 1. Examples of maximal motifs (left) and motifs (right) for an input string s and a quorum θ, where
* indicates a maximal motif and the number associated to each motif indicates its frequency. These 10
maximal motifs are representatives containing the whole information on the occurrences of all motifs in s.

aiai+1 · · · aj . For a set S ⊆ ∆∗ of strings, we denote by |S| the cardinality of S and by
||S|| = ∑

s∈S |s| the total length of S.
Let Σ be an alphabet of solid characters (or constant letters). Let ◦ 6∈ Σ be a dis-

tinguished letter not belonging to Σ, called the wild card (or don’t care). A wild card
◦ matches any solid character c ∈ Σ and also matches ◦ itself. An input string is a
string s ∈ Σ∗ of solid characters. In what follows, we fix an arbitrary input string
s = s[1] · · · s[n] ∈ Σ∗ of length n ≥ 1.

Definition 1 (pattern [8, 12, 11]). A pattern over Σ is a string x in Σ (Σ ∪ {◦})∗Σ
that starts and ends with a solid character, or an empty string ε.

We denote the class of patterns by P = {ε} ∪ Σ ∪ (Σ ·(Σ ∪ {◦})∗ ·Σ). For example,
ABC and B ◦ C are patterns, but ◦BC and ◦ ◦ B◦ are not. Note that ε is a pattern in our
definition. We define a binary relation ¹ over letters and patterns, called the specificity
relation 3. For letters a, b ∈ Σ ∪ {◦}, we define a ¹ b if either a = b or a = ◦ holds.

Definition 3 (occurrence [8, 12, 11]). For patterns x and y, We say that x occurs at
position p in y if there exists some index 0 ≤ p ≤ |y| − |x| such that for every index
0 ≤ i ≤ |x| − 1, x[i] ¹ y[p + i] holds. The empty pattern ε occurs at any 0 ≤ p ≤ n − 1.
Then, we also say that p is an occurrence of x in y, and that x matches the substring
y[p..p + |x| − 1].

Example 1. Pattern x = B ◦ D occurs in pattern y = AB ◦ DA at position 1, and x occurs
three times in string s = EABCDABEDBCDE at positions 2, 6 and 9.

We extend binary relation ¹ from letters to patterns as follows. For patterns x and y
in Σ (Σ ∪ {◦})∗Σ, if x occurs at some position p in y, then we define x ¹ y and say that
either x is contained by y or y is more specific to x. For any pattern x, we define ε ¹ x. If
x ¹ y but y 6¹ x, then we define x ≺ y and say that either x is properly contained by y or
y is properly more specific to x. We can see that if x ¹ y and y ¹ x hold, then x and y are
identical each other. Furthermore, ¹ is a partial order over patterns in Σ (Σ ∪ {◦})∗Σ. A
maximal motif y is a successor of maximal motif x (within M) if x ≺ y and there is no
maximal motif z such that x ≺ z ≺ y. A location list is any subset L ⊆ {0, . . . , n− 1}.
Definition 4 (location list [8, 12, 11]). For an input string s ∈ Σ∗ of length n ≥ 0, the
location list of pattern x is the set L(x) ⊆ {0, . . . , n− 1} of all the positions on s at which
x occurs. The cardinality |L(x)| is called the frequency of x on s.

Example 2. Consider the input string s = EABCDABEDBCDE over Σ = {A, B, C, D, E}. Then,
the location list of pattern x = B ◦ D in s is L(x) = {2, 6, 9}.
Lemma 1. For any motifs x and y, the following properties hold.
3 The binary relation ¹ is also called the generalization relation or the subsumption relation in artificial

intelligence and data mining.

2

1. If x ¹ y then L(y) ⊆ L(x) + d for some nonnegative integer d.
2. If x ≺ y then |L(x)| > |L(y)| and |x|Σ < |y|Σ hold, where |x|Σ is the number of solid

letters in x.

The converse of properties 1 and 2 of Lemma 1 does not hold in general. A minimum
frequency threshold , or quorum, is any positive number θ ≥ 1. Let θ ≥ 1 be a quorum.
We say that pattern x is a θ-motif (or motif , for short) in s if |L(x)| ≥ θ holds [8, 12,
11]. Let L be any location list and d be any integer. Then, we define the shift of L with
displacement d by L+ d = { ` + d | ` ∈ L}. We write L− x to represent the set L+ y with
y = −x.

Definition 6 (Parida et al [8]). Let θ ≥ 1 be a quorum. A motif x is maximal in s if
for any motif y that properly contains x, there is no integer d such that L(y) = L(x) + d.

In other words, θ-motif x is maximal in s iff there exists no θ-motif in s properly
containing x that is equivalent to x under shift-invariance.

Example 3. Let s = EABCDABEDABCDE over Σ = {A, B, C, D, E} be an input string. Consider
motifs x = AB ◦ D with location list L(x) = {1, 5, 8}, y = B ◦ D with L(y) = {2, 6, 9}, and
z = D with L(z) = {4, 8, 11}. We can see that z ≺ y ≺ z holds and x, y, z are equivalent
each other. For instance, L(z) = L(x)+d with the displacement d = 3. Then, x is maximal
in s, but y and z are not.

Now, we state our problem as follows.

Definition 7. The maximal motif enumeration problem is, given an input string s of
length n and a quorum θ ≥ 1, to enumerate all maximal motifs in s without repetition.

2.2 Enumeration algorithms

We introduce terminology for enumeration algorithms according to [7, 14]. An enumeration
algorithm for an enumeration problem Π is an algorithm A that receives an instance I of
Π and produces all solutions S in the answer set S(I) of Π, e.g., maximal motifs in our
problem, into a write-only output stream O in which each solution appears exactly once.

