An Efficient Algorithm for Finding Similar Short
Substrings from Large Scale String Data

Takeaki Uno

uno@nii. jp, National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract. Finding similar substrings/substructures is a central task in
analyzing huge amounts of string data such as genome sequences, web
documents, log data, etc. In the sense of complexity theory, the existence
of polynomial time algorithms for such problems is usually trivial since
the number of substrings is bounded by the square of their lengths. How-
ever, straightforward algorithms do not work for practical huge databases
because of their computation time of high degree order. This paper ad-
dresses the problems of finding pairs of strings with small Hamming
distances from huge databases composed of short strings. By solving the
problem for all the substrings of fixed length, we can efficiently find candi-
dates of similar non-short substrings. We focus on the practical efficiency
of algorithms, and propose an algorithm running in almost linear time of
the database size. We prove that the computation time of its variant is
bounded by linear of the database size when the length of short strings
to be found is constant. Slight modifications of the algorithm adapt to
the edit distance and mismatch tolerance computation. Computational
experiments for genome sequences show the efficiency of the algorithm.
An implementation is available at the author’s homepage®

1 Introduction

These days we have many huge string data such as genome sequences, web doc-
uments, log data, etc. Since the size of data is so huge that human cannot grasp
them intuitively, they must be computationally analyzed. Finding similar sub-
strings or similar substructures is an important way of analyzing the data. The
similarity and distribution of substrings makes it possible to grasp the global or
local structures. The number of substrings in a string is at most the square of
the string length. Thus, if the distance between two substrings can be computed
in polynomial time, similar substrings can be found in polynomial time by com-
paring all substrings one by one. However, polynomial time algorithms of high
degree do not work for huge data, therefore practical fast algorithms are needed.

In the area of algorithms and computation, the problem of finding similar
strings has been widely studied. The problem is usually formulated that for two
given strings Q and S, find all substrings of S similar to Q). This formulation can
be considered as a generalization of string matching problems. When Hamming

! http://research.nii.ac.jp/ uno/index.html

distance is chosen as a similarity measure, a straightforward algorithm solves the
problem in O(]S||Q]) time, thus a research goal is to reduce this time complexity.
Here the length of S and @ is denoted by |S| and |Q].

For the problem of finding substrings of S with the shortest Hamming dis-
tance to , Abrahamson[1] proposed an algorithm running in O(|S|(|Q|log |Q])*/?)
time. If the maximum Hamming distance is k, the computation time can be re-
duced to O(|S|(klog k)/?)[4]. Some approximation approaches have been also
developed. The Hamming distance of two strings of length | within (1—¢) and (1+
€) approximation ratio with probability ¢ can be computed in O(log!log(1/4)/e)
time [6]. For edit distance, which allows insertions and deletions, algorithms pro-
posed by Muthukrishnan and Sahinalp(8, 9] approximate the minimum distance
substring. Using these algorithms, the problem can be solved in shorter time but
may fail with some solutions. These algorithms take more than O(|S|?) time to
find similar substrings even for fixed length strings, Thus direct application of
these algorithms does not work in practice.

On the other hand, there are several studies for efficient data structures to
find similar substrings. The problem is formulated such that, for a given string
S, construct a data structure of not a large size such that for any query string
@, substrings of S similar to @ can be found in short time. For the problem
of finding substring of S equal to @, there are many efficient data structures
such as suffix array which make it possible to find all such substrings in almost
O(|Q|) time. However, allowing the errors makes the problem difficult. Existing
algorithms basically need 6(]S|) time in the worst case. This difficulty can be
observed in many other similarity search problems, such as inner product of
vectors, points in Euclidean space, texts and documents. Motivated by practical
use, there have been many studies on approximation and heuristic approaches.

