A Characterization of Locally Testable Affine-Invariant Properties via Decomposition Theorems

Yuichi Yoshida

National Institute of Informatics and Preferred Infrastructure, Inc

June 1, 2014

Yuichi Yoshida (NII and PFI) Characterizing Locally Testable Properties

Property Testing

Definition

 $f: \{0,1\}^n \to \{0,1\}$ is ϵ -far from \mathcal{P} if, for any $g: \{0,1\}^n \to \{0,1\}$ satisfying \mathcal{P} ,

 $\Pr_{x}[f(x) \neq g(x)] \geq \epsilon.$

Property Testing

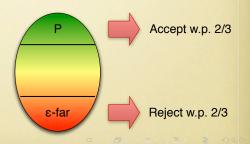
Definition

 $f: \{0,1\}^n \to \{0,1\}$ is ϵ -far from \mathcal{P} if, for any $g: \{0,1\}^n \to \{0,1\}$ satisfying \mathcal{P} ,

 $\Pr_{x}[f(x) \neq g(x)] \geq \epsilon.$

 ϵ -tester for a property \mathcal{P} :

- Given $f: \{0,1\}^n \rightarrow \{0,1\}$ as a query access.
- Proximity parameter $\epsilon > 0$.



Local Testability and Affine-Invariance

Definition

 \mathcal{P} is *locally testable* if, for any $\epsilon > 0$, there is an ϵ -tester with query complexity that only depends on ϵ .

Local Testability and Affine-Invariance

Definition

 \mathcal{P} is *locally testable* if, for any $\epsilon > 0$, there is an ϵ -tester with query complexity that only depends on ϵ .

Definition

 \mathcal{P} is *affine-invariant* if a function $f : \mathbb{F}_2^n \to \{0, 1\}$ satisfies \mathcal{P} , then $f \circ A$ satisfies \mathcal{P} for any bijective affine transformation $A : \mathbb{F}_2^n \to \mathbb{F}_2^n$.

Examples of locally testable affine-invariant properties:

- *d*-degree Polynomials [AKK+05, BKS+10].
- Fourier sparsity [GOS⁺11].
- Odd-cycle-freeness [BGRS12].

The Question and Related Work

Q. Characterization of locally testable affine-invariant properties? [KS08]

- Locally testable with one-sided error ⇔ affine-subspace hereditary? [BGS10]
 Ex. low-degree polynomials, odd-cycle-freeness.
 - \Rightarrow is true. [BGS10]
 - \leftarrow is true (if the property has bounded complexity). [BFH+13].

The Question and Related Work

Q. Characterization of locally testable affine-invariant properties? [KS08]

- Locally testable with one-sided error ⇔ affine-subspace hereditary? [BGS10]
 Ex. low-degree polynomials, odd-cycle-freeness.
 - \Rightarrow is true. [BGS10]
 - \leftarrow is true (if the property has bounded complexity). [BFH+13].
- \mathcal{P} is locally testable \Rightarrow distance to \mathcal{P} is estimable. [HL13]

The Question and Related Work

Q. Characterization of locally testable affine-invariant properties? [KS08]

 Locally testable with one-sided error ⇔ affine-subspace hereditary? [BGS10]

Ex. low-degree polynomials, odd-cycle-freeness.

- \Rightarrow is true. [BGS10]
- \leftarrow is true (if the property has bounded complexity). [BFH⁺13].
- \mathcal{P} is locally testable \Rightarrow distance to \mathcal{P} is estimable. [HL13]
- \mathcal{P} is locally testable \Leftrightarrow regular-reducible. [This work]

Graph Property Testing

Definition

A graph G = (V, E) is ϵ -far from a property \mathcal{P} if we must add or remove at least $\epsilon |V|^2$ edges to make G satisfy \mathcal{P} .

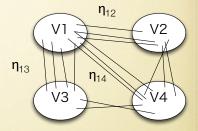
Examples of locally testable properties:

- 3-Colorability [GGR98]
- H-freeness [AFKS00]
- Monotone properties [AS08b]
- Hereditary properties [AS08a]

A Characterization of Locally Testable Graph Properties

Szemerédi's regularity lemma:

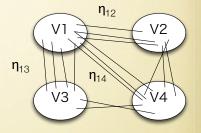
Every graph can be partitioned into a constant number of parts so that each pair of parts looks random.



A Characterization of Locally Testable Graph Properties

Szemerédi's regularity lemma:

Every graph can be partitioned into a constant number of parts so that each pair of parts looks random.