Let A be an enumeration algorithm, N = ||I|| and M = |S(I)| be the input and the
output sizes on I, p(N), q(N,M) be polynomials. A is of output-polynomial (P-OUTPUT)
if the total running time of A for all solutions is bounded by a polynomial q(N, M). A is of
polynomial enumeration time (P-ENUM) if the amortized time for each solution x ∈ S is
bounded by a polynomial p(N). That is, the total running time is linear, M · p(N), in the
output size M . A is of polynomial delay (P-DELAY) or exact polynomial enumeration time
if the delay , which is the maximum computation time between two consecutive outputs, is
bounded by a polynomial p(N) in the input size N . A is of polynomial space (P-SPACE) if
the maximum size of its working space, without the size of output stream O, is bounded by
a polynomial p(N). We often call A in P-ENUM and P-DELAY, respectively, a polynomial
time enumeration algorithm and an exact polynomial time enumeration algorithm. By
definition, P-OUTPUT is weakest and P-DELAY is strongest among P-OUTPUT, P-
ENUM, and P-DELAY.

3 Lower bounds for the number of maximum motifs

We show the following lower bound of the number of maximal motifs in a given sequence,
which justifies output-sensitive algorithms for the maximal motif enumeration problem.
The upper bound of |Mθ| is obviously 2O(N).

Theorem 1 (exponential lowerbound of maximal motifs). There is an infinite se-
ries of input strings s0, s1, s2, . . . , such that for every i = 0, 1, 2, . . ., the number |M| of
maximal motifs in si is bounded below by 2Ω(N), that is, exponential in N = |si|.

3

Proof: We show a sketch of the proof. Let Σ = {#, 0, 1} and n ≥ 1 be any nonnegative
integer. Let s = #t1# · · · #tn# over Σ be the input string corresponding a boolean matrix
with 1’s on the diagonal, where each block ti = b1 · · · bn ∈ {0, 1}n (1 ≤ i ≤ n) is defined
as: bj = 1 if i = j and bj = 0 otherwise for every j = 1, . . . , n. Next, we define the set
X of patterns consisting of all patterns of the form x = #p1 . . . pn# ∈ {#}·{0, ◦}n ·{#},
which represents a bit vector of length n with ◦ as on and 0 as off bits. Then, we can show
that Lx contains the position of i-th block ti iff pi is ◦ (on bit). This means that all of 2n

patterns have mutually distinct location lists, and thus, they are maximal in s if |Lx| ≥ θ.
If θ = 1

2n then the size |X ∩M| is bounded below by
∑n

k=θ

(n
k

)
= 2Ω(n). 2

The following theorem says that the number of motifs can be exponentially larger than
the number of maximal motifs.

Theorem 2 (succinctness of maximal motifs). There is an infinite series of input
strings s0, s1, s2, . . . , such that for every i ≥ 0 with quorum θ = 1

2N , the number F = |F|
of motifs in si is exponential (more precisely 2Ω(N)) in the input size N , while the number
M = |M| of maximal motifs in si is linear in N , where N = |si|.

See Section A of Appendix for the proof of the above theorem. From Theorem 2, we
know that a straightforward algorithm for M based on enumeration of motifs does not
work efficiently. This is also true for most real world datasets. Fig. 1 shows an example,
where there are only 10 maximal motifs among 50 motifs in a string of length 21.

4 Merge and Closure

In this section, we introduce two operations, called merge and closure, for studying maxi-
mal motifs [1, 3, 12, 11]. We start with technical definitions.

For alphabet ∆, we denote by ∆∞ the class of infinite strings, which are functions of
the form α : Z → ∆. For a string x of length m ≥ 0, we define its infinite version (or
expanded version) bxc as an infinite string bxc ∈ (Σ ∪ {◦})∞ such that for every integer i,
bxc[i] = x[i] if index i is defined, i.e., 0 ≤ i ≤ n− 1, and bxc[i] = ◦ otherwise. Conversely,
for infinite string x ∈ (Σ ∪ {◦})∞, its finite string version (or trimmed version) is the
finite string dxe ∈ {ε} ∪ Σ ∪ (Σ ·(Σ ∪ {◦})∗ ·Σ) obtained from x by taking the longest
substring that starts and ends with a solid character. If x contains no solid character, dxe
is not defined. By definition, if x is a pattern then dbxce = x for every finite x, but it is
not the case for general string such as x = ◦ B ◦ C ◦.

For infinite string x and integer d, we define the shift of x with displacement d by the
infinite string (x + d) such that (x + d)[i] = x[i− d] for every integer i.

Definition 8 (shift). For finite string x and integer d, the shift of x by displacement d
is an infinite string (x + d) = bxc+ d.

Example 4. Given a finite string s = EABCDABED, its infinite version is bsc = · · ·◦◦↓ EABCDABED◦
◦ · · ·, where ↓ indicates the position of origin i = 0. With displacement d = 2, the shift
of bsc is (bsc + 2) = · · · ◦ ◦ EA↓ BCDABED ◦ ◦ · · ·. Again, its finite version is d(bsc + 2)e =
EABCDABED = s, where ↓ is eliminated.

4.1 Merge of infinite and finite strings.

Next, we define the merge operator ⊕. For letters a, b ∈ Σ, we define a ⊕ a = a and
a⊕◦ = ◦⊕ a = a⊕ b = ◦ if a 6= b. For infinite strings α, β, the merge of α and β, denoted
by α ⊕ β, is the infinite string such that (α ⊕ β)[i] = α[i] ⊕ β[i] for every integer i. For
finite strings x, y, the merge of α and β, denoted by x⊕ y, as the finite string or pattern
x⊕ y = d bxc ⊕ byc e.