Yamada and Morishita [12] proposed an algorithm for computing a lower
bound of the shortest Hamming distance from @ to a substring in S. The al-
gorithm constructs a data structure in O(|S]log|S|) time, then answers a lower
bound in O(|Q|L) time for any @, where L is a constant no greater than |Q).
They also proposed an efficient exact algorithm for strings with small alphabet
such as genome sequences[13].

In bioinformatics area, the problem of finding substrings of two strings which
are similar to each other is called homology search, and has been widely stud-
ied. Because of the huge size of genome sequences, developing exact algorithms
running in short time is difficult thus many heuristic algorithms have been pro-
posed. BLAST and FASTA[2,3,10] are widely used among these algorithms.
The idea of BLAST is to find short substrings of S and @ that are equal and
check whether there are similar substrings including them. This idea is based on
the observation that two similar substrings may have common short substrings.
Actually, if the Hamming distance between two strings is no more than 9% of
their length, they always have common string of 10 letters. The disadvantage of
this method is that when the strings are long, huge number of substrings are the
same, thus a lot of comparisons must be made. Such frequently appearing strings
can be considered as a kind of noise in practice, thus heuristic methods ignore

these strings in the interest of practical efficiency. Another method of solving
the problem is to partition @ and S into many blocks[11]. Some statistics of the
blocks are computed, for example the number of each letter in the blocks, which
for pruning blocks will never be similar. Then a dynamic programming connects
the blocks and produces candidates of long similar substrings. The idea is that
long similar substrings are expected to be not so many.

In this paper, we focus on Hamming distance. For given a set S of strings of
the same length [, our problem is to enumerate all pairs of similar strings in S. We
consider the case in which the length [is small, and propose a practically efficient
algorithm. The idea of the algorithm is to classify the strings in several ways so
that any two similar strings are in the same group for at least one classification.
Only strings in the same group have to be compared, which reduces the cost of
the comparison. Each string is partitioned into k& blocks, then any two strings
with Hamming distance at most d share at least k& — d blocks. Thus they are
in the same group at least one classification based on combinations of k — d of
these blocks. By setting k to [, the Hamming distance of any two strings in the
same %roup is at most d. Using this fact, the time complexity is bounded by
O((Xi_o 1Ci) x (|S]+dN)) = O(2/(|S| + dN)), where N is the number of pairs
to be output. Computational experiments show its practical efficiency.

Using the algorithm makes it possible to approach the problem of finding
similar non-short substrings. We can observe that two non-short similar strings
may have several short substrings with short Hamming distance. Thus, pairs of
substrings including several such strings are candidates for similar substrings.
This approach has a certain accuracy. For example, any two strings of 3,000
letters with Hamming distance of at most 290 includes at least three substrings
of 30 letters with Hamming distance of at most two. Similar observation can be
made for edit distance. We propose an algorithm for finding representative pairs
of non-short substrings including certain similar short substrings. We compared
the human genome and mouse genome by our algorithm. The computation is
done in quite short time and we could see the homology structure figured out
by the comparison.

2 Preliminary

Let X be an alphabet of letters, and a string be a sequence of letters. The length
of a string S is the number of letters in S and is denoted by |S|. A sequence
composed of no letter is also a string and is called an empty string. The length
of an empty string is 0. The ith letter of a string S is written S[i], and ¢ is called
the position of S[i]. The substring of S starting from the ith letter and ending at
the jth letter is denoted by S[i, j]. For example, when string S is ABCDEFG,
S[3] = C, and S[4,6] = DEF. When j < i, we define S[i, j] by the empty string.
For two strings S; and So, the concatenation of Sy to S is a string S given
by concatenating Sy to Si, i.e., [S| = |S1| + |S2|, S[¢] = Si[i] if i < |Sy|, and
Sa[i — |S1|] otherwise. The concatenation of Sy to Sy is denoted by Sy - So.