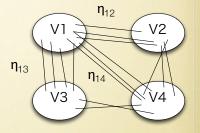
Theorem ([AFNS09])

A graph property \mathcal{P} is locally testable \Leftrightarrow whether \mathcal{P} holds is determined only by the set of densities $\{\eta_{ij}\}_{i,j}$.

A Characterization of Locally Testable Graph Properties

Szemerédi's regularity lemma:

Every graph can be partitioned into a constant number of parts so that each pair of parts looks random.



Theorem ([AFNS09])

A graph property \mathcal{P} is locally testable \Leftrightarrow whether \mathcal{P} holds is determined only by the set of densities $\{\eta_{ij}\}_{i,j}$.

Q. How can we extract such constant-size sketches from functions?

Yuichi Yoshida (NII and PFI)

Constant Sketch for Functions

Theorem (Decomposition Theorem [BFH+13])

For any $\gamma > 0$, $d \ge 1$, and $r : \mathbb{N} \to \mathbb{N}$, there exists \overline{C} such that: any function $f : \mathbb{F}_2^n \to \{0, 1\}$ can be decomposed as f = f' + f'', where

Constant Sketch for Functions

Theorem (Decomposition Theorem [BFH⁺13])

For any $\gamma > 0$, $d \ge 1$, and $r : \mathbb{N} \to \mathbb{N}$, there exists \overline{C} such that: any function $f : \mathbb{F}_2^n \to \{0, 1\}$ can be decomposed as f = f' + f'', where

- a structured part $f' : \mathbb{F}_2^n \to [0, 1]$, where
 - $f' = \Gamma(P_1, \ldots, P_C)$ with $C \leq \overline{C}$,
 - P₁,..., P_C are "non-classical" polynomials of degree < d and rank ≥ r(C).
 - $\Gamma : \mathbb{T}^C \to [0, 1]$ is a function.

Constant Sketch for Functions

Theorem (Decomposition Theorem [BFH⁺13])

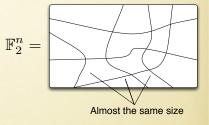
For any $\gamma > 0$, $d \ge 1$, and $r : \mathbb{N} \to \mathbb{N}$, there exists \overline{C} such that: any function $f : \mathbb{F}_2^n \to \{0, 1\}$ can be decomposed as f = f' + f'', where

- a structured part $f' : \mathbb{F}_2^n \to [0, 1]$, where
 - $f' = \Gamma(P_1, \ldots, P_C)$ with $C \leq \overline{C}$,
 - P₁,..., P_C are "non-classical" polynomials of degree < d and rank ≥ r(C).
 - $\Gamma : \mathbb{T}^C \to [0, 1]$ is a function.
- a pseudo-random part $f'' : \mathbb{F}_2^n \to [-1, 1]$
 - The Gowers norm $||f''||_{U^d}$ is at most γ .

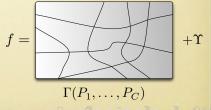
Factors

Polynomial sequence
$$(P_1, \ldots, P_C)$$

partitions \mathbb{F}_2^n into atoms
 $\{x \mid P_1(x) = b_1, \ldots, P_C(x) = b_C\}.$



The decomposition theorem says:



Yuichi Yoshida (NII and PFI)

Characterizing Locally Testable Properties

What is the Gowers Norm?

Definition

Let $f : \mathbb{F}_2^n \to \mathbb{C}$. The *d*-th Gowers norm of f is

$$\|f\|_{U^d} := \left(\sum_{x,y_1,...,y_d} \prod_{I \subseteq \{1,...,d\}} J^{|I|} f(x + \sum_{i \in I} y_i) \right)^{1/2^d},$$

where J denotes complex conjugation.

What is the Gowers Norm?

Definition

Let $f : \mathbb{F}_2^n \to \mathbb{C}$. The *d*-th Gowers norm of f is

$$\|f\|_{U^d} := \left(\sum_{x,y_1,\dots,y_d} \prod_{I \subseteq \{1,\dots,d\}} J^{|I|} f(x + \sum_{i \in I} y_i) \right)^{1/2^d},$$

where J denotes complex conjugation.

• For any linear function $L: \mathbb{F}_2^n \to \mathbb{F}_2$,

$$\|(-1)^{L}\|_{U^{2}} = |\underset{x,y_{1},y_{2}}{\mathsf{E}}(-1)^{L(x)+L(x+y_{1})+L(x+y_{2})+L(x+y_{1}+y_{2})}| = 1.$$

• For any polynomial $P : \mathbb{F}_2^n \to \mathbb{F}_2$ of degree $\langle d, \| (-1)^P \|_{U^d} = 1$.