Let X = {α1, . . . , αk} be any set of possibly infinite strings. Since ⊕ is associative and
commutative, we denote by α1 ⊕ · · · ⊕αk =

⊕k
i=1 αi =

⊕
X pairwise applications of ⊕ to

all elements of X from left to right.

4

◦◦◦◦◦◦AB↓BCABRABRABCABABRABBC s− 2
◦◦◦ABBCA↓BRABRABCABABRABBC◦◦◦ s− 5
ABBCABRA↓BRABCABABRABBC◦◦◦◦◦◦ s− 8

◦◦◦◦◦◦◦◦↓B◦AB◦AB◦◦◦◦◦◦◦◦◦◦◦◦◦ (s− 2)⊕ (s− 5)⊕ (s− 8)

B◦AB◦AB d(s− 2)⊕ (s− 5)⊕ (s− 8)e = Clo(x)

Fig. 2. Computing the closure Clo(x) of pattern x = B ◦ AB in input string s = ABBCABRABRABCABABRABBC.

Definition 10 (merge of location list [3, 11]). Let s be an input string s and L =
{d1, . . . , dk} ⊆ {0, . . . , n− 1} be any location list on s. Then, the merge of L, denoted by⊕L, is defined by the pattern

⊕L =
⊕k

i=1(s + di) if
⊕k

i=1(s + di) is finite, i.e., it starts
and ends with a solid character. Otherwise,

⊕L is the empty string ε.

Lemma 4. Let L,L′ be any location lists. Then, the following (1) and (2) hold: (1) If
L ⊆ L′ then

⊕L′ ¹⊕L. (2)
⊕L =

⊕
(L+ d) for any integer d.

Definition 11 (closure operation [11, 12]). Given a pattern x, the closure 4 of x on
s is the pattern Clo(x) =

⊕L(x).

Example 5. In Fig. 2, we show an example computation of the closure of pattern x = B◦A
with L(x) = {2, 5, 8} on input string s = ABBCABRABRABCABABRABBC, where indices start
from zero. We first shift s leftward for each position d of x. This operation sets the origin
↓ of s to each occurrence d. Then, we take the merge t = (s − 2) ⊕ (s − 5) ⊕ (s − 8) by
finding a common solid letter in each column one by one. Finally, we obtain the closure
Clo(x) = dte = B ◦ AB ◦ AB by trimming the resulting string.

Lemma 6. Clo(x) is always defined, unique, and computable in O(n|L(x)|) time given
motif x, its location list L(x), and input string s of length n.

Lemma 7 (properties of closure). Let x, y be any patterns occurring in s and X,Y be
any location lists.

1. x ¹ Clo(x).
2. L(x) + d = L(Clo(x)) for some integer d ∈ Z.
3. Clo(x) = Clo(Clo(x)).
4. If x ¹ y then Clo(x) ¹ Clo(y).
5. Clo(x) is the unique maximal element w.r.t ¹ in the equivalence class of patterns

[x] = { y | L(x) = L(y) + d for some d ∈ Z } containing x.

Theorem 4 (characterization of maximal motifs [11]). For any motif x in s, x is
maximal in s iff Clo(x) = x holds.

Theorem 5. Let x, y ∈ M be maximal motifs. Then, x ¹ y iff L(x) + d ⊇ Ly for some
integer d. Furthermore, x = y iff L(x) + d = L(y) for some integer d.
Proof: The theorem immediately follows from Theorem 4. 2

5 Previous approaches for maximal motif enumeration

We give a brief review on possible approaches for output-sensitive computation ofM and
summarize the previous results.

5.1 Frequent pattern generation.

A most straightforward method of generating maximal motifs is to enumerate all motifs
in s, classify them into equivalence classes according to their location lists, and find the
maximal motifs for each equivalence class. This method requires O(|F|) time and O(||F||)
memory. Since O(|F|) can be exponentially larger than |M|, we cannot obtain any output-
sensitive algorithm in time and memory.
4 The closure operation

⊕L(x) for motifs was introduced in [11] and called the maximal extension in
[12]. The set-counterpart of the closure has been known in data mining [10, 15].

5

Algorithm MaxBasis(θ: quorum, s: input string, B: basis)
1 M0 := B; i := 0
2 while (∆ 6= ∅) do begin
3 ∆ := ∅;
4 foreach y ∈Mi and d ∈ {0, . . . , n− 1} do

5 if y ⊕ (s + d) 6∈ (
⋃i

k=0
Mk ∪∆) then ∆ = ∆ ∪ {y ⊕ (s + d)}; output x;

6 Mi+1 := ∆; i := i + 1;
7 end

Fig. 3. An polynomial time enumeration algorithm for generatingM from B based on breadth-first search.
This algorithm does not have polynomial space or polynomial delay.

5.2 Using the basis of motifs.

Parida et al [8] introduced the use of the basis for maximal motif enumeration. A basis
for M is a subset B ⊆ M of motifs such that M can be generated by finite applications
of an operation, e.g., ⊕, over M. Parida et al. [8] defined the basis BI of irredundant
motifs. Pisanti et al. [12] introduced the basis BT of tiling motifs. A maximal motif is
tiling if for any maximal motifs y1, . . . , yk and any integers d1, . . . , dk with x ¹ yi, if
L(x) =

⋃
i L(yi) then x = yi for some i. Pelfrêne et al [11] introduced the basis BP of

primitive motifs. Pisanti et al. [13] propose a simple method for generatingM from BT by
iteratively computing the merge x = y ⊕ (z + d) for all possible maximal motifs y, z ∈M
generated so far and all displacements d with explicit check of duplication. This method
requires O(|M|2 · n) total time and O(||M||) space given BT . Since the total time is not
linear in |M|, it does not have amortized polynomial enumeration time per motif while it
has output-polynomial time.