For two strings S; and Sy of the same length, the Hamming distance of Sy
and S is defined by the number of positions 4 satisfying that S1[i] # S2[i]. The
Hamming distance is denoted by HamDist(S1,52). Such letters are called the
mismatch of S; and Ss, and the positions of mismatches are called mismatch
positions of S and Sy. For string S and integers ¢ and k, ¢ < k, we denote the
substring of S starting from ([|S|(¢ — 1)/k] + 1)th letter to ([|S]i/k])th letter,
ie, S[[1S|(i—1)/k]+1,[|S|i/k]], by B(S,k,i). B(S, k,1) is called the ith block.

For a string S, the deletion of the position ¢ is a string given by S[1,7 —
1] - S[i + 1,]5]]. The insertion of letter a to S at position 4 is a string given
by S[1,i — 1] - A - S[i, |S|] where A is the string composed of one letter a. The
change of position ¢ of S to a is a string given by S[1,4 —1]- A S[i + 1,|S]]. For
two strings S7 and So, the edit distance of S; and S5 is the smallest number of
combinations of insertion, deletion and change needed to transform S to Ss.

The problem we address in this paper is formulated as follows. Let S be a
multi set of strings of the same length. S is allowed to include more than one
same string, and every string has an ID to be distinguished from the others. The
problem is formulated as follows.

Short Hamming Distance String Pair Enumeration Problem
Input: A multi set S of strings of fixed length I, threshold value d
Output: All pairs of strings S; and S such that HamDist(S1, S2) < d.

Hereafter we fix the input set S of strings of length [and a threshold value d.

3 Multi-Classification Algorithm

The basic idea of the algorithm is to classify the strings in several ways so
that any two similar strings are in the same group at least once. Let C(k, j)

be the set of j distinct integers taken from 1,... k. For example, C(4,2) =
{{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}. For astring S and aset C' = {i1, ..., i5—a},
ij < ij41 taken from C(k, k — d), we define Sig(S,C) = B(S,k,i1) - B(S, k,i2) -
...-B(S,k,ir_q). We suppose that an integer k,d < k <[is chosen, and have a
look at the following property.

Lemma 1. If HamDist(S1,S52) < d, at least one C € C(k,k — d) satisfies
Sig(S1,C) = Sig(Sa, C).

Proof. The statement is obvious from the pigeonhole principle. Suppose that
HamDist(S1,S2) < d. Observe that if B(S1,k,j) # B(S2, k, j) holds, it includes
at least one mismatch, i.e., Sy[i] # S2[i] holds for some i, [|S|(i —1)/k]+1 < i <
[|S]é/k]. Since S; and Ss have at most d mismatches, at most d integers j satisfy
B(S1,k,j) # B(Sa,k,j), thereby at least k — d integers h satisfy B(S1,k,h) =
B(Sa, k, h). Setting C' to the set of those integers h satisfying B(Si,k,h) =
B(S2, k, h) shows that Sig(Sy,C) = Sig(Ss,C). O

8&
&8

AB CC EF
FF CC EF
AB CD AA = m oo
FF CD EA AB CC EF AB CD AA CC AB FF
CC AB FF AB CD AA AB CD EA CD AB EF
AB CD EA AB CD EA AB CC EF AB CC EF
FF CD EF AB CD EF |ABCDEF| |FFCCEF|
CC AB FF CC AB FF AB CD AA
CD AB EF CD AB EF AB CD EA
FF_CC EF FF CC EF FF CD EA
FF CD EA FF CD EA FF CD EA
FF CD EA FF CD EA AB CD EF
ABCCEF & ABCDEF
ABCDAA & ABCDEA ~ FFCDEA & FFCDEA

ABCDEA & ABCDEF
FFCDEA & FFCDEA FFCDEA & FFCDEA

Fig. 1. Example of multi-classification for finding strings with Hamming distance of at
most one, by dividing strings in three blocks and classifying them by two blocks.

