Non-monotone DR-Submodular Function Maximization

Submodularity and Diminishing Return Property

A function $f: 2^E \to \mathbb{R}$ is submodular if

 $f(X) + f(Y) \ge f(X \cap Y) + f(X \cup Y)$ for every $X, Y \subseteq E$.

Equivalent to the diminishing return property:

 $f(X \cup \{e\}) - f(X) \ge f(Y \cup \{e\}) - f(Y)$ for every $X \subseteq Y \subseteq E$ and $e \in E \setminus Y$.

Submodular Function Maximization (SFM)

For a submodular function $f: 2^E \to \mathbb{R}_+$, maximize f(X) subject to $X \subseteq E$.

- Double greedy [BFNS12] achieves (tight) 1/2-approximation in polynomial time.
- Applications in many AI/ML tasks

Example: Revenue maximization

Polynomial-time Algorithm (FAST-DG $_{\epsilon}$)

Idea

- Approximations to $f(\chi_e \mid x)$ and $f(-\chi_e \mid y)$ are enough to achieve an approximation ratio close to 1/2.
- Let $g(b) := f(\chi_e \mid x + b\chi_e)$ and $h(b) := f(-\chi_e \mid y b\chi_e)$.

$FAST-DG_{\epsilon}$

Compute a compact representation \tilde{g} (resp., h) from which we can approximate $(1 \pm \epsilon)g(b)$ (resp., $(1 \pm \epsilon)h(b)$). \blacktriangleright Then, simulate DG by using \tilde{q} and h.

- E: Users in a social network service.
- For $X \subseteq E$, we offer for free a product to users corresponding to X.
- ► f(X): the expected # of new users who become an advocate of a product through the word-of-mouth effect.

Extension to Integer Lattice

Motivation

- In revenue maximization, we may want to decide how much budget should be set aside for each user.
- Extend the domain from 2^E to \mathbb{Z}_+^E !

A function $f: \mathbb{Z}_+^E \to \mathbb{R}$ is DR-submodular (or has the diminishing return) property) if

 $f(x + \chi_e) - f(x) \ge f(y + \chi_e) - f(y)$ for every $x \le y$ and $e \in E$.

- Stronger than lattice-submodularity: $f(\boldsymbol{x}) + f(\boldsymbol{y}) \ge f(\boldsymbol{x} \lor \boldsymbol{y}) + f(\boldsymbol{x} \land \boldsymbol{y}).$
 - \lor , \land : coordinate-wise max and min.

Our Contributions

Guarantee

- Approximation ratio: $1/(2 + \epsilon)$.
- Fine complexity: $O(\frac{|E|}{\epsilon} \cdot \log(\frac{\Delta}{\delta}) \log ||B||_{\infty} \cdot \theta + ||B||_{1} \log ||B||_{\infty})$ \Rightarrow Still pseudo-polynomial but the number of oracle calls is polynomial.

Time complexity can be made polynomial by making large steps in the while loop.

Experiments

Revenue maximization

- ▶ Input: a weighted graph $G = (V, \{w_{ij}\}_{i,j \in V})$ and $p \in [0, 1]$.
- If we invest $x \in \mathbb{Z}_+$ units of cost on a user, the user becomes an advocate of the product w.p. $1 - (1 - p)^x$.
- ▶ The revenue is $\sum_{i \in S} \sum_{j \in V \setminus S} w_{ij}$, where *S* is a (random) set of advocates.
- Define DR-submodular function $f : \mathbb{Z}^V_+ \to \mathbb{R}$ as the expected revenue: $f(\boldsymbol{x}) = \mathop{\mathbf{E}}_{S} \left[\sum_{i \in S} \sum_{j \in V \setminus S} w_{ij} \right] = \sum_{i \in S} \sum_{j \in V \setminus S} w_{ij} (1 - (1 - p)^{\boldsymbol{x}(i)}) (1 - p)^{\boldsymbol{x}(j)}.$

(i) **Polynomial-time** approximation algorithm for DR-submodular function maximization (DR-SFM):

maximize f(x) subject to $0 \le x \le B$ for $B \in \mathbb{R}_+^E$.

- Approximation ratio: $1/(2 + \epsilon)$.
 - Cannot be better than 1/2.
 - No constant-factor approximation if we only assume lattice-submodularity.
- Time complexity: $\widetilde{O}\left(\frac{|E|}{\epsilon}\log\frac{\Delta}{\delta}\log\|B\|_{\infty}\cdot(\theta+\log\|B\|_{\infty})\right)$.
 - θ : time of evaluating f.
 - δ : minimum positive marginal gain of f.
 - Δ : maximum positive value of f.

(ii) Experimentally confirm the superiority against other baseline methods on revenue maximization using real-world networks.

[EN16] independently found an algorithm with a better time complexity by reducing DR-SFM to SFM.

Pseudo-polynomial Time Algorithm (DG)

A naive extension of double greedy

1: $x \leftarrow 0, y \leftarrow B$.

Settings

- Graph: Advogato (6,541 vertices and 61,127 edges)
- Baseline methods: Single Greedy (SG) and LATTICE-DG [GP15].

Results

- FAST-DG_{0.5} outperforms others:
 ▶ Achieves almost the best objective value.
- The number of oracle calls slowly grows and is two or three orders of magnitude smaller when $\|B\|_{\infty}$ is large.

2: for $e \in E$ do

- 3: while x(e) < y(e) do
- 4: $\alpha \leftarrow f(\chi_e \mid x) (:= f(\chi_e + x) f(x)) \text{ and } \beta \leftarrow f(-\chi_e \mid y).$
- 5: if $\beta < 0$ then $x(e) \leftarrow x(e) + 1$.
- 6: if $\alpha < 0$ then $y(e) \leftarrow y(e) 1$.
- 7: else $x(e) \leftarrow x(e) + 1$ w.p. $\frac{\alpha}{\alpha + \beta}$ and $y(e) \leftarrow y(e) 1$ w.p. $\frac{\beta}{\alpha + \beta}$.

8: return x.

Guarantee

- ▶ 1/2-approximation.
- Time complexity: $O(\|B\|_1 \cdot (1 + \theta)) \Rightarrow$ Pseudo-polynomial.

Future Directions

- Maximization under cardinality/polymatroid/knapsack constraint.
- Continuous analogue of a submodular function $f: [0,1]^E \rightarrow \mathbb{R}_+$ [BMBK16].
 - Can be seen as a limit of DR-submodular functions with $||B||_{\infty} \rightarrow \infty$.

[BFNS12] N. Buchbinder, M. Feldman, J. S. Naor, and R. Schwartz. A tight linear time (1/2)-approximation for unconstrained submodular maximization. In FOCS, pages 649-658, 2012.

[BMBK16] Y. Bian, B. Mirzasoleiman, J. M. Buhmann, and A. Krause. Guaranteed non-convex optimization: Submodular maximization over continuous domains. CoRR, abs/1606.05615, 2016.

Tasuku Soma[†] Yuichi Yoshida[‡]

- tasuku_soma@mist.i.u-tokyo.ac.jp, yyoshida@nii.ac.jp
- [†]The University of Tokyo. [‡]National Institute of Informatics *and* Preferred Infrastructure, Inc.