5.3 An improved method with using the basis.

We can improve Pisanti et al.’s method forM adopting an idea used in [11] for generation
of BP (and BT) from s. Fig. 3 shows our algorithm MaxBasis that computesM from BT

based on the next lemma:

Lemma 8 (generation of maxmal motifs from the basis). Let θ ≥ 1 be a quorum.
Any maximal motif x ∈M satisfies either (i) x ∈ BT , or (ii) there exist some y ∈M and
some integer d such that x ≺ y and x = y ⊕ (s + d).

Theorem 6. Given a quorum θ ≥ 1, an input string s of length n, and the basis BT of
tiling motifs, the algorithm MaxBasis in Fig. 3 enumerates all maximal motifs ofM from
B in O(n2) amortized time per motif with O(||M||) space.

Here, we are given BT and |BT | ≤ |M|. We use a trie to store Mi and ∆ for O(|x|)
membership of pattern x. Since the total time is O(|M| · n2), linear in the output size,
MaxBasis has polynomial amortized time per motif. However, its space complexity and
delay are O(||M||) and O(|MT | · n2), respectively, in the worst case. Thus, MaxBasis is
not a polynomial space polynomial delay algorithm even given the basis BT as input.

Note that it is still open whether the basis BT (or BP) is output-polynomial time
computable from s [12, 13, 11]. For every integer i ≥ 1, let us denote the basis for quorum i
by Bi

T . The total running time of the algorithms in [11] and [13] are only bounded by
O(nθ ∑θ

i=1 |Bi
T |) or nO(θ), which may not be O(|BT |) = O(|Bθ

T |). Hence, it seems difficult
to obtain output-polynomial time algorithm for BT and thusM in this approach. 5

5 Parida et al. [9] presented an output-polynomial time algorithm for the class of flexible motifs, and
claimed that they also presented a similar algorithm for maximal motifs with wild cards in [8]. Since
these algorithms seem to depend on an unproved conjecture in [8], however, we did not include them. At
least, the algorithm in [9] requires the space and the delay proportional to the output size |M|. Thus,
it is not polynomial space and polynomial delay.

6

6 A polynomial space polynomial delay algorithm using depth-
first search

In this section, we present an efficient depth-first search algorithm MaxMotif that, given
a quorum θ ≥ 1 and an input string s of length n, enumerates all maximal motifs x in s
in O(|L(x)| ·n2) delay and O(|L(x)| · |x|) space in the input size n. In what follows, we fix
input string s of length n ≥ 1 and 1 ≤ θ ≤ n.

6.1 Building tree-shaped search route for maximal motifs

Our algorithm MaxMotif in Fig. 5 computes all maximal motifs in exactly O(n3) time
per motif, thus with O(n3) delay, and with O(n2) space using depth-first search overM,
which enables us to avoid the use of extra storage for keeping all discovered motifs. We
explain the details of the algorithm in the following sections.

We first build a tree-shaped search route T = (V,P,⊥) for traversing all maximal
patterns (Fig. 4). The node set V =M consists of all maximal motifs of M, P is the set
of reverse edges defined later, and ⊥ = Clo(ε) is the root motif called the bottom motif .

Lemma 9. ⊥ = Clo(ε) is the unique shortest maximal motif in s.

Proof: Clearly, L(Clo(ε)) = L(ε) is the largest location list {0, . . . , n−1}. Thus it follows
from Lemma 5 that Clo(ε) ¹ x for any maximal motif x. 2

If s contains at least two solid letters then ⊥ = ε, otherwise ⊥ = a for the only letter
a in s. Next, we define the set P of reverse edges from a child to its parent as follows.
Given a maximal motif x, the core index of x, denoted by core i(x), is the smallest index
0 ≤ ` ≤ |x| − 1 such that L(x) = L(y) for the prefix y = x[0..`].

Then, we assign the unique parent to each non-bottom maximal motifs.

Definition 12 (parent of maximal motif). Let y be a maximal motif such that y 6= ⊥
and ` = core i(y) be the core index of x. Then, the parent of y, denoted by P(y), is the
pattern P(y) = Clo(dy[0..`− 1]e). 6

Lemma 10. For every maximal motif x such that x 6= ⊥, P(x) is always exists, unique,
and maximal. Furthermore, P(x) ≺ x holds.

Proof: Let p = dy[0..` − 1]e. If y 6= ⊥, then ` − 1 = core i(y) − 1 ≥ −1 and p is always
defined. Since p ¹ y and L(y) 6= ∅, L(p) ⊇ L(y) 6= ∅. From Theorem 4, P = Clo(p) is
uniquely defined and maximal. if ` is the core index of y, L(p) ⊃ L(y). Since both of x, y
are maximal, it follows from Lemma 4 and Theorem 5 that x = Clo(p) ≺ Clo(y) = y. 2

Lemma 11. The relation ¹ is acyclic on M, i.e., there is no infinite decreasing chain
x0 Â x1 Â · · · Â xi Â · · · , i ≥ 0, of maximal motifs of M.

Theorem 7. T = (V,P,⊥) is a spanning tree for all maximal motifs in M.

The remaining task is to show how to enumerate all children y of a given parent motif
x without using extra space, which is not an easy task since we have only reverse edges.
We discuss this issue in the next subsection.

6.2 Prefix-preserving closure extension

We introduce the prefix-preserving closure extension defined as follows. A substitution for
motif x is a pair ξ = 〈k ← c〉 ∈ Z × Σ of integer k and solid letter c. If x[k] = ◦, ξ is
compatible to x. The application of ξ to x is the motif xξ = x〈k ← c〉 defined as follows.
For finite string x with index k inside the string, i.e., 0 ≤ i ≤ |x| − 1, we define xξ as

6 In the definition, y[0..`− 1] ∈ Σ(Σ ∪{◦})∗ ∪{ε} may not be a proper pattern. Thus, we use dy[0..`− 1]e
instead of y[0..`− 1] to remove the trailing ◦’s.