This lemma motivates us to restrict the comparison to those pairs of strings
satisfying the condition of the lemma. To efficiently find these pairs, we focus on
the combinations of integers. For each C' € C(k, k — d), we classify the strings S
in S according to Sig(S,C) so that two strings S; and S satisfy Sig(S1,C) =
Sig(Ss,C) if and only if they are in the same group. In Fig. 1, we show an
example of this method, which we call the multi-classification method. In the
example, there are nine strings and set d = 1 and k£ = 3. Each block is composed
of two letters, and classifications by two blocks are done three times. For each
classification there are several groups represented by rectangles with more than
one strings, and some of them contain strings with Hamming distance of at most
one, written at the head of the arrows.

ALGORITHM MultiClassification_Basic (S:set of strings of length I, d)
1. choose k from d+1,...,1
2. for each C € C(k,k — d) do
3. classify all strings S € S by Sig(S, C)
4. for each group K of the classification

output all pairs S; and Sy in K satisfying HamDist(S1,52) < d
6. end for

The classification for C' is done by sorting Sig(S,C) in O(l(k — d)/k x |S|)
time by a radix sort. We compute the probability that two randomly chosen
letters from strings of S are the same, and choose k such that the expected size
of each group in a classification is less than 1. Then the comparisons for a group
is not so many, and the bulk of the computation time is for radix sort. Since
I(k — d)/E is expected to be relatively small when [is small, it can be expected
that the practical performance of the algorithm will be high.

3.1 Reducing the Cost for Radix Sort

Here we present a way to reduce the total computation time for radix sort by
unifying the sort of the prefix of Sig. Suppose that we repeatedly and recursively
add integers one by one to construct C € C'(k, k — d) like a backtrack algorithm.
Then, after choosing ¢ in some iteration of the backtracking, B(S, k, 7) is common
to all C generated in the recursive call, i.e., until i is removed. Thus, the radix
sort for B(S, k,4) can be done at the iteration and the result can be used in the
recursive calls. As a result, the computation time for each radix sort is reduced
to O(l/k x |S]). We describe the algorithm in the next subsection.

3.2 Avoiding Duplication without Memory

The multi-classification described above may output duplicates, i.e., output one
pair of strings many times. For example, in Fig. 1, the pair FFCDEA and
FFCDEA is output three times. A way to avoid such duplication is to store
all the pairs found in memory and check the duplication when a new pair is
found. Although this is simple, it requires a lot of memory. Here, we present a
method that does not store found pairs and thus requires no extra memory.

A pair of strings S; and Ss is output more than once if B(S1, k,i) = B(Sa, k, 1)
holds more than k — d integers i. Then, Sig(S1,C) = Sig(Ss2,C) holds for
many C’s. For given S; and S, let C*(S1,52) be the lexicographically min-
imum one among {C'|C’ € C(k,k — d),Sig(S1,C’) = Sig(S2,C")}. Our idea
is to output an S; and Sy pair only when the current operating C' is equal to
C*(S1, S2). Since, C*(S1, S2) is the collection of the k — d smallest ¢’s satisfying
B(Sy,k,i) = Sig(Sa, k,1), the computation is not a heavy task. The algorithm
is the following which requires an initial call with S, d and k, and set C' = 0.

ALGORITHM MultiClassification (S:set of strings of length I, d, k, C)
1. if |C| =k — d then output all pairs S; and S3 in K

satisfying HamDist(S1,S2) < d and C = C*(S51,52) ; return
2. for each i larger than the maximum integer in C' do
3. do a radix sort to classify all strings S € S according to B(S, k, 1)
4. for each group K of the classification with |K| > 1

call MultiClassification (K, d, k, C U {i})

5. end for

Theorem 1. The computation time of algorithm MultiClassification except for
step 1 is bounded by O(l/k x |S| x; Cq).

3.3 A Fixed Parameter Tractable Algorithm

The time complexity of the algorithm presented in the previous subsection is
still O(|S]?) since the bottle neck of the computation is actually step 1. For
example, if all strings in S are the same, HamDist(S7, S2) must be computed
1Cy times for every S7 and Sy pair in S, thereby the total computation time is
O(l|S|(|S] 41 Cq)). Here we will save the computation time in step 1.

