
Landmark indexing for evaluation
of label-constrained reachability queries

Lucien Valstar†, George Fletcher†, Yuichi Yoshida‡

†TU Eindhoven (Netherlands),
‡National Institute of Informatics

and Preferred Infrastructure, Inc. (Japan)

SIGMOD 2017
Chicago, 16 May 2017



Labeled networks

Big graph data sets are ubiquitous

I social networks (e.g., LinkedIn,
Facebook)

I scientific networks (e.g., Uniprot,
PubChem)

I knowledge graphs (e.g., DBPedia,
MS Academic Graph)

I transportation and utility networks

I ...

v1 v2

v3

v4 v5

friendOf

friendOf

likes

friendOf

follows

follows

likes

Focus is on “things” (i.e., nodes, vertices) and their relationships
(i.e., labeled directed edges)

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Label-constrained reachability queries on networks

We study Label-Constrained Reachability (LCR) Queries on
networks:

Given vertices s and t of labeled graph G and a subset L
of the set of all edge labels L of G, determine whether or
not there is a path from s to t using only edges with
labels in L.

When such a path exists, we denote this by s
L
; t.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Label-constrained reachability queries on networks

v1 v2

v3

v4 v5

friendOf

friendOf

likes

friendOf

follows

follows

likes

Example. The query
(v1, v5, {friendOf}) is true.

The query
(v1, v3, {friendOf}) is
false.

LCR Queries

I Natural generalization of reachability queries.

I An important fragment of the language of regular path
queries.

I Implemented in W3C’s SPARQL 1.1, Neo4j’s Cypher, and
Oracle’s PGQL.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Label-constrained reachability queries on networks

v1 v2

v3

v4 v5

friendOf

friendOf

likes

friendOf

follows

follows

likes

Example. The query
(v1, v5, {friendOf}) is true.

The query
(v1, v3, {friendOf}) is
false.

LCR Queries

I Natural generalization of reachability queries.

I An important fragment of the language of regular path
queries.

I Implemented in W3C’s SPARQL 1.1, Neo4j’s Cypher, and
Oracle’s PGQL.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



LCR queries: current evaluation solutions

Despite the importance of LCR queries, current solutions do not
scale to large graphs occurring in practice.

There are two approaches to solving LCR queries: exhaustive
search using state-of-the-art methods such as direction-optimizing
BFS (DBFS)

I Beamer et al. Scientific Programming 21, 2013

or graph indexing for accelerated search

I Jin et al. SIGMOD 2010

I Bonchi et al. EDBT, 2014

I Zou et al. Information Systems 40, 2014.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



LCR queries: our contributions

Our contributions. New indexing methods for LCR queries
exploiting landmark vertices.

I Scales to orders of magnitude larger graphs than current
indexing methods.

I Up to orders of magnitude faster query evaluation than
current solutions.

I Our implementation is publicly available as open-source at
https://github.com/DeLaChance/LCR

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida

https://github.com/DeLaChance/LCR


Landmark indexing for LCR: naive solution

Naive Idea (Full-LI)
Given a graph (V ,E ,L), for each vertex v ∈ V , store in an index

the pairs {(w , L) | w ∈ V , L ⊆ L, and v
L
; w}.

Given a query (s, t, L), just check whether or not (t, L) is in the
index for s.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for LCR: naive solution

Naive Idea (Full-LI)
Given a graph (V ,E ,L), for each vertex v ∈ V , store in an index

the pairs {(w , L) | w ∈ V , L ⊆ L, and v
L
; w}.

Given a query (s, t, L), just check whether or not (t, L) is in the
index for s.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for LCR: naive solution

v1 v2

v3

v4 v5

friendOf

friendOf

likes

friendOf

follows

follows

likes

Example. The Full-LI
index entry for v2:

(v3, {likes}),
(v3, {friendOf, likes}),
(v3, {friendOf, follows, likes}),
(v4, {friendOf, follows}),
(v5, {friendOf}),
(v5, {friendOf, follows}).

Naive Idea (Full-LI)

I Excellent query performance.

I Does not scale to large graphs.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for LCR: naive solution

v1 v2

v3

v4 v5

friendOf

friendOf

likes

friendOf

follows

follows

likes

Example. The Full-LI
index entry for v2:

(v3, {likes}),
(v3, {friendOf, likes}),
(v3, {friendOf, follows, likes}),
(v4, {friendOf, follows}),
(v5, {friendOf}),
(v5, {friendOf, follows}).

