Nonlinear Laplacian for Digraphs and its Applications to Network Analysis
 Yuichi Yoshida
 (National Institute of Informatics)

Question: Can we develop spectral graph theory for digraphs?

- Spectral graph theory analyzes graph properties via eigenpairs of associated matrices (in particular, Laplacian).
- Well established for undirected graphs.
- Extensions for digraphs are largely unexplored although many real-world networks are directed.

Definition

The Laplacian for an undirected graph G

Adjacency matrix A_{G} Degree Matrix D_{G}

Laplacian $\mathrm{L}_{\mathrm{G}}:=\mathrm{D}_{\mathrm{G}}-\mathrm{A}_{\mathrm{G}}$ Normalized Laplacian:
$\mathcal{L}_{\mathrm{G}}:=\mathrm{D}_{\mathrm{G}}{ }^{-1 / 2} \mathrm{~L}_{\mathrm{G}} \mathrm{D}_{\mathrm{G}}{ }^{-1 / 2}$

The Laplacian for a digraph G (proposed)
Laplacian $\mathrm{L}_{\mathrm{G}}: \mathbb{R}^{\mathrm{V}} \rightarrow \mathbb{R}^{\mathrm{V}}$ transforms $\mathrm{x} \in \mathbb{R}^{\mathrm{V}}$ as follows:

- Construct an undirected graph H as follows:
- For each arc $u \rightarrow v$
- If $x(u) \geq x(v)$, add an undirected edge $\{u, v\}$.
- Otherwise, add self-loops to u and v.
- Output LH x .

Normalized Laplacian: $\mathcal{L}_{\mathrm{G}}: \mathrm{x} \mapsto \mathrm{D}_{\mathrm{G}}{ }^{-1 / 2} \mathrm{~L}_{\mathrm{G}}\left(\mathrm{D}_{\mathrm{G}}{ }^{-1 / 2} \mathrm{x}\right)$

Interpretation via electrical circuits

Regard G as an electrical circuit.

- Graph: edge = resistance of 1Ω
- Digraph: arc = diode of 1Ω (current flows only one way)

For each $u \in V$, flow a current of $b(u)$ amperes to u. The voltages $x \in \mathbb{R}^{V}$ of vertices is given by $L_{G}(x)=b$.

Graph
$1 \mathrm{~A} \rightarrow$

Digraph

Properties

(λ, v) is an eigenpair of $\boldsymbol{\mathcal { L }}_{\mathrm{G}}$ if $\mathcal{L}_{\mathrm{G}}(\mathrm{v})=\lambda \mathrm{v}$
Trivial eigenpair $\left(\lambda_{1}, v_{1}\right)$ with $\lambda_{1}=0$.
For any subspace U of positive dimension, $\Pi_{U} \boldsymbol{L}_{G}$ has
an eigenpair. ($\Pi_{U}=$ Projection matrix to U)
\Rightarrow Another eigenvalue of \mathcal{L}_{G} exists by choosing $U=v_{1}{ }^{\perp}$. Let $\lambda_{2}=$ the second smallest eigenvalue.

Visualization

Friendship network at a high school in Illinois
($u \rightarrow v$: u regards v as a friend)
Reorder vertices according to the eigenvector computed by the diffusion process

Chung's Laplacian

Proposed Laplacian

λ_{2} is the minimum of

$$
\sum_{\substack{u \rightarrow v}}(x(u)-x(v))^{2} \pi_{u} / d_{u}^{+} \quad \sum_{u \rightarrow v}(\max (x(u)-x(v), 0))^{2}
$$

Community Detection

(Directed) conductance $\phi^{+}(\mathrm{S})$ of S :

$$
\frac{\operatorname{cut}^{+}(\mathrm{S})}{\min (\mathrm{Vol}(\mathrm{~S}), \operatorname{vol}(\mathrm{V}-\mathrm{S}))}
$$

vol(S): total degree of $u \in S$.
cut $^{+}(S)$: \# of arcs from S to V-S

Cheeger's inequality for digraphs:

$$
\lambda_{2} \leq \min _{S} \phi^{+}(S) \leq 2 \sqrt{\lambda_{2}}
$$

Conductance of the set of the first k vertices after reordering.