Let k = I. Then, for each i, B(S, k, 7) is composed of one letter, thus Sig(S;, C) =
Sig(Sz,C) immediately means HamDist(S1,S52) < d. This implies that the
Hamming distance does not have to be computed for any pair in each group.
Another task in step 1 is avoiding duplications. We do this in another way.

Duplicate outputs occur when HamDist(S1,52) is strictly smaller than d.
If HamDist(S1,S2) = d, exactly one C' € C(k,k — d) satisfies Sig(S;,C) =
Sig(Ss, C). This implies that without any check, we can output pairs with Ham-
ming distance equal to d without duplications. Thus, we change d’ from 0 to
d and output only pairs with Hamming distance equal to d’, we need no check
for duplications. We call this algorithm the complete version. For the complete
version of our algorithm, we obtain the following theorem. Note that the com-

putation of HamDist(Sy, S2) is done in O(d) time if Sig(S1,C) = Sig(Ss, C).

Theorem 2. The short Hamming distance string pair enumeration problem for
set S of strings of length | and distance threshold d can be solved in O((Z?:O 1Ci) X
(|IS|+dN)) = O(2!(|S|+dN)) time where N is the number of output string pairs.

4 Approach to Long Substrings

In this section, we consider the problem of finding all pairs of substrings of a
given string S that are similar to each other in some sense. In the sense of time
complexity, the existence of polynomial time algorithms for this kind of problem
is trivial since we have to compare only a polynomial number of pairs. However,
in a practical sense, this problem is difficult since even if if we restrict the pars
to be strings of the same length, O(|S|?) pairs of substrings must be compared.
For huge strings the computation time must be quasi linear time, thus O(|S|?)
time is far from practical efficiency.

Here we approach this problem with our algorithm. For a string .S, distance
threshold value d and length I, a pair of positions (p,q),p # ¢ is an I-d seed if
HamDist(S|p,p+1—1],S][g,¢+1—1]) < d. We can find all [-d seeds by giving all
the substrings of S of length [to our multi-classification algorithm. One typical
approach to capturing the similarity structures by using such seeds is as follows.
We partition S into non-short blocks, for example, partition a string of 1,000,000
letters into 1,000 strings of 1,000 letters. We define the similarity measure of
blocks S[k1, k1] and S[kz, he] by the number of I-d seeds (p, q) satisfying &k <
p < hy and ks < g < ho. We can visualize the similarity structure of this measure
by a figure such that the intensity of the color of the pixel (z,y) is given by the
number of [-d seeds in xth block and yth block. The left of Figure 2 shows an
example of pictures obtained by this method. If the blocks are large, any two
blocks have a sufficiently large number of seeds, thus all pixels will be the same
color. For large scale data, we need more precise method of deleting such noise.

A pair of positions (p,q),p # ¢ is a normal l-d seed if (p,q) is an I-d seed
and p is a multiple of [. The normal [-d seeds can also be enumerated by our
algorithm with shorter time than the usual I-d seeds. For a width threshold
w and count threshold ¢, we say the pair of substrings S[ki, h1] and S[ke, ho)

s

Fig. 2. Matrix showing similarity of mouse 11 chromosomes (X-axis) and Human 17
chromosome (Y-axis), with black cells on similar parts; we can see similar substructures
as diagonal lines, but the figure is noisy because of the low resolution.