7

A B B C A B R A B R A B C A B A B R A B B C
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

10 2000
input string s

spanning tree T = (M, P) for maximal motifs pattern lattice L = (M, ≤≤≤≤) for maximal motifs

AB

ε

ABRAB

ABoAB

B

BC

BoAB

BoABoAB

BoABoooooB

BoooooB

<0,A>

<0,B>

<2,R>

<1,C>

<2,A>

<6,B>

<5,A>

<9,B>

<3,A>
3

4

3

5

4

3

3

21

7

9

quorum θθθθ = 3

AB

ε

ABRAB

ABoAB

B

BC

BoAB
BoABoAB

BoABoooooB

BoooooB

3

4

3

5

4

3

3

21

7

9

Fig. 4. The spanning tree T = (M,P) (left) and the pattern lattice L = (M,¹) (right) for maximal
motifs of M on quorum θ = 3 and input string s (top). Each box represents maximal motif x in M and
the number right to the box indicates its frequency |L(x)|. Each arrow indicates ordering, P or ¹, of a
tree/lattice. (Sec. 6.1). An arrow in the tree T indicates the ppc-extension with seed 〈k, c〉. The newly
introduced letter c is written in bold face. (Sec. 6.2). There are 10 maximal motifs among 49 motifs in s.

follows (ξ is called replacement): for every index i, xξ[i] = c if i = k and xξ[i] = x[i]
otherwise. For infinite string x, we define xξ in the same way. For finite string x with the
index k outside the string, i.e., k > |x| − 1 or k < 0 (ξ is called right extension or left
extension), we define xξ = dbxcξe. For example, if x = BA ◦ B, then x〈−1← C〉 = CBA ◦ B,
x〈2← C〉 = BACB, and x〈6← C〉 = BA ◦ B ◦ ◦ C.
Definition 13 (ppc-extension). For any maximal motifs x, y such that y 6= ⊥, a motif
y is a prefix-preserving closure expansion (or a ppc-extension) of x if the following (i)–(iii)
hold:

(i) y = Clo(x〈k ← c〉) for some substitution, called the seed , ξ = 〈k ← c〉 ∈ Z × Σ
compatible to x, that is, y is obtained by first substituting c at index i and then taking
its closure,

(ii) the index k satisfies k > core i(x), and
(iii) x[0..k − 1] = y[0..k − 1], that is, the prefix of length i−1 is preserved, where x[0..k−1]

is the string bxc[0..k − 1] obtained from x by padding trailing ◦’s if necessary.

Example 6. In Fig. 4, we show an example of the spanning tree for M generated by the
ppc-extension, where quorum is θ = 3 and input string is s = ABBCABRABRABCABABRABBC.
We have maximal motif x = AB with location list L(x) = {0, 4, 7, 10, 15, 18}. If we apply
substitutions ξ = 〈2, R〉 and ξ = 〈3, A〉 to x then we obtain the ppc-extension y = ABRAB =
Clo(ABR) with {4, 7, 15}, and z = AB ◦ AB = Clo(AB ◦ A) with {4, 7, 10, 15}, respectively.

The following theorem is the main result of this section. For the proof, please see
Section B of Appendix.

Theorem 8 (correctness of ppc-extension). For any maximal motifs x, y such that
y 6= ⊥. Then, (i) x = P(y) if and only if (ii) y = Clo(xξ) is a prefix-preserving closure
expansion of x for some substitution ξ = 〈k ← c〉 ∈ Z×Σ compatible to x. Furthermore,
there exists exactly one ξ satisfying condition (ii) for each y.

6.3 A polynomial space polynomial delay algorithm

Based on Theorem 8, we present in Fig. 5 our algorithm MaxMotif that enumerates
all maximal motif in a given input string by the depth-first search over M applying the
ppc-extension to each maximal motifs.

8

Algorithm MaxMotif(θ: quorum, s: input string)
1 Expand(⊥, θ, s);

Procedure Expand(x: motif, θ: quorum, s: input string)
2 if |L(x)| < θ then return;
3 output x;
4 for k := core i(x) + 1 to |s| do
5 foreach c ∈ Σ do begin
6 y = Clo(x〈k ← c〉);
7 if x[0..k − 1] = y[0..k − 1] then
8 call Expand(y, s, θ);
9 end for

Fig. 5. A polynomial space polynomial delay enumeration algorithm for M.

A straightforward implementation of the procedure Expand in Fig. 5 requires O(|L(x)|·
n) time for each of n · |Σ| possible children at line 4 to line 9 even when none of them
satisfies the quorum θ. This only yields an algorithm with O(|Σ| · |L(x)| · n2) = O(|Σ|n3)
time and delay. Then, we have the following theorem.

Theorem 9. Given a quorum θ ≥ 1 and an input string s of length n, the algorithm
MaxMotif in Fig. 5 enumerates all maximal motifs x of M in O(|L(x)| · n2) amortized
time per motif with O(|L(x)| · |x|) space and O(|L(x)| · n2) delay.

Proof: By Theorem 7 and Theorem 8, we see that the algorithm MaxMotif visits all
maximal motifs on the spanning tree T starting from the root ⊥. Since T is a tree and
any maximal motif appears in T , the algorithm enumerateM without duplicates.

Now, we estimate the work time W (x) at line 2 and at line 4 to line 8 for each parent
maximal motif x as follows. For each x, its location list L(x) at line 2 and its its closure
Clo(x) at line 6 can be computed in O(|L(x)| · n) time. By Lemma 15, if x is obtained
from its parent p by ppc-extension with seed 〈k, c〉, then core i(x) = k, and this can be
computed in O(1) time at line 4 by keeping k. Thus, a straightforward implementation,
requires the total computation time O(|Σ| · |Lx| · n) at line 5 to line 8.

