Non-monotone DR-Submodular Function Maximization

Submodularity and Diminishing Return Property

A function f : 2 — R is submodular if
fX)+f(Y)>f(XNY)+ f(XUY)forevery X,Y C E.

Equivalent to the diminishing return property:

f(XUle})—f(X)=f(YU{e})—f(Y)forevery X CYCFandec E\Y.

Submodular Function Maximization (SFM)

For a submodular function f : 2 — R,

maximize f(X) subjectto X CE.

» Double greedy [BFNS12] achieves (tight) 1/2-approximation in
polynomial time.

» Applications in many Al/ML tasks

Example: Revenue maximization
» E: Users in a social network service.
» For X C E, we offer for free a product to users corresponding to X.

» f(X): the expected # of new users who become an advocate of a
product through the word-of-mouth effect.

Extension to Integer Lattice

Motivation

» In revenue maximization, we may want to decide how much budget
should be set aside for each user.

» Extend the domain from 2% to ZZ!

A function f : Z¥ — R is DR-submodular (or has the diminishing return
property) if

f@+xe) —f(x) = f(y+xe)— f(y) forevery x <y ande € E.

» Stronger than lattice-submodularity:

f(x)+ f(y) > f(xVy) +f(a3Ay)

® V, A: coordinate-wise max and min.

Our Contributions

(i) Polynomial-time approximation algorithm for DR-submodular
function maximization (DR-SFM):

maximize f(x) subjectto 0 < x < B for B € R_.

» Approximation ratio: 1/(2 + €).
® Cannot be better than 1/2.
® No constant-factor approximation if we only assume lattice-submodularity.

» Time complexity: O(l |logélogllBllOO (9+10g||B||oo))

® 0: time of evaluating f.
® 0: minimum positive marginal gain of f.
® A: maximum positive value of f.

(ii) Experimentally confirm the superiority against other baseline
methods on revenue maximization using real-world networks.

[EN16] independently found an algorithm with a better time complexity
by reducing DR-SFM to SFM.

Pseudo-polynomial Time Algorithm (DG)

A naive extension of double greedy

¢« 0,y — B.
2. fore € E do
3: while x(e) < y(e) do
2 a— f(Xel®) (=f(Xetx)—f(x))and p « f(=Xe | Y).
5. if f < 0then x(e) « x(e) + 1.
6: If a <0theny(e) « y(e) —1.
7. else x(e) « x(e) + 1 w.p. ai-l—ﬁ and y(e) <« y(e) — 1 w.p. a’%ﬁ
8: return x.
Guarantee
» 1/2-approximation.
» Time complexity: O(||B]|; - (1 + 8)) = Pseudo-polynomial.

Polynomial-time Algorithm (FAsT-DG,)

ldea

» Approximations to f(x. | ) and f(—Xe. | y) are enough to achieve an
approximation ratio close to 1/2.

» Let g(b) := f(Xxe | ©+bXxe) and h(D) == f(—Xe | y— bXe).

fx +bxe) Concave g(b) Non-increasing

Construct ¢ from +%'s

FAST-DG,

» Compute a compact representation g (resp., h) from which we can
approximate (1 + €)g(b) (resp., (1 £ €)h(b)).
» Then, simulate DG by using g and h.

Guarantee
» Approximation ratio: 1/(2 + €).
» Time complexity: O(2 - log(4) log || Bllw - @ + || Bll; log || Bll)
= Still pseudo-polynomial but the number of oracle calls is polynomial.

Time complexity can be made polynomial by making large steps in the
while loop.

Experiments

Revenue maximization
» Input: a weighted graph G = (V, {w;j}ijev) and p € [0, 1].
» |If we invest x € Z. units of cost on a user, the user becomes an
advocate of the product w.p. 1 — (1 — p)”*.
» The revenue is ) ;c5 D iey\s Wij, Where S is a (random) set of advocates.
» Define DR-submodular function f : Z¥ — R as the expected revenue:

@ =Y. D w| =Y > wilt=(1=p*)a-p)0.

€S jeV\S €S jeV\S

Settings
» Graph: Advogato (6,541 vertices and 61,127 edges)
» Baseline methods: Single Greedy (SG) and LATTICE-DG [GP15].
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(a) Objective values (b) Number of oracle calls

FAST-DGy 5 outperforms others:
» Achieves almost the best objective value.

» The number of oracle calls slowly grows and is two or three orders of
magnitude smaller when || B|| is large.

Future Directions

» Maximization under cardinality/polymatroid/knapsack constraint.
» Continuous analogue of a submodular function
f:[0,1]* - R, [BMBK16].

® Can be seen as a limit of DR-submodular functions with || B||cc — oo.
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