is a normal (w,c,l,d) candidate if there are distinct ¢ normal I-d seeds (p,q)
satisfying k1 < p < hy, ko < ¢ < hy and |p— ¢| < w. A pair of similar substrings
can be considered to be a normal (w, ¢, [, d) candidate for non-trivial w, ¢,, and
d. Especially if the Hamming distance of two substrings is short, they must
be a normal (w,c¢,l,d) candidate for a certain (w,c,l,d). For example, if the
Hamming distance of two substrings of length 3000 is at most 290, they have to
be a normal (0, 3,30, 2) candidate. If the edit distance of two substrings of length
3000 is at most 190 and has at most 50 of insertions and deletions, then they
have to be a normal (50, 3, 30, 2) candidate. Thus, we are motivated to enumerate
all normal (w, ¢, 1, d) candidates. However, for a set of ¢ normal I-d seeds, there
would be many normal (w,¢,l,d) candidates including these seeds. Thus, the
number of enumerated candidates can be large. Recall that the aim here is to
find candidates of similar substrings, or to capture the similarity structures. Not
many similar candidates are needed to represent one similar structure. Thus,
here we propose a simple algorithm to output a set of pairs of substrings such
that any normal (w, ¢, 1, d) candidate is obtained by a slight modification of one
of the pair.

For an integer z, we consider a slit of width 2w. An I-d seed (p, q) is included
in the slit of z if z < p—q < z+ 2w. For each multiple z of w, we find all integers
i such that there are at least ¢ I-d seeds (p, ¢) included in the slit of z such that
1 < p+q < i+ a where a is a given length, and one of them satisfies i = p + q.
For such integers ¢, the pair of substrings S[(i + z +w)/2, (i + 2 + w) /2 + a] and
Sl(i—z—w)/2, (i —z—w)/24+al is a desired pair. We output all such pairs. This
requires sorting of all [-d seeds, but remaining process is very light and simple.
We display a figure made by this approach in the right of Figure 2.

5 Applications and Extensions

In the practical applications there are many variants of similar string finding
problems. In the following subsections we present several problems to which we
can apply our multi classification algorithm.

5.1 Computing Mismatch Tolerance

In real world applications, we often need to find several unique short strings
which are similar to no other strings. Such unique strings can be used as charac-
terizations, invariants of string databases, or markers of substructures. A typical
application is in microarray. A microarray is a tool for biological experiments that
can detect the existence of short strings, say 25 letters, in the genome sequence
of a species or organizations. If a unique short substring in a gene sequence is
known, the existence of the substring indicates the existence of the gene. To
allow for experimental error, the substring has to have no similar substring.

When the Hamming distance is used, one of the uniqueness measure is
called mismatch tolerance. The mismatch tolerance is the shortest Hamming
distance to the other string. More precisely, for a set S of strings of the same
length [, the mismatch tolerance of string S, denoted by mis(S,S) is defined
by min{HamDist(S,S5") | 8" € S\ {S}}. If mis(S,S) is large, S has no similar
string in S in the sense of Hamming distance, thus our aim is to find the strings
having not so small mismatch tolerance. Here we define our problem.

All Mismatch Tolerance Computing Problem
Input: for a set S of strings of the same length [, distance threshold d
Output: all S € § such that mis(S,S) <d

This problem can be solved by solving the short Hamming distance string
pair enumeration problem. Actually, we do not have to output pairs, thus we do
not check the duplications. Moreover, in the complete version of our algorithm,
we have to execute the algorithm only for d’ = d, and omit the computation of
Hamming distance. Thus we obtain the following theorem.

Theorem 3. The all mismatch tolerance computing problem for set S of strings
of length | and distance threshold d can be solved in O(;C4|S|) = O(2!|S|) time.

5.2 General Edit Distance

In many studies and real world applications, the distance between two strings,
genomes, and documents is evaluated by edit distance. The multi classification
algorithm proposed above fails for edit distance since the position of the block
shifts by the preceding insertions and deletions. For example, the edit distance
between S; =ABCDEFGH and S; =ACDEFGHI is 2, obtained by deleting the
second letter of S and the eighth letter of Ss. By setting k = 4, the strings are
partitioned into substrings of two letters. Although there are only two positions
edited, no substrings in the partitions of S; and So are the same, since the
substrings in the middle are shifted by the deletion of the second letter.

