Submodularity and Diminishing Return Property

A function $f: 2^{E} \rightarrow \mathbb{R}$ is submodular if
$f(X)+f(Y) \geq f(X \cap Y)+f(X \cup Y)$ for every $X, Y \subseteq E$.
Equivalent to the diminishing return property:
$f(X \cup\{e\})-f(X) \geq f(Y \cup\{e\})-f(Y)$ for every $X \subseteq Y \subseteq E$ and $e \in E \backslash Y$.

Submodular Function Maximization (SFM)

For a submodular function $f: 2^{E} \rightarrow \mathbb{R}_{+}$, maximize $f(X)$ subject to $\quad X \subseteq E$.

- Double greedy [BFNS12] achieves (tight) 1/2-approximation in polynomial time.
- Applications in many AI/ML tasks

Example: Revenue maximization

- E: Users in a social network service.
- For $X \subseteq E$, we offer for free a product to users corresponding to X.
- $f(X)$: the expected \# of new users who become an advocate of a product through the word-of-mouth effect.

Extension to Integer Lattice

Motivation

- In revenue maximization, we may want to decide how much budget should be set aside for each user.
- Extend the domain from 2^{E} to \mathbb{Z}_{+}^{E} !

A function $f: \mathbb{Z}_{+}^{E} \rightarrow \mathbb{R}$ is DR-submodular (or has the diminishing return property) if

$$
f\left(\boldsymbol{x}+\chi_{e}\right)-f(\boldsymbol{x}) \geq f\left(y+\chi_{e}\right)-f(\boldsymbol{y}) \text { for every } \boldsymbol{x} \leq \boldsymbol{y} \text { and } e \in E
$$

- Stronger than lattice-submodularity:
$f(\boldsymbol{x})+f(\boldsymbol{y}) \geq f(\boldsymbol{x} \vee \boldsymbol{y})+f(\boldsymbol{x} \wedge \boldsymbol{y})$.
- \vee, \wedge : coordinate-wise max and min.

Our Contributions

(i) Polynomial-time approximation algorithm for DR-submodular function maximization (DR-SFM):

$$
\text { maximize } f(\boldsymbol{x}) \quad \text { subject to } \quad \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{B} \text { for } \boldsymbol{B} \in \mathbb{R}_{+}^{E} .
$$

- Approximation ratio: $1 /(2+\epsilon)$.
- Cannot be better than $1 / 2$.
- No constant-factor approximation if we only assume lattice-submodularity.
- Time complexity: $\widetilde{O}\left(\frac{|E|}{\epsilon} \log \frac{\Delta}{\delta} \log \|\boldsymbol{B}\|_{\infty} \cdot\left(\theta+\log \|\boldsymbol{B}\|_{\infty}\right)\right)$.
- θ : time of evaluating f.
- δ : minimum positive marginal gain of f.
- Δ : maximum positive value of f.
(ii) Experimentally confirm the superiority against other baseline methods on revenue maximization using real-world networks.
[EN16] independently found an algorithm with a better time complexity by reducing DR-SFM to SFM.

Pseudo-polynomial Time Algorithm (DG)

A naive extension of double greedy
$x \leftarrow 0, y \leftarrow B$.
for $e \in E$ do
while $\boldsymbol{x}(e)<\boldsymbol{y}(e)$ do
$\alpha \leftarrow f\left(\chi_{e} \mid \boldsymbol{x}\right)\left(:=f\left(\chi_{e}+\boldsymbol{x}\right)-f(\boldsymbol{x})\right)$ and $\beta \leftarrow f\left(-\boldsymbol{\chi}_{e} \mid \boldsymbol{y}\right)$.
if $\beta<0$ then $\boldsymbol{x}(e) \leftarrow \boldsymbol{x}(e)+1$.
if $\alpha<0$ then $\boldsymbol{y}(e) \leftarrow \boldsymbol{y}(e)-1$.
else $\boldsymbol{x}(e) \leftarrow \boldsymbol{x}(e)+1$ w.p. $\frac{\alpha}{\alpha+\beta}$ and $\boldsymbol{y}(e) \leftarrow \boldsymbol{y}(e)-1$ w.p. $\frac{\beta}{\alpha+\beta}$.
return \boldsymbol{x}.

