Nonlinear Laplacian for Digraphs and Its Applications to Network Analysis

Yuichi Yoshida National Institute of Informatics & Preferred Infrastructure, Inc.

@WSDM 2016

Can we develop spectral graph theory for digraphs?

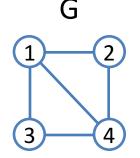
- Spectral graph theory analyzes graph properties via eigenpairs of associated matrices.
 - Adjacency matrix, incidence matrix, Laplacian
- Applications
 - Approximation to graph parameters (e.g, chromatic number), community detection, visualization, etc.
- Well established for undirected graphs.

Can we develop spectral graph theory for digraphs?

- Many real-world networks are directed!
 - Web graph, Twitter followers, phone calls, paper citations, food web, metabolic network.
- Extensions for digraphs are largely unexplored and unsatisfying.

Laplacian

- Graph G = (V, E)
- Adjacency matrix: A_G
- Degree matrix: D_G
- Laplacian $L_G := D_G A_G$

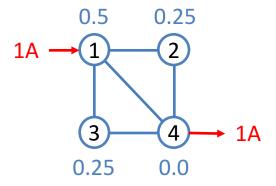


• Normalized Laplacian $\mathcal{L}_{G} := D_{G}^{-1/2} L_{G} D_{G}^{-1/2} = I - D_{G}^{-1/2} A_{G} D_{G}^{-1/2}$

Interpretation of Laplacian

- Regard G as an electric circuit.
- An edge = a resistance of 1Ω .
- Flow a current of $\mathbf{b}(\mathbf{u})$ ampere to each vertex $\mathbf{u} \in \mathbf{V}$.

The voltages of vertices can be computed by solving $L_G \mathbf{x} = \mathbf{b}$



Existing extensions of Laplacians for digraphs:

- 1. $L_G = D_G^+ A_G$
 - Asymmetric and hence eigenpairs are complex-valued.
- 2. Chung's Laplacian
 - Assume strong connectivity. Need random walks to interpret its eigenpairs.

Our contributions

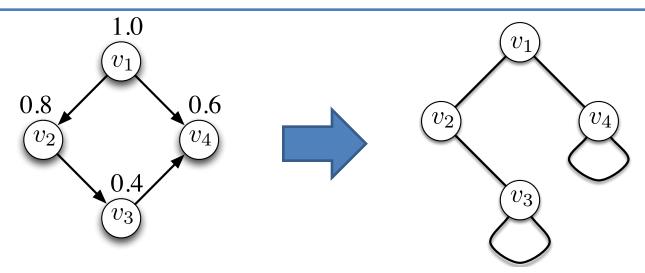
- 1. Laplacian for digraphs whose eigenpairs can be interpreted more combinatorially.
- 2. Algorithm that computes a small eigenvalue.
- 3. Applications to visualization and community detection.

Nonlinear Laplacian

Nonlinear Laplacian $L_G: \mathbb{R}^n \rightarrow \mathbb{R}^n$ for a digraph G:

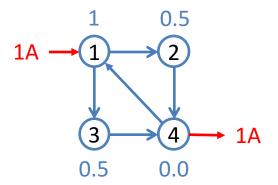
From a vector $\mathbf{x} \in \mathbb{R}^n$, we compute $L_G(\mathbf{x})$ as follows

- 1. Define an *undirected* graph as follows: for each arc $u \rightarrow v$
 - If $\mathbf{x}(u) \ge \mathbf{x}(v)$, add an (undirected) edge {u, v}.
 - Otherwise, add self-loops.
- 2. Let L_H be the Laplacian of H.
- 3. Output L_H**x**.



- Regard G = (V, E) as an electric circuit.
- An edge = a diode of 1Ω (current flows only one way).
- Flow a current of $\mathbf{b}(\mathbf{u})$ ampere to each vertex $\mathbf{u} \in \mathbf{V}$.

The voltages of vertices can be computed by solving $L_G(\mathbf{x}) = \mathbf{b}$.



Eigenpair of Nonlinear Laplacian

- Normalized Laplacian $\mathcal{L}_{G} : \mathbf{x} \mapsto D_{G}^{-1/2} L_{G} (D_{G}^{-1/2} \mathbf{x})$
- (λ, \mathbf{v}) is an eigenpair of \mathcal{L}_{G} if $\mathcal{L}_{G}(\mathbf{v}) = \lambda \mathbf{v}$ - Trivial eigenpair: $(\lambda_{1} = 0, \mathbf{v}_{1})$.

For any subspace U of positive dimension, $\Pi_U \mathcal{L}_G$ has an eigenpair. (Π_U = Projection matrix to U)

 \Rightarrow Nontrivial eigenpair of \mathcal{L}_{G} exists by choosing U = \mathbf{v}_{1}^{\perp} .

Let λ_2 be the smallest eigenvalue orthogonal to \mathbf{v}_1 .

Algorithm

Computing λ_2 is (likely to be) NP-hard.

Suppose we start the diffusion process

$$d\boldsymbol{x} = -\Pi_U \mathcal{L}_G(\boldsymbol{x}) dt$$

from a vector in the subspace U = \mathbf{v}_1^{\perp} .