To reduce computation time further, we replace line 5 to line 8 by the following pro-
cedure OccurrenceDeliver 7 that computes y = Clo(x〈k ← c〉) and L(y) for all solid
letter c such that L(y) 6= ∅ during a single scanning on L(x). Its total running time is
O(

∑
c∈Σ′ |L(c)| · n) = O(|L(x)| · n) time.

OccurrenceDeliver ≡
1 Initialize all L(c) := ∅ for all c ∈ Σ′, and then Σ′ := ∅;
2 foreach d ∈ L(x) do
3 L(c) := L(c) ∪ {d} and Σ′ = Σ′ ∪ {c}, where c := s[d + k];
5 foreach c ∈ Σ′ do
6 Compute y = Clo(x〈k ← c〉) using L(c)

This yields the work W (x) = O(|L(x)| ·n2) instead of O(|Σ| · |L(x)| ·n2). From this, the
delay is W (x)·|x| time since the depth of T is Θ(|x|). Next, we reduce the delay W (x)·|x| to
W (x) using a technique by Uno [14] that transforms any tree-search enumeration algorithm
with work time W (x) at each node into a W (x) delay enumeration algorithm by changing
the timing of output alternatively according to the parity of the depth of x. For details,
please consult [14]. The space complexity is obviously O(|L(x)| · |x|) since each recursive
call has |x| ancestors. 2

7 Occurrence deliver is introduced for closed itemsets enumeration in Uno et al. [15]

9

In summary, MaxMotif computes all maximal motifs in O(n3) time per motif with
O(n2) space and O(n3) delay in the input size n.

Corollary 10 The maximal motif enumeration problem is solvable in polynomial space
and polynomial delay in the input size n = |s|.

7 Conclusion

In this paper, we presented a polynomial space polynomial delay algorithm for enumerating
all maximal motifs in an input string for the class of motifs with wild cards. By the use of
depth-first search realized by the prefix-preserving expansion technique we introduced, the
algorithm enumerate all motifs in the unique way without explicitly storing and checking
the motifs enumerated so far. This method drastically improves the space and the delay
complexities of the previous output-polynomial time algorithms based on breadth-first
search.

In data mining, maximal motifs for sets are called closed itemsets [10]. There are a
number of closed itemset discovery algorithms for closed itemsets [5, 10], while only a
few algorithms are known for closed sequences and closed trees [3, 15, 16]. We extend the
ppc-extension, which is originally introduced for closed itemsets, for maixmal sequences.
Thus, the result of this paper will be a first step towards efficient enumeration of maximal
patterns for complex combinatorial objects such as sequences, trees, and graphs.

Pattern discovery for classes of unions of patterns is one of the difficult problems in
machine learning. Since the class of maximal motifs is a class of unions generated from
tiling motifs [12], it will be a future problem to extend the proposed enumeration method to
pattern discovery for unions of sequence patterns, e.g. [4]. Implementation of the proposed
algorithm with practical improvement and evaluation of the algorithm on the real world
datasets, e.g., biological datasets, are also interesting future problems.

References

1. A. Apostolico and L. Parida, Compression and the wheel of fortune, In Proc. the 2003 Data Com-
pression Conference (DCC’03), IEEE, 2003.

2. H. Arimura, T. Uno, A Polynomial Space Polynomial Delay Algorithm for Enumeration of Maximal
Motifs in a Sequence, Technical Report TCS-TR-A-05-6, Division of Computer Science , Hokkaido
Univeristy, July 2005.

3. H. Arimura, T. Uno, An Output-Polynomial Time Algorithm for Mining Frequent Closed Attribute
Trees, In Proc. Inductive Logic Programming, LNAI 3625, Springer, 1–19, August 2005. (to appear)

4. H. Arimura, T. Shinohara, S. Otsuki, Finding minimal generalizations for unions of pattern languages
and its application to inductive inference from positive data, In STACS’94, LNCS 775, Springer-Verlag,
649–660, 1994.

5. E. Boros V. Gurvich, L. Khachiyan, K. Makino, The complexity of generating maximal frequent and
minimal infrequent sets, In Proc. STACS ’02, LNCS, 133-141, 2002.

6. M. Crochemore and W. Rytter, Jewels of Stringology, World Scientific, 2002.
7. L. A. Goldberg, Polynomial space polynomial delay algorithms for listing families of graphs, In

Proc. the 25th STOC, ACM, 218–225, 1993.
8. L. Parida, I. Rigoutsos, A. Floratos, D. Platt, and Y. Gao, Pattern discovery on character sets and real-

valued data: linear bound on irredundant motifs and effcient polynomial time algorithm, In Proc. the
11th SIAM Symposium on Discrete Algorithms (SODA’00), 297–308, 2000.

9. L. Parida et al., An output-sensitive algorithm for ..., In Proc. the 12th International Conference on
Combinatorial Pattern Matching (CPM’01), LNCS 2089, 131–142, 2001.

10. N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering Frequent Closed Itemsets for Association
Rules, In Proc. ICDT’99, 398–416, 1999.

11. J. Pelfrêne, S. Abdedda¨m, and J. Alexandre, Extending Approximate Patterns, In Proc. CPM’03,
LNCS 2676, 328–347, 2003.

12. N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot, A basis of tiling motifs for generating repeated
patterns and its complexity for higher quorum, In Proc. MFCS’03, LNCS 2747, 622–631, 2003.

13. N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot, A comparative study of bases for motif
inference, In String Algorithmics, C. Iliopoulos and T. Lecroq editors, KCL publications, 2004.