For adapting to edit distance, we consider C'(k, d) instead of C'(k, k—d) where
C(k,d) is the set of k — d signed or unsigned integers taken from 1 to d, i.e.,
Clk,d) = {C | |C| =d,C C {1,1F,17,2,2% 27 ...k kT k~}}.it, i~ and
means an insertion, a deletion and a change at the ith block. For C € C‘(k, d),

let sft(C,d) = [{j* | j <i,j" € CH = [{j~ | j <i,j € C}], and Eq(C) =
{i|4,it i~ & C}. We denote S[[|S|(i —1)/k] + 1+ 4, [|S|i/k] + 4] by B(S,i,7).
Then, for string S and C € C(k,d), we define Sig(S,C) by B(S,i1,sft(C,i1)) -
B(S, ig, sft(C,ig))-. . - B(S, ip_a,sft(C,ip_q)) where Eq(C) = {i1, ..., ir_q},i; <
ij+1. By using the terminology, we obtain the following lemma.

Lemma 2. If the edit distance between strings S1 and Sz is no more than d, at
least one C' € C(k,d) satisfies Sig(S1, Eq(C)) = Sig(Ss,C).

The proof is omited by the page limit. Based on the lemma, we are motivated
to classify all strings by Sig(S, Eq(C)) and Sig(S, C) for all C € C(k, d) to obtain
all the pairs of strings satisfying the condition of the lemma. By checking the
edit distance for all pairs in each group classified, we can find all pairs of strings
with edit distance at most d.

Theorem 4. The computation time of algorithm MultiClassification modified to
edit distance is bounded by O(3%/k x |S| x; Cy), except for that for step 1.

Theorem 5. For setS of strings of length | and distance threshold d, we can find
all pairs of strings with edit distance at most d in O(Sd(zfzo 1Ci)x(|S|+1?N)) =
O(2'3%(|S| + I12N)) time where N is the number of string pairs to be output.

6 Computational Experiments

This section shows the results of computational experiments of the basic version
of our algorithm. The code was written in C, and compiled with gcc. We used
a note PC with a Pentium M 1.2GHz processor with 768 MB of memory, with
cygwin which is a Linux emulator on Windows. The implementation is available
at the author’s homepage; http://research.nii.ac.jp/ uno/index.html.

The instance is the set of substrings of fixed length taken from the Y chro-
mosome of Homo sapiens. The length is set to 20,50 and 300. Figure 3 shows
the results. Each line corresponds to one threshold value d. The X-axis is the
number of input substrings, and Y -axis is the computation time. Both axes use
log scales. We can see that the computation time increases slightly higher than
linear, but smaller than the square. Figure 4 shows the number of executed radix
sorts. The number increases drastically if the number of mismatches increases,
but does not increase much as the increase of input size.

We also show the increase in computation time against the increase of [with
fixed d/I. The instance is fixed to that with 2.1 million strings, and the result
is shown in the right-lower figure of Figure 3. From these results, at least for
genome sequences our algorithm is quite scalable for the increase of input string.

7 Conclusion

We proposed an efficient algorithm for enumerating all pairs of strings with Ham-
ming distance at most given d from string set S. We focused on the practical

10000 1 |=20] |10000 [=50

1000 - 1000 +

= o
100 =1l | 100+ e
—d=2 ——d=6
10 4 —-d=3 10 *-d=8
-xd=4 —~d=10

2 700 2100 7000 22953

PUtime(sec)

CPUtime(sec)

2 700 2100 7000 22953
601 length(1000letters) 0.1 length(1000letters)
0000 =300 10000 _d/I fix
~—d/1=0/30
5 || ™1 e
—-d=10 =
100 1 e ——d/I=3/30
+j:§8 100 4 - -d/1 = 4/30
_ —~—d/1=5/30
5 101 x-d=40| | |~
3 ~d=50| | | 8 10 | — -d/I = 6/30
T —d=60] | |'g
IS — T T T =
B 210 700 2100 7000 22953 = ‘ ‘ ‘
GO length(1000letters)| | & 30 60 120 240 480 length |

