
Non-monotone DR-Submodular Function Maximization

Submodularity and Diminishing Return Property

A function f : 2E → R is submodular if

f (X ) + f (Y ) ≥ f (X ∩ Y ) + f (X ∪ Y ) for every X ,Y ⊆ E.

Equivalent to the diminishing return property:

f (X ∪ {e}) − f (X ) ≥ f (Y ∪ {e}) − f (Y ) for every X ⊆ Y ⊆ E and e ∈ E \ Y .

Submodular Function Maximization (SFM)

For a submodular function f : 2E → R+,
maximize f (X ) subject to X ⊆ E.

I Double greedy [BFNS12] achieves (tight) 1/2-approximation in

polynomial time.

I Applications in many AI/ML tasks

Example: Revenue maximization

I E: Users in a social network service.

I For X ⊆ E, we o�er for free a product to users corresponding to X .

I f (X ): the expected # of new users who become an advocate of a

product through the word-of-mouth e�ect.

Extension to Integer La�ice

Motivation

I In revenue maximization, we may want to decide how much budget

should be set aside for each user.

I Extend the domain from 2E to ZE+!

A function f : ZE+ → R is DR-submodular (or has the diminishing return

property) if

f (x + χe ) − f (x) ≥ f (y + χe ) − f (y) for every x ≤ y and e ∈ E.

I Stronger than la�ice-submodularity:

f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y).
• ∨, ∧: coordinate-wise max and min.

Our Contributions

(i) Polynomial-time approximation algorithm for DR-submodular

function maximization (DR-SFM):

maximize f (x) subject to 0 ≤ x ≤ B forB ∈ RE+.

I Approximation ratio: 1/(2 + ϵ ).
• Cannot be be�er than 1/2.

• No constant-factor approximation if we only assume la�ice-submodularity.

I Time complexity: Õ
(
|E |
ϵ log ∆

δ log ‖B‖∞ · (θ + log ‖B‖∞)
)
.

• θ : time of evaluating f .

• δ : minimum positive marginal gain of f .

• ∆: maximum positive value of f .

(ii) Experimentally confirm the superiority against other baseline

methods on revenue maximization using real-world networks.

[EN16] independently found an algorithm with a be�er time complexity

by reducing DR-SFM to SFM.

Pseudo-polynomial Time Algorithm (DG)

A naive extension of double greedy

1: x← 0, y ← B.

2: for e ∈ E do

3: while x(e ) < y(e ) do

4: α ← f (χe | x) (:= f (χe + x) − f (x)) and β ← f (−χe | y).
5: if β < 0 then x(e ) ← x(e ) + 1.

6: if α < 0 then y(e ) ← y(e ) − 1.

7: else x(e ) ← x(e ) + 1 w.p.
α

α+β and y(e ) ← y(e ) − 1 w.p.
β

α+β .

8: return x.

Guarantee

I 1/2-approximation.

I Time complexity: O (‖B‖1 · (1 + θ )) ⇒ Pseudo-polynomial.

Polynomial-time Algorithm (Fast-DGϵ)

Idea

I Approximations to f (χe | x) and f (−χe | y) are enough to achieve an

approximation ratio close to 1/2.

I Let д(b) := f (χe | x + bχe ) and h(b) := f (−χe | y − bχe ).
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Construct g̃ from 0s

Non-increasingConcave

Fast-DGϵ

I Compute a compact representation д̃ (resp., h̃) from which we can

approximate (1 ± ϵ )д(b) (resp., (1 ± ϵ )h(b)).
I Then, simulate DG by using д̃ and h̃.

Guarantee

I Approximation ratio: 1/(2 + ϵ ).
I Time complexity: O ( |E |ϵ · log(

∆
δ ) log ‖B‖∞ · θ + ‖B‖1 log ‖B‖∞)

⇒ Still pseudo-polynomial but the number of oracle calls is polynomial.

Time complexity can be made polynomial by making large steps in the

while loop.

Experiments

Revenue maximization

I Input: a weighted graph G = (V , {wij}i,j∈V ) and p ∈ [0, 1].
I If we invest x ∈ Z+ units of cost on a user, the user becomes an

advocate of the product w.p. 1 − (1 − p)x .

I The revenue is

∑
i∈S

∑
j∈V \Swij, where S is a (random) set of advocates.

I Define DR-submodular function f : ZV+ → R as the expected revenue:

f (x) = E
S

[∑
i∈S

∑
j∈V \S

wij

]
=

∑
i∈S

∑
j∈V \S

wij (1 − (1 − p)x(i )) (1 − p)x(j ).

Se�ings

I Graph: Advogato (6,541 vertices and 61,127 edges)

I Baseline methods: Single Greedy (SG) and Lattice-DG [GP15].

Results
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(a) Objective values
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(b) Number of oracle calls

Fast-DG0.5 outperforms others:

I Achieves almost the best objective value.

I The number of oracle calls slowly grows and is two or three orders of

magnitude smaller when ‖B‖∞ is large.

Future Directions

I Maximization under cardinality/polymatroid/knapsack constraint.

I Continuous analogue of a submodular function

f : [0, 1]E → R+ [BMBK16].

• Can be seen as a limit of DR-submodular functions with ‖B‖∞ → ∞.
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