14. T. Uno, Two General Methods to Reduce Delay and Change of Enumeration Algorithms, NII Technical
Report, NII-2003-004E, April 2003.

10

15. T. Uno, T. Asai, Y. Uchida, H. Arimura, An efficient algorithm for enumerating closed patterns in
transaction databases, In Proc. DS’04, LNAI 3245, Springer-Verlag, 16-30, 2004.

16. X. Yan, J. Han, CloseGraph: Mining Closed Frequent Graph Patterns In Proc. SIGKDD’03, 2003.

11

Appendix

This appendix is not included in the submission and can be ignored

A Proof of Theorem 2

Lemma 3 (transformation from closed itemsets to maximal motifs). For every
transaction database r = {t1, . . . , tm} consisting of m transactions over n items of total
size N = mn, there exists an input sequence s of length O(N + m2) such that the number
M r

θ of θ-frequent closed itemsets in r equals to the number M s
θ of maximal motifs in s.

Proof: (Sketch) Given items I = {1, . . . , n} and a transaction database r = {t1, . . . , tm},
Σ = { aj , bi

j , #
i
j | a ∈ I, 1 ≤ i ≤ m, 1 ≤ j ≤ n } ∪ {#} is an alphabet for s. The letters

aj , bi
j , and #i

j , resp., stand for items, blanks, and delimiters. We define the input string
s = s1w1 · · · sn−1wn−1snwn over Σ of length N = mn + 1

2m2. For every i = 1, . . . , n, let ti
be the i-th transaction of r. Then, the block si is defined by si = x1 · · ·xn such that for
every j = 1, . . . , n, xj = aj if j ∈ ti and xj = bi

j if j 6∈ ti. The delimiter wi is defined by
wi = y1 · · · yi such that yj = #i

j for every j = 1, . . . , i. It is important here that |wi| = i
for i = 1, . . . ,m. Then, we can see that given quorum θ ≥ 2, any motif occurs only inside
blocks and consists only of ◦ and aj ’s. Furthermore, there is a one-to-one correspondence
between all θ-frequent itemsets in r and all θ-motifs in s for θ ≥ 2. We see that the lattice
(FIθ,⊆) of all frequent itemsets in r is isomorphic to the lattice (Fθ,¹) of all motifs in
s (see full paper for details). This induces a one-to-one correspondence between all closed
itemsets in r and all maximal motifs in s. Thus, the result immediately follows. 2

Theorem 2. There is an infinite series of input strings s0, s1, s2, . . . , such that for every
i ≥ 0 with quorum θ = 1

2N , the number F = |F| of motifs in si is exponential (more
precisely 2Ω(N)) in the input size N , while the number M = |M| of maximal motifs in si

is linear in N , where N = |si|.
Proof: Theorem 1 of Uno et al. [15] says that there is an infinite series of transaction
databases such that the number F of frequent itemsets and the number M of frequent
closed itemsets in a transaction database of size mn are F = 2Ω(n) and M = O(m2),
respectively. Combining Lemma 3 above and the constructions of Theorem 1 of [15], where
N = Θ(m2) for large m and n, we obtain the result. 2

B Proof of Theorem 8

In this section, we prove Theorem 8 of Section. We start with the following technical
lemmas.

Lemma 12. For any string xy ∈ Σ(Σ ∪ {◦})∗, L(xy) = L(x) ∩ (L(y) + |x|).
Lemma 13. Let x, y be any motifs. If L(x) = L(y) then L(xξ) = L(yξ) for any substitu-
tion ξ = 〈k ← c〉 compatible to both x and y.

For any string x ∈ (Σ ∪ {◦})∗, x[0..k − 1] denotes the prefix of x with length k if
|x| ≥ k. If |x| < k, then x[0..k − 1] denotes the string of length k obtained from x by
padding trailing ◦’s, i.e., x[0..k − 1] = bxc[0..k − 1].

Lemma 14. Let y be any maximal motif such that y 6= ⊥ and ` be the core index of y.
For the parent x = P(y) of y, x[0..`− 1] = y[0..`− 1] holds.

Proof: Let x = Clo(y[0..`−1]) = P(y). By construction, y[0..`−1] ¹ x[0..`−1]. Suppose
to contradict that x[0..`−1] 6= y[0..`−1], that is, the closure operation filled some position
i < ` in y[0..` − 1] with a solid letter. Then, we have y[0..` − 1] ≺ x[0..` − 1] (*1). Now,

12

let y′ = x[0..` − 1]y[`..|y| − 1] be a new string obtained from y by replacing the prefix
y[0..` − 1] with x[0..` − 1]. Clearly, y ≺ y′. On the other hand, from (2) of Lemma 7,
we have L(x[0..`− 1]) = L(y[0..`− 1]) + d for some d since x = Clo(y[0..` − 1]) and
L(Clo(y[0..`− 1])) = L(y[0..`− 1]) + d for some d. By Lemma 12, we can show that
for any strings x1, x2, y1, y2 ∈ Σ(Σ ∪ {◦})∗, if L(x1) = L(x2) and L(y1) = L(y2) then
L(x1y1) = L(x2y2). Thus, if L(x[0..`− 1]) = L(y[0..`− 1]) then we have L(y′) = L(y)
(*2). It follows from (*1) and (*2) that y is not maximal. This is the contradiction, and
thus we conclude that x[0..`− 1] = y[0..`− 1]. 2

