Testing Assignments to Constraint Satisfaction Problems

Yuichi Yoshida

(NII & PFI)

Joint work with Hubie Chen (Univ. País Vasco & IKERBASQUE) Matt Valeriote (McMaster Univ.)

Given an instance I = (V, C):

- V: variable set over a finite domain D.
- C: set of constant-arity constraints.

Find an assignment $f: V \rightarrow D$ that satisfies all the constraints.

Examples:

- k-SAT
- *k*-LIN: system of linear equations on $\leq k$ variables over \mathbb{Z}_q
- q-Coloring
- Unique Games ($x = \pi(y)$ for a bijection $\pi : D \to D$).

We are interested in how the difficulty of the problem changes by varying constraints.

Definition (CSP)

A CSP (denoted $\text{CSP}_D(\Gamma)$) is specified by

- finite domain *D* = {1,...,*q*}
- constraint language Γ: a collection of relations over *D*.
 - relation: a set of *r*-tuples (*r*: arity of *R*)

Example (q-Coloring)

- $D = \{1, ..., q\}.$
- Γ has only one relation $R = \{(a, b) \in \{1, \dots, q\}^2 \mid a \neq b\}$.

Definition (CSP instance of $CSP_D(\Gamma)$)

An instance (denoted I = (V, C)) of $CSP_D(\Gamma)$ is specified by

- a variable set V
- a set C of constraints (R, S), where R ∈ Γ; S is a set of ar(R) variables.

Definition (CSP instance of $CSP_D(\Gamma)$)

An instance (denoted I = (V, C)) of $CSP_D(\Gamma)$ is specified by

- a variable set V
- a set C of constraints (R, S), where R ∈ Γ; S is a set of ar(R) variables.

A large number of works on finding satisfying assignments $f: V \rightarrow D$, i.e., $f|_S \in R$ for every constraint $(R, S) \in C$.

Testing Assignments to CSPs

Can we decide if an assignment

- satisfies a CSP instance or
- not?

 \Rightarrow Yes, in linear time (in |V| + |C|).

Testing Assignments to CSPs

Can we decide if an assignment

• satisfies a CSP instance or

• not?

 \Rightarrow Yes, in linear time (in |V| + |C|).

Can we more quickly test if an assignment

- satisfies a CSP instance or
- is far from satisfying assignments?

 \Rightarrow Depends on Γ , but sometimes we can do even in constant time (independent of |V| and |C|).

This work:

A characterization of constant-time testable Γ .

Testing Assignments to CSPs

Definition (Testing $CSP_D(\Gamma)$)

Input:

- $\epsilon \in (0, 1)$
- a (satisfiable) instance I = (V, C) of $CSP_D(\Gamma)$
- weight function $w : V \to \mathbb{R}$ with $\sum_{v \in V} w(v) = 1$.
- a query access to an assignment $f: V \rightarrow D$.

Output:

- Yes w.p. $\geq 2/3$ if f satisfies I.
- No w.p. $\geq 2/3$ if f is ϵ -far from satisfying I, i.e.,

$$\operatorname{dist}(f,g) := \sum \{w(v) \mid v \in V, f(v) \neq g(v)\} > \epsilon$$

for any satisfying assignment g of I.

Known Results

How does Γ affect the worst-case query complexity?

CSP	Query complexity
2-Coloring	<i>O</i> (1)
2-SAT	$\Omega(\frac{\log n}{\log \log n}), O(\sqrt{n}) [FLN^+02]$
3-Coloring, 3-SAT, 3-LIN	$\Omega(n)$ [BSHR05]
Horn 3-SAT	Ω(<i>n</i>) [BY13]

- The algebra associated with a CSP determines its query complexity [Yos14].
- Trichotomy for Boolean CSPs [BY13]:
 - Constant-query testable.
 - Not constant-query testable, but sublinear-query testable.
 - Not sublinear-query testable.

Main Result

Theorem (Dichotomy for general CSPs)

There exists an algebraic condition \mathcal{A} such that

- If Γ satisfies \mathcal{A} , then $CSP_D(\Gamma)$ is constant-query testable.
- Otherwise, $CSP_D(\Gamma)$ is not constant-query testable.

Main Result

Theorem (Dichotomy for general CSPs)

There exists an algebraic condition \mathcal{A} such that

- If Γ satisfies \mathcal{A} , then $\text{CSP}_D(\Gamma)$ is constant-query testable.
- Otherwise, $CSP_D(\Gamma)$ is not constant-query testable.

What's algebra?

Polymorphism

Definition (Polymorphism)

A function $f : D^k \to D$ is called a polymorphism of Γ if for any $R \in \Gamma$ of arity r,

$$(a_1^1, \dots, a_r^1) \in R$$
$$\vdots$$
$$(a_1^k, \dots, a_r^k) \in R$$
$$\downarrow f$$
$$(b_1, \dots, b_r) \in R$$

Polymorphism

Definition (Polymorphism)

A function $f : D^k \to D$ is called a polymorphism of Γ if for any $R \in \Gamma$ of arity r,

$$(a_1^1, \dots, a_r^1) \in R$$
$$\vdots$$
$$(a_1^k, \dots, a_r^k) \in R$$
$$\downarrow f$$
$$(b_1, \dots, b_r) \in R$$

Pol(Γ): the set of polymorphisms of Γ . (D, Pol(Γ)) is the algebra associated with Γ .