Naive Idea (Full-LI)

I Excellent query performance.

I Does not scale to large graphs.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for LCR: selective landmarking

Landmark Index (LI)
Only build indexes for a select small number of landmark vertices

I e.g., top k vertices of highest degree

Furthermore, only store entries (w , L) such that L is a minimal
label set connecting v to w

I that is, there is no L′ strictly contained in L such that v
L′
; w .

Given a query (s, t, L), perform BFS from s only using edges with
labels in L. When we hit a landmark vertex, we use its index to
obtain the answer immediately.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for LCR: selective landmarking

Landmark Index (LI)
Only build indexes for a select small number of landmark vertices

I e.g., top k vertices of highest degree

Furthermore, only store entries (w , L) such that L is a minimal
label set connecting v to w

I that is, there is no L′ strictly contained in L such that v
L′
; w .

Given a query (s, t, L), perform BFS from s only using edges with
labels in L. When we hit a landmark vertex, we use its index to
obtain the answer immediately.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for LCR: selective landmarking

v1 v2

v3

v4 v5

friendOf

friendOf

likes

friendOf

follows

follows

likes

Example. The LI index
entry for v2:

(v3, {likes}),
(v4, {friendOf, follows}),
(v5, {friendOf}).

Half as many entries as
Full-LI entry for v2.

Landmark index (LI)

I Balances space/time.

I Can significantly reduce index size.

I Still obtain the benefits of accelerated search.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for LCR: selective landmarking

v1 v2

v3

v4 v5

friendOf

friendOf

likes

friendOf

follows

follows

likes

Example. The LI index
entry for v2:

(v3, {likes}),
(v4, {friendOf, follows}),
(v5, {friendOf}).

Half as many entries as
Full-LI entry for v2.

Landmark index (LI)

I Balances space/time.

I Can significantly reduce index size.

I Still obtain the benefits of accelerated search.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for LCR: extended indexing

Extended Landmark Index (LI+)
Two extensions to make LI more efficient.

(1) It may take a long time before finding a landmark. We can
remedy this by building an incomplete index for non-landmarks: for
each non-landmark v , we insert a small number of entries (v ′, L)

where v ′ is a landmark and v
L
; v ′.

These provide shortcuts to landmarks during search.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for LCR: extended indexing

Extended Landmark Index (LI+)
Two extensions to make LI more efficient.

(2) There is a strong asymmetry in evaluation of true- and
false-queries. A true-query can stop after finding a landmark,
whereas a false-query often needs to explore larger parts of the
graph.
To remedy this, we can maintain for each landmark v and label set

L the “reachable-by” set RL(v) = {w ∈ V | v L
; w}.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for LCR: extended indexing

v1 v2

v3

v4 v5

friendOf

friendOf

likes

friendOf

follows

follows

likes

Example.

R{friendOf}(v1) = {v2, v4, v5}.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for LCR: extended indexing

Extended Landmark Index (LI+)
Two extensions to make LI more efficient.

(2, cont.) During evaluation of query (s, t, L), suppose we have

found s
L
; v and v

L
6; t, for some landmark v .

Then, for every w ∈ RL(v), we must have w
L
6; t.

Hence, we can mark and never visit any vertex of RL(v) during the
rest of the search.

For practical purposes, we only keep a subset of the RL(v)’s, and
only for relatively small label sets.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for LCR: extended indexing

Extended Landmark Index (LI+)
Two extensions to make LI more efficient.

(2, cont.) During evaluation of query (s, t, L), suppose we have

found s
L
; v and v

L
6; t, for some landmark v .

Then, for every w ∈ RL(v), we must have w
L
6; t.

Hence, we can mark and never visit any vertex of RL(v) during the
rest of the search.

For practical purposes, we only keep a subset of the RL(v)’s, and
only for relatively small label sets.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Experimental study

Settings

I Linux server with 258GB of memory and a 2.9GHz 32-core
processor.

I Fourteen real networks, ranging from social networks to
biological networks.

I The number of landmarks is 1250 +
√
n, where n is the

number of vertices. The budget for non-landmarks is 20.

I Generated sets of 1000 true-queries and 1000 false-queries.

We report here highlights of results on indexing costs and query
performance.
See our paper for full details and also details of performance on
synthetic graphs where we study the impact of graph density, label
set size, and graph structure.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Experimental study

Settings

I Linux server with 258GB of memory and a 2.9GHz 32-core
processor.