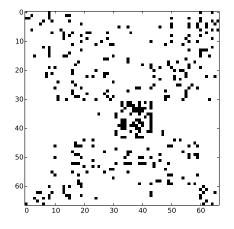
- **x** converges to an eigenvector orthogonal to \mathbf{v}_1 .
- Rayleigh quotient $\mathcal{R}_G(\mathbf{x}) := \frac{\mathbf{x}^T \Pi_U \mathcal{L}_G(\mathbf{x})}{\mathbf{x}^T \mathbf{x}}$ never increases during the process.
- \Rightarrow We can get a eigenvector of a small eigenvalue.

Friendship network at a high school in Illinois

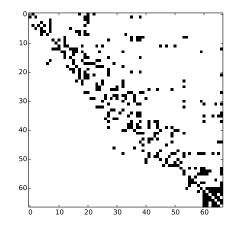
• $u \rightarrow v$: u regards v as a friend.

Reorder vertices according to the eigenvector computed by the diffusion process.

Chung's Laplacian



Nonlinear Laplacian



Our method shows the directivity of the network more clearly.

Visualization: Interpretation

Laplacian for undirected graphs

$$\lambda_2 = \min \sum_{\{u,v\} \in E} (x(u) - x(v))^2$$

s.t.
$$\|\mathbf{x}\| = 1$$
, $\mathbf{x} \perp \mathbf{v}_1$

• Adjacent vertices are placed near.

Chung's Laplacian

$$\lambda_2 = \min \sum_{u \to v \in E} (\mathbf{x}(u) - \mathbf{x}(v))^2 \pi_u / d_u^+ \quad \text{s.t. } \|\mathbf{x}\| = 1, \mathbf{x} \perp \mathbf{v}_1.$$

Important vertices (w.r.t. RW) are placed in the middle.
<u>Nonlinear Laplacian</u>

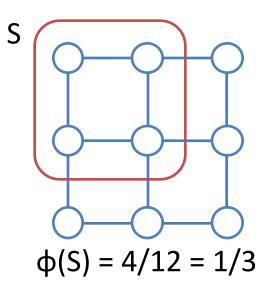
$$\lambda_2 = \min \sum_{u \to v \in E} \max(\mathbf{x}(u) - \mathbf{x}(v), 0)^2$$

s.t.
$$\|\mathbf{x}\| = 1, \mathbf{x} \perp \mathbf{v}_1$$
.

- If $\mathbf{x}(\mathbf{u}) \leq \mathbf{x}(\mathbf{v})$, then we get no penalty.
- In particular, $\lambda_2 = 0$ when G is a DAG.

Community Detection: Undirected Graphs

S: Vertex set vol(S): Total degree of vertices in S cut(S): # of edges between S and V-S The conductance $\phi(S)$ of S is $\frac{\text{cut}(S)}{\min(\text{vol}(S), \text{vol}(V-S))}$



Small conductance

 \rightarrow Good community

Community Detection: Undirected Graphs

Cheeger's inequality ('70) $\lambda_2/2 \le \min_S \varphi(S) \le \sqrt{(2\lambda_2)}$

- We can efficiently compute S with $\phi(S) \leq v(2\lambda_2)$ from v_2 .
- Still widely used.

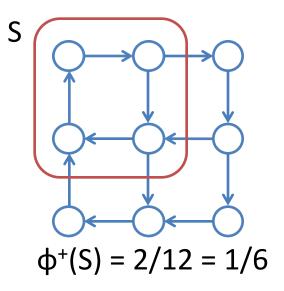
Community Detection: Digraphs

S: Vertex set

vol(S): Total indegrees + outdegrees of vertices in S

cut⁺(S): # of arcs from S to V-S

(Directed) conductance $\phi(S)$ of S is $\frac{\min(\operatorname{cut}^+(S),\operatorname{cut}^+(V-S))}{\min(\operatorname{vol}(S),\operatorname{vol}(V-S))}$



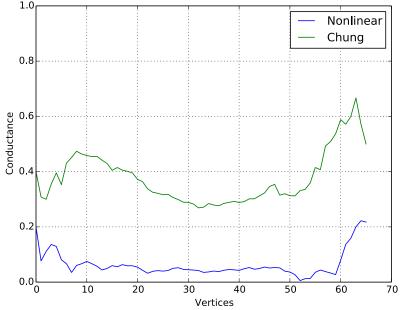
Community Detection: Digraphs

Cheeger's inequality for digraphs

$$\lambda_2/2 \le \min_{S} \phi(S) \le 2\sqrt{\lambda_2}$$

• We can efficiently compute S with $\phi(S) \leq 2\sqrt{\mathcal{R}_G}(\mathbf{x})$ from \mathbf{x} .

Reorder vertices according to the obtained eigenvector in the high school network, and plot ϕ of each prefix set.



- φ is low everywhere = directivity
- φ rapidly increases = community

Summary

Nonlinear Laplacian for digraphs

- Strong connectivity is not needed.
- Eigenpairs are combinatorially interpretable.
- Applications to visualization and community detection.

Future Work

- Approximation of λ_2 .
- Finding a community in time proportional to its size.
- Other applications.