Polymorphism

Example

• min is a polymorphism of Horn *k*-SAT for any *k*. Consider $R = \{(u, v, w) \mid u \land v \Rightarrow w\}.$

> $(1, 0, 0) \in R$ $(0, 1, 0) \in R$ ↓ min $(0, 0, 0) \in R$

- (ternary) majority is a polymorphism of 2-SAT.
- $x + y + z \pmod{2}$ is a polymorphism of 3-LIN.
- The only polymorphism of 3-SAT is $f(x) = x_i$ (projection).

Polymorphisms Determine Query Complexity

To study query complexity of $CSP(\Gamma)$, we only have to look at polymorphisms!

Theorem ([Yos14])

Let Γ and Γ' be constraint languages with $Pol(\Gamma) = Pol(\Gamma')$. If $CSP(\Gamma)$ is constant-query testable, then $CSP(\Gamma')$ is constant-query testable.

Main Result

Theorem (Dichotomy for general CSPs)

The following holds:

- (i) If Pol(Γ) has a majority and a Maltsev operation (arithmetic), then CSP(Γ) is constant-query testable.
- (ii) Otherwise, $CSP(\Gamma)$ is not constant-query testable.

majority $m : D^3 \rightarrow D$: m(b, a, a) = m(a, b, a) = m(a, a, b) = a. Maltsev $p : D^3 \rightarrow D$: p(b, a, a) = p(a, a, b) = b.

Main Result

Theorem (Dichotomy for general CSPs)

The following holds:

- (i) If Pol(Γ) has a majority and a Maltsev operation (arithmetic), then CSP(Γ) is constant-query testable.
- (ii) Otherwise, $CSP(\Gamma)$ is not constant-query testable.

majority $m : D^3 \rightarrow D$: m(b, a, a) = m(a, b, a) = m(a, a, b) = a. Maltsev $p : D^3 \rightarrow D$: p(b, a, a) = p(a, a, b) = b.

We only look at (i) as (ii) is obtained by a simple modification of $[FLN^+02]$.

Arithmetic CSPs

Example

- 2-Coloring
- Unique Games
- Modular arithmetic:

```
D = \{0, 1, ..., 29\}.
Relations:
```

- $x \equiv y \pmod{p}$ for $p \in \{2, 3, 5\}$.
- $x \equiv a \pmod{p}$ for $p \in \{2, 3, 5\}$ and $a \in \{0, 1, \dots, p-1\}$.
- An example derived from finite Heyting algebra...

Constant-Query Tester for Arithmetic CSPs

The idea is transforming the given input (I, f) to a trivial one by a sequence of reductions.

- Factoring reduction
- Splitting reduction
- Isomorphism reduction

Constant-Query Tester for Arithmetic CSPs

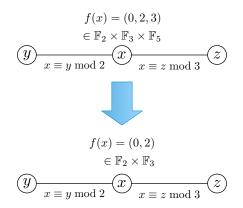
The idea is transforming the given input (I, f) to a trivial one by a sequence of reductions.

- Factoring reduction
- Splitting reduction
- Isomorphism reduction

We look at these reductions for modular arithmetic. It is convenient to identify the domain $\{0, 1, ..., 29\}$ with $\mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{F}_5$.

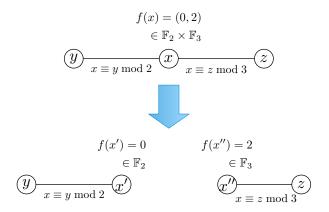
Factoring Reduction

Shrink the domain of each variable by factoring by an irrelevant congruence:



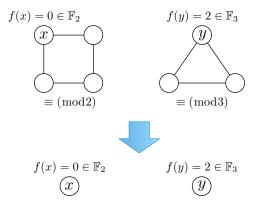
Splitting Reduction

Split variables (Chinese remainder theorem):



Isomorphism reduction

Relations in each connected component are isomorphisms. Test the consistency of f within each connected component. If the test passes, contract the connected components.



Trivial instance!

Constant-Query Tester for Arithmetic CSPs

The details are complicated:

- We need to preprocess *I*.
- ϵ -farness should be also preserved.
- We should query *f* on the fly.
- In isomorphism reduction, relations may be just surjective homomorphisms.
- We need to perform these reductions |D| times.

The arithmetic condition is used to guarantee that a factoring reduction followed by a factoring, a splitting, and an isomorphism reduction always shrinks the domain.

The resulting query complexity: $2^{O(|D|)}/\epsilon^2$.

Conclusions

Dichotomy for testing assignments to CSPs:

```
Majority + Maltsev \Leftrightarrow Constant-query testability.
```

Also, we achieved a trichotomy for testing $\exists CSPs$ with one-sided error ($\exists CSP = a CSP$ with existentially quantified variables).

Conclusions

Dichotomy for testing assignments to CSPs:

```
Majority + Maltsev ⇔ Constant-query testability.
```

Also, we achieved a trichotomy for testing $\exists CSPs$ with one-sided error ($\exists CSP = a CSP$ with existentially quantified variables).

Conjecture

 $\text{CSP}_D(\Gamma)$ is sublinear-query testable if and only if $\text{Pol}(\Gamma)$ has a *k*-near-unanimity operation for some $k \ge 3$.

k-ary near unanimity $n: D^k \to D$:

$$n(b, a, a, \ldots, a) = n(a, b, a, \ldots, a) = \cdots = n(a, a, \ldots, a, b) = a.$$

The if direction is true.