Lemma 15. Let x be any maximal motif and y = Clo(x〈k ← c〉) be a ppc-extension of x.
Then, k is the core index of y.
Proof: Let ξ = 〈k ← c〉 be the substitution generating y = Clo(xξ). (a) By definition
of ppc-expansion, k − 1 ≥ core i(x) and x[0..k − 1] = y[0..k − 1] hold. Thus, we have
L(x) = L(x[0..k − 1]) = L(y[0..k − 1]). Since x is maximal, any substitution ξ results
|L(x)| 6= |L(xξ)| = |L(y)|. Therefore, we have L(y[0..k − 1]) 6= L(y). (b) Next, we show
that L(y[0..k]) = L(y). Firstly, from assumptions, x[k] = ◦, y[k] = c, and x[0..k − 1] =
y[0..k− 1] hold. This implies that y[0..k] = xξ[0..k], and thus that L(y[0..k]) = L(xξ[0..k])
(*1). Next, if k > core i(x) then we have L(x[0..k]) = L(x). By applying Lemma 13,
it follows that L(y[0..k]) = L(x[0..k]ξ) = L(xξ) (*2). Finally, from (2) of Lemma 7, if
y = Clo(xξ) then L(xξ) = L(Clo(xξ)) + d = L(y) + d for some d (*3). Combining (*1)–
(*3), we have L(y[0..k]) = L(y) + d for some d. Since y[0..k] is a prefix of y, we can show
that d = 0 must hold. From (a) and (b), we know that k is the core index of y. 2

Lemma 16. For any maximal motif y such that y 6= ⊥, if x = P (y) then y is a prefix-
preserving expansion Clo(xξ) of x for some ξ = 〈k ← c〉 ∈ Z×Σ.
Proof: Suppose that x = P(y). Then, x = Clo(y[0..`−1]) for the core prefix ` = core (y)
of y. Let k = ` and c = x[`]. Then, we can show that x[`] = ◦ because x = Clo(y[0..`−1]) ≺
Clo(y[0..`]) = y. Thus, the substitution ξ = 〈`← c〉 is compatible to x. Now, we show that
y = Clo(xξ) for ξ = 〈` ← c〉. First, we show L(x) = L(x[0..`− 1]). By (2) of Lemma 7,
x = Clo(y[0..`− 1]) implies Clo(y[0..`− 1]) ¹ x. By taking the prefix of length k, we have
y[0..`− 1] ¹ x[0..`− 1]. Since x[0..`− 1] is a prefix of x, we have x[0..`− 1] ¹ x. Therefore,
if y[0..` − 1] ¹ x[0..` − 1] ¹ then we have L(y[0..`− 1]) ⊇ L(x[0..`− 1]) ⊇ L(x) (*1). On
the other hand, x = Clo(y[0..`−1]) since x is the parent of y. Thus, L(y[0..`− 1]) = L(x).
From this, the inclusion in the above inclusion formula is actually equality, that is, we can
conclude that L(x[0..`− 1]) = L(x). By Lemma 13, this implies L(xξ) = L(x[0..`− 1]ξ) =
L(xξ[0..`]) (*1). On the other hand, by Lemma 14, we know that y[0..`− 1] = x[0..`− 1].
From this, we can show that xξ[0..`] = x[0..`− 1]y[`] = y[0..`− 1][`] = y[0..`], where if the
length of x[0..`− 1] is shorter than k then we appropriately add to x[0..`− 1] by trailing
◦’s. Therefore, we have L(xξ[0..`]) = L(y[0..`]) (*2). Since ` is the core index of y, we
have L(y[0..`]) = L(y) (*3). From (*1)–(*3), we have L(xξ) = L(y). By taking the merge
operation of the both side, we have Clo(xξ) = Clo(y) = y since y is a maximal motif and
Theorem 4 holds. This completes the proof. 2

Lemma 17. Let x be any maximal motif. If y = Clo(x〈k ← c〉) is a prefix-preserving
expansion of x for some 〈k, c〉 ∈ Z×Σ, then x = P(y) holds.
Proof: Suppose that y = Clo(x〈k ← c〉). Then, it follows from Lemma 15 that k is
the core index of y. Thus, we have P(y) = Clo(y[0..k − 1]). On the other hand, we have
y[0..k−1] = x[0..k−1] and thus Clo(y[0..k−1]) = Clo(x[0..k−1]) since y is a ppc-extension
of x. Since x is maximal, k − 1 ≥ core i(x), we have Clo(x[0..k − 1]) = x. Combining the
above observations, we have P(y) = x. 2

Lemma 18. For all i = 1, 2, let ξi = 〈ki ← ci〉 ∈ Z × Σ be substitutions and let yi =
Clo(xξi) be the ppc-extension of x generated by ξi. If 〈k1, c1〉 6= 〈k2, c2〉 then y1 and y2 are
distinct.

13

Proof: Assume that ξ1 6= ξ2 and yi = Clo(xξi) for every i = 1, 2. Suppose to contradict
that y1 = y2 = y for some maximal motif y. Since y is the ppc-expansion of x with
ξ = 〈ki ← ci〉, x[0..ki − 1] = y[0..ki − 1] by definition for every i = 1, 2. Thus, each
x[0..ki− 1] is a prefix of y. There are two cases below for k1 and k2. (a) Suppose first that
k1 = k2 = k. Then, ξ1 6= ξ2 implies c1 6= c2. However, this is impossible since c1 = y[k] = c2.
(b) Suppose next that k1 6= k2. Assume without loss of generality that k1 < k2. This is
again impossible since Since ξ1 = 〈k1 ← c1〉 is compatible to x, we know that x[k1] = ◦
and y[k1] = c1. On the other hand, x[0..k2 − 1] = y[0..k2 − 1] must hold for k2 > k1 since
y = Clo(xξ2) is the ppc-extension of x. This contradicts that ◦ = x[k1] 6= y[k1] = c1.
Hence, by contradiction, we conclude that y1 6= y2. 2

Proof of Theorem 8: From Lemma 16, Lemma 17, and Lemma 18, the theorem im-
mediately follows. ut

14