Fig. 3. Increase in computation time against the increase in database size with fixed [
and d: the right-lower figure is for fixed d/I inputting a string of 2.1 million letters

efficiency of algorithms, and proposed an algorithm based on multiple classifi-
cations according to combinations of blocks of each string. We proved that the
computation time of its variant is bounded by linear of the string length when
the length of strings in the string set is constant. A simple modification of the
algorithm adapts the edit distance, and computation of mismatch tolerance.

We also proposed a method of finding similar non-short substrings from huge
strings. We modeled similar non-short strings by two non-short strings including
several short similar substrings. We presented an efficient algorithm for finding
those strings from huge strings. By the computational experiments for genome
sequences, we demonstrated the practical efficiency of the algorithm. On the
comparison of genome sequences, we could find similar long substrings from
human and mouse genomes in a practically short time.

Acknowledgments

We gratefully thank to Professor Asao Fujiyama of National Institute of In-
formatics of Japan, Professor Shinichi Morishita of Tokyo University Doctor
Takehiko Itoh of Mitsubishi Research Institute, and Professor Hidemi Watanabe
of Hokkaido University, for their valuable comments. We would also like to thank
to Professor Tsuyoshi Koide and Doctor Juzo Umemori of National Institute of

100000 #radix sorts
10000

—~—2/20
—=-5/50
——30/300
—=4/20
-*-10/50
——60/300

210 700 2100 7000 22953 length |

Combinations

Fig. 4. number of radix sorts performed.

Genetics for their contribution to the evaluation of the algorithm on practical
genome problems.

References

1.

2.

9.

K. Abrahamson, Generalized String Matching, SIAM J. on Comp., 16(6), pp. 1039—
1051, 1987.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local
alignment search tool, J. Mol. Biol. 215, pp. 403-10, 1990.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang Z, W. Miller, D.
J. Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs, Nucleic Acids Res., 25, pp. 3389-3402, 1997.

. A. Amir, M. Lewenstein, and E. Porat, Faster Algorithms for String Matching with

k Mismatches, In Symposium on Disc. Alg., pp. 794-803, 2000.

P. Brown and D. Botstein, Exploring the New World of the Genome with DNA
Microarrays, Nature Genetics, 21, pp. 33-37, 2000.

J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan, An Approximate 11-
difference Algorithm for Massive Data Streams, In Proc. FOCS99, 1999.

U. Manber and G. Myers, Suffix Arrays: A New Method for On-line String Searches,
SIAM J. on Comp., 22, pp. 935-948, 1993.

S. Muthukrishnan and S. C. Sahinalp, Approximate Nearest Neighbors and Se-
quence Comparison with Block Operations, In Proc. 82nd annual ACM symposium
on Theory of Computing, pp. 416—424, 2000.

S. Muthukrishnan and S. C. Sahinalp, Simple and Practical Sequence Nearest Neigh-
bors under Block Edit Operations, In Proc. CPM2002, 2002.

10. W. R. Pearson, Flexible sequence similarity searching with the FASTA3 program

package, Methods in Molecular Biology 132, pp. 185-219, 2000.

11. S. Yamada, O. Gotoh, H. Yamana, Improvement in Accuracy of Multiple Sequence

Alignment Using Novel Group-to-group Sequence Alignment Algorithm with Piece-
wise Linear Gap Cost, BMC' Bioinformatics 7, pp. 524, 2006.

12. T. Yamada and S. Morishita, Computing Highly Specific and Mismatch Tolerant

Oligomers Efficiently, Bioinformatics Conference 2003, 2003.

13. T. Yamada and S. Morishita, Accelerated Off-target Search Algorithm for siRNA,

Bioinformatics 21, pp. 1316-1324, 2005.