Gowers Norm Measures Correlation with Non-Classical Polynomials

Definition

 $P: \mathbb{F}_2^n \to \mathbb{T}$ is a non-classical polynomial of degree < d if $\|e^{2\pi i \cdot P}\|_{U^d} = 1$.

The range of P is
$$\{0, \frac{1}{2^{k+1}}, \dots, \frac{2^{k+1}-1}{2^{k+1}}\}$$
 for some $k \ (= depth)$.

Lemma

- $f: \mathbb{F}_2^n \to \mathbb{C}$ with $\|f\|_{\infty} \leq 1$.
 - ||f||_{U^d} ≤ ε ⇒ ⟨f, e^{2πi·P}⟩ ≤ ε for any non-classical polynomial P of degree < d. (Direct Theorem)
 - ||f||_{U^d} ≥ ε ⇒ ⟨f, e^{2πi·P}⟩ ≥ δ(ε) for some non-classical polynomial P of degree < d. (Inverse Theorem)

Is This Really a Constant-size Sketch?

- Structured part: $f' = \Gamma(P_1, \ldots, P_C)$.
- Γ indeed has a constant-size representation, but P₁,..., P_C may not have (even if we just want to specify the coset {P ∘ A}).
- The rank of (P_1, \ldots, P_C) is high
 - \Rightarrow Their degrees and depths determine almost everything. Ex. the distribution of the restriction of f to a random affine subspace.

Regularity-Instance

Formalize "f has some specific structured part".

Definition

- A regularity-instance I is a tuple of
 - an error parameter $\gamma > 0$,
 - a structure function $\Gamma : \mathbb{T}^C \to [0, 1]$,
 - a complexity parameter $C \in \mathbb{N}$,
 - a degree-bound parameter $d \in \mathbb{N}$,
 - a degree parameter $\mathbf{d} = (d_1, \dots, d_C) \in \mathbb{N}^C$ with $d_i < d$,
 - a depth parameter $\mathbf{h} = (h_1, \dots, h_C) \in \mathbb{N}^C$ with $h_i < \frac{d_i}{p-1}$, and
 - a rank parameter $r \in \mathbb{N}$.

Satisfying a Regularity-Instance

Definition

Let $I = (\gamma, \Gamma, C, d, \mathbf{d}, \mathbf{h}, r)$ be a regularity-instance. *f* satisfies *I* if it is of the form

$$f(x) = \Gamma(P_1(x), \ldots, P_C(x)) + \Upsilon(x),$$

where

- P_i is a polynomial of degree d_i and depth h_i ,
- (P_1, \ldots, P_C) has rank at least r,
- $\|\Upsilon\|_{U^d} \leq \gamma.$

Testing the Property of Satisfying a Regularity-Instance

Theorem

The property of satisfying a regularity-instance is locally testable (if the rank parameter is sufficiently large).

Testing the Property of Satisfying a Regularity-Instance

Theorem

The property of satisfying a regularity-instance is locally testable (if the rank parameter is sufficiently large).

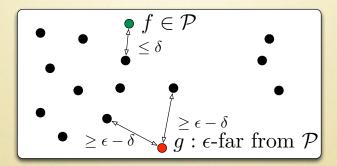
Algorithm:

- 1: Set δ small enough and *m* large enough.
- 2: Take a random affine embedding $A : \mathbb{F}_2^m \to \mathbb{F}_2^n$.
- 3: if $f \circ A$ is δ -close to satisfying I then accept.

4: else reject.

Regular-Reducibility

A property \mathcal{P} is *regular-reducible* if for any $\delta > 0$, there exists a set \mathcal{R} of constant number of high-rank regularity-instances with constant parameters such that:



Our Characterization

Theorem

Yuichi Yoshida (NII and PFI) Characterizing Locally Testable Properties

Proof Intuition

- Regular-reducible ⇒ Locally testable Combining the testability of regularity-instances and [HL13], we can estimate the distance to *R*.
- Locally testable ⇒ Regular-reducible
 The behavior of a tester depends only on the distribution of the
 restriction to a random affine subspace. Since Γ, d, and h
 determines the distribution, we can find *R* using the tester.

Conclusions

Obtained a characterization of locally testable affine-invariant properties.

- Easily extendable to \mathbb{F}_p for a prime p.
- Query complexity is actually unknown due to the Gowers inverse theorem. Other parts involve Ackermann-like functions.

Open Problems

- Characterization based on function (ultra)limits?
- Characterization of linear-invariant properties?
- Study other groups?
 - Abelian \Rightarrow Higher order Fourier analysis developed by [Sze12].
 - Non-Abelian \Rightarrow Representation theory.
- Why is affine invariance easier to deal with than permutation invariance?