Guarantee

- 1/2-approximation.
- Time complexity: $O\left(\|\boldsymbol{B}\|_{1} \cdot(1+\theta)\right) \Rightarrow$ Pseudo-polynomial.

Polynomial-time Algorithm (FAST-DG ${ }_{\epsilon}$)

Idea

- Approximations to $f\left(\chi_{e} \mid \boldsymbol{x}\right)$ and $f\left(-\chi_{e} \mid \boldsymbol{y}\right)$ are enough to achieve an approximation ratio close to $1 / 2$.
- Let $g(b):=f\left(\chi_{e} \mid \boldsymbol{x}+b \chi_{e}\right)$ and $h(b):=f\left(-\chi_{e} \mid y-b \chi_{e}\right)$.

FASt-DG ${ }_{\epsilon}$

- Compute a compact representation \tilde{g} (resp., \tilde{h}) from which we can approximate $(1 \pm \epsilon) g(b)$ (resp., $(1 \pm \epsilon) h(b))$.
- Then, simulate DG by using \tilde{g} and \tilde{h}.

Guarantee

- Approximation ratio: $1 /(2+\epsilon)$.
- Time complexity: $O\left(\frac{|E|}{\epsilon} \cdot \log \left(\frac{\Lambda}{\delta}\right) \log \|\boldsymbol{B}\|_{\infty} \cdot \theta+\|\boldsymbol{B}\|_{1} \log \|\boldsymbol{B}\|_{\infty}\right)$
\Rightarrow Still pseudo-polynomial but the number of oracle calls is polynomial.
Time complexity can be made polynomial by making large steps in the while loop.

Experiments

Revenue maximization

- Input: a weighted graph $G=\left(V,\left\{w_{i j}\right\}_{i, j \in V}\right)$ and $p \in[0,1]$.
- If we invest $x \in \mathbb{Z}_{+}$units of cost on a user, the user becomes an advocate of the product w.p. $1-(1-p)^{x}$.
- The revenue is $\sum_{i \in S} \sum_{j \in V \backslash S} w_{i j}$, where S is a (random) set of advocates.
- Define DR-submodular function $f: \mathbb{Z}_{+}^{V} \rightarrow \mathbb{R}$ as the expected revenue:

$$
f(x)=\underset{S}{\mathrm{E}}\left[\sum_{i \in S} \sum_{j \in V \backslash S} w_{i j}\right]=\sum_{i \in S} \sum_{j \in V \backslash S} w_{i j}\left(1-(1-p)^{x(i)}\right)(1-p)^{x(j)} .
$$

Settings

- Graph: Advogato (6,541 vertices and 61,127 edges)
- Baseline methods: Single Greedy (SG) and Lattice-DG [GP15].

Results

(a) Objective values

(b) Number of oracle calls

FASt- $\mathrm{DG}_{0.5}$ outperforms others:

- Achieves almost the best objective value.
- The number of oracle calls slowly grows and is two or three orders of magnitude smaller when $\|B\|_{\infty}$ is large.

Future Directions

- Maximization under cardinality/polymatroid/knapsack constraint.
- Continuous analogue of a submodular function
$f:[0,1]^{E} \rightarrow \mathbb{R}_{+}[$BMBK16 $]$.
- Can be seen as a limit of DR-submodular functions with $\|\boldsymbol{B}\|_{\infty} \rightarrow \infty$.
[BFNS12] N. Buchbinder, M. Feldman, J. S. Naor, and R. Schwartz. A tight linear time (1/2)-approximation for unconstrained submodular maximization. In FOCS, pages 649-658, 2012.
[BMBK16] Y. Bian, B. Mirzasoleiman, J. M. Buhmann, and A. Krause. Guaranteed non-convex optimization: Submodular maximization over continuous domains. CoRR, abs/1606.05615, 2016.

