Nonlinear Laplacian for Digraphs and its Applications to Network Analysis Yuichi Yoshida (National Institute of Informatics)

Question: Can we develop spectral graph theory for digraphs?

- Spectral graph theory analyzes graph properties via eigenpairs of associated matrices (in particular, Laplacian).
- Well established for undirected graphs.
- Extensions for digraphs are largely unexplored although many real-world networks are directed.

Definition	
The Laplacian for an undirected graph G	The Laplacian for a digraph G (proposed)

Laplacian $L_G := D_G - A_G$ Normalized Laplacian: $\mathcal{L}_{G} := D_{G}^{-1/2} L_{G} D_{G}^{-1/2}$

Laplacian $L_G: \mathbb{R}^V \to \mathbb{R}^V$ transforms $\mathbf{x} \in \mathbb{R}^V$ as follows:

- Construct an undirected graph H as follows:
- For each arc $u \rightarrow v$
 - If $\mathbf{x}(\mathbf{u}) \ge \mathbf{x}(\mathbf{v})$, add an undirected edge {u, v}.
 - Otherwise, add self-loops to u and v.

Output $L_H x$.

Normalized Laplacian: $\mathcal{L}_G : \mathbf{X} \mapsto D_G^{-1/2} L_G (D_G^{-1/2} \mathbf{X})$

Interpretation via electrical circuits

Regard G as an electrical circuit.

- Graph: edge = resistance of 1Ω
- Digraph: arc = diode of 1Ω (current flows only one way)

For each $u \in V$, flow a current of $\mathbf{b}(u)$ amperes to u. The voltages $\mathbf{x} \in \mathbb{R}^{V}$ of vertices is given by $L_{G}(\mathbf{x}) = \mathbf{b}$.

	0.25 0.0 0.5 0.0
Properties	Algorithm
(λ, \mathbf{v}) is an eigenpair of \mathcal{L}_{G} if $\mathcal{L}_{G}(\mathbf{v}) = \lambda \mathbf{v}$ Trivial eigenpair $(\lambda_{1}, \mathbf{v}_{1})$ with $\lambda_{1} = 0$.	Computing λ_2 is (likely to be) NP-hard. Suppose we start the diffusion process $d\mathbf{x} = -\Pi_U \mathcal{L}_G(\mathbf{x}) dt$ from a vector in the subspace $\mathbf{U} = \mathbf{v}_1^{\perp}$. • \mathbf{x} converges to an eigenvector orthogonal to \mathbf{v}_1 . • Rayleigh quotient never increases during the process
For any subspace U of positive dimension, $\Pi_U \mathcal{L}_G$ has an eigenpair. ($\Pi_U =$ Projection matrix to U)	
⇒ Another eigenvalue of \mathcal{L}_{G} exists by choosing U = \mathbf{v}_{1}^{\perp} . Let λ_{2} = the second smallest eigenvalue.	

Visualization

Community Detection

Friendship network at a high school in Illinois $(u \rightarrow v: u \text{ regards } v \text{ as a friend})$ Reorder vertices according to the eigenvector computed by the diffusion process

(Directed) conductance $\phi^+(S)$ of S: cut⁺(S) $\min(vol(S), vol(V - S))$ vol(S): total degree of $u \in S$.

Email: yyoshida@nii.ac.jp

 $\phi^+(S) = 2/12 = 1/6$