I Fourteen real networks, ranging from social networks to
biological networks.

I The number of landmarks is 1250 +
√
n, where n is the

number of vertices. The budget for non-landmarks is 20.

I Generated sets of 1000 true-queries and 1000 false-queries.

We report here highlights of results on indexing costs and query
performance.
See our paper for full details and also details of performance on
synthetic graphs where we study the impact of graph density, label
set size, and graph structure.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Experimental study: indexing costs

Dataset
LI LI+ Full-LI Zou

IT IS IT IS IT IS IT IS

robots 0.1 5 0.1 5 0.1 5 9 5
advogato 4 135 3 131 7 369 11,867 369
epinions 272 2,903 205 2,091 - - - -
NotreDame 242 2,424 193 1,895 - - - -
BioGrid 58 1,410 50 1,302 36 3,207 - -
webGoogle 5,887 33,931 5,665 33,497 - - - -
Youtube 3,121 336 2,841 300 - - - -
socPokec 9,762 77,155 9,461 75,698 - - - -
wikiLinks(fr) 24,873 98,125 25,641 103,414 - - - -

Number of edges: robots 2.9k, advogato 51k, epinions 840k, NotreDame 1.4M,

BioGrid 1.5M, webGoogle 5.1M, Youtube 10.7M, socPokec 30.6M, wikiLinks(fr)

102.3M.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Experimental study: query performance

Dataset
true false

LI LI+ DBFS (µs) LI LI+ DBFS (µs)

robots 17.63 17.63 1.77 6.95 6.95 0.70
advogato 84.25 93.08 20.6 3.33 1.89 0.67
epinions 69.18 52.10 106 0.00 0.58 1.91
NotreDame 22.27 7.27 159 5.17 49.44 555
BioGrid 16.98 20.79 848 0.18 37.95 709
webGoogle 338.26 184.52 1,340 0.00 0.57 9.65
Youtube 16.10 21.10 2,000 0.53 12.19 3,880
socPokec 9.20 10.81 1,290 0.00 0.25 39.8
wikiLinks(fr) 54.53 44.54 3,120 0.00 0.42 38.8

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Discussion

General observations.

I For true-queries, LI and LI+ are always advantageous,
accelerating query evaluation up to two orders of magnitude
over state-of-the-art search methods.
For false-queries, LI+ was within the same order of
magnitude or better for the majority of cases.

I Often we found that search failure occurred much closer to the
target, to the advantage of DBFS.
This indicates the need in future work to study
direction-optimizing variants of our solutions.

I LI and LI+ are the only indexing strategies which can handle
large graphs, up to four orders of magnitude larger than
current indexing strategies.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Discussion

General observations.

I For true-queries, LI and LI+ are always advantageous,
accelerating query evaluation up to two orders of magnitude
over state-of-the-art search methods.
For false-queries, LI+ was within the same order of
magnitude or better for the majority of cases.

I Often we found that search failure occurred much closer to the
target, to the advantage of DBFS.
This indicates the need in future work to study
direction-optimizing variants of our solutions.

I LI and LI+ are the only indexing strategies which can handle
large graphs, up to four orders of magnitude larger than
current indexing strategies.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Concluding remarks

Our contributions: New landmark-based indexing solutions for
scalable evaluation of LCR queries, scaling to orders-of magnitude
larger graphs and orders of magnitude faster evaluation time.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Concluding remarks

Looking ahead:

I finer analysis of the impact of graph topology and complexity
on the performance and further optimization of our solutions,
e.g., graphs of bounded treewidth.

I study of landmark-based evaluation methods for extensions to
the class of LCR queries.

I the study of landmark indexing in multi-core environments.

I study of alternative search strategies for improving
performance on false queries.

I applications of our indexes for evaluation of practical query
languages such as SPARQL 1.1 and openCypher.

Landmark indexing for LCR query evaluation (SIGMOD 2017, Chicago) Valstar, Fletcher, and Yoshida



Landmark indexing for evaluation

of label-constrained reachability queries

Lucien Valstar, George Fletcher, and Yuichi Yoshida

TU Eindhoven (Netherlands)
National Institute of Informatics

and Preferred Infrastructure, Inc. (Japan)

https://github.com/DeLaChance/LCR

Thank you!

https://github.com/DeLaChance/LCR

