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Constraint Satisfaction Problems (CSPs)

Given a set of variables V and a set of constraints C, find an assignment that
satisfies all the constraints.

Example (SAT)

(x ∨ y ∨ z) ∧ (x ∨ w) ∧ (y ∨ z)

(x, y, z, w) = (1, 1, 0, 1) satisfies the SAT instance.
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Constraint Satisfaction Problems (CSPs)

Definition (CSP)

A CSP (denoted CSPq(Γ)), specified by
• finite domain [q] = {1, . . . , q}.
• constraint language Γ: a collection of relations over [q].

• relation: a set of ar(R)-tuples (ar(R) = arity of R)

E.g.: R = {(x, y, z) ∈ {0, 1}3 | (x ∧ y ∧ z) = true}.

Definition (CSP instance)

A CSP instance (denoted I = (V, C)), specified by
• a variable set V
• a set C of constraints (R,S), where R ∈ Γ; S is set of ar(R) variables.

Question: Is there an assignment σ : V → [q] that satisfies all constraints? i.e.,
σ|S ∈ R for every (R,S) ∈ C.
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Examples

CSPs can express a lot of problems depending on the choice of Γ!
• k-SAT: Γ = all disjunctions of up to k literals.

E.g. (u ∨ v ∨ w), (u ∨ v)

• Horn k-SAT: as above, but contain at most one positive literal.
E.g. (u ∨ v ∨ w)(⇔ (u ∧ v ⇒ w))

• k-LINq: Γ = all affine relations (over Zq) on up to k vars.
E.g. (u+ v + w = 1) (mod 2)

• q-Coloring: Γ = an inequality relation on two vars over [q].
• k-CSPq: Γ = all relations of arity k over [q].

(Probably) only two possibilities for its complexity...
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Schaefer’s Dichotomy Theorem for Boolean CSPs

Theorem ([Sch78])

Every Boolean CSP is either in P or NP-complete. Specifically, CSP2(Γ) is
polynomial-time solvable if every R ∈ Γ is

• 0-valid / 1-valid
• a conjunction of Horn clauses / conjunction of dual Horn clauses
• a 2CNF formula, or
• a conjunction of affine equations

and is NP-complete otherwise.

Dichotomy conjectured for every q [FV98]
Proved for q = 3 [Bul02].
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Max CSPs

Definition (Max-CSP)

MaxCSPq(Γ): Given an instance of CSPq(Γ), find an assignment maximizing
the fraction of satisfied constraints.

Most Max CSPs are NP-Hard...

Definition (Approximation)

Let c, s ∈ [0, 1]. A poly-time algorithm is a (c, s)-approximation algorithm for
MaxCSPq(Γ) if it

finds an assignment β with val(I, β) ≥ s
assuming opt(I) ≥ c,

where opt(I) is the optimal value of I and val(I, β) is the fraction of
constraints satisfied by β.

Question: For which c and s, can we (c, s)-approximate MaxCSPq(Γ)?
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Raghavendra’s Theorem

Definition (Unique Games Conjecture (UGC), informal)
For every ε > 0, there exists some q and (simple) Γ such that it is NP-Hard to
(1− ε, ε)-approximate MaxCSP(Γ).

Theorem ([Rag08])
Assuming the UGC, some canonical SDP relaxation gives optimal
approximation guarantee for every Max CSP!
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Analytical Tools for CSP and MaxCSP

• CSP and MaxCSP were studied in almost different communities.
• Analytical tools and words are different.

E.g.: essentially unary operations↔ dictators
• However, it seems there are some connections...

CSP MaxCSP

Universal algebra Harmonic analysis
Polymorphism Rounding function

Essentially unary Dictator
Weak near-unanimity Pseudorandom

Width LP / SDP
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Robust Approximation

General question: what can we do by using universal algebra and harmonic
analysis interchangeably.

Idea: Universal algebra is a tool to study the case c = 1. Probably, it is also
useful when c = 1− ε.

Definition (Robust Approximation [Zwi98])

CSPq(Γ) admits f(ε)-robust approximation if there is a
(1− ε, 1− f(ε))-approximation algorithm for every ε ≥ 0, where f(0) = 0 and
lim
ε→0

f(ε) = 0.

Question: For which Γ, how much can we robustly approximate?
Motivation with hindsight: Real-world instances are corrupted by noise ,
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Robust Approximation for Boolean CSPs

Horn k-SAT

• O( 1
log 1/ε)-robust approximation via LP [Zwi98].

• o( 1
log 1/ε)-robust approximation is UG-Hard [GZ11].

2-SAT
• O(
√
ε)-robust approximation via SDP [CMM09].

• o(
√
ε)-robust approximation is UG-Hard [KKMO07, MOO10].

3-LIN2

(1− ε, 12 + ε)-approximation is NP-Hard for any ε > 0 [Hås01].
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Characterizing Robustly Approximable CSPs
If you are familiar with universal algebra...

Definition (Width, informal)

CSP(Γ) has width k if it can be solved by iteratively checking consistency of k
vars.

E.g.: 2-Coloring has width 2.

v1	
v2	

v3	 v4	

v5	

(v1, v2) : {••, ••, ••, ••}
(v2, v3) : {••, ••, ••, ••}
(v1, v3) : {••, ••, ••, ••}
(v1, v4) : {••, ••, ••, ••}
(v1, v5) : {••, ••, ••, ••}

Contradiction!
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Characterizing Robustly Approximable CSPs

If you are familiar with universal algebra...

Definition (Width, informal)

CSP(Γ) has width k if it can be solved by iteratively checking consistency of k
vars.

CSP Robust Approximability Width
Horn k-SAT Possible via LP 1

2-SAT Possible via SDP bounded width (= 2)
3-LIN2 NP-Hard ∞

Is this a coincidence? Of course not ,.
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Characterizing Robustly Approximable CSPs

Theorem
CSP(Γ) admits robust approximation

• via LP iff Γ has width 1 [KOT+12].
• via SDP iff Γ has bounded width [BK12].

Theorem
If Γ does not have bounded width, CSP(Γ) can "simulate" 3-LIN2 and hence
CSP(Γ) does not admit robust approximation.

Corollary

CSP(Γ) admits robust approximation iff Γ has bounded width.

Yuichi Yoshida (NII and PFI) Robust approximation of CSPs Universal algebra meets optimization March 19, 2013 13 / 38



Characterizing Robustly Approximable CSPs

Theorem
CSP(Γ) admits robust approximation

• via LP iff Γ has width 1 [KOT+12].
• via SDP iff Γ has bounded width [BK12].

Theorem
If Γ does not have bounded width, CSP(Γ) can "simulate" 3-LIN2 and hence
CSP(Γ) does not admit robust approximation.

Corollary

CSP(Γ) admits robust approximation iff Γ has bounded width.

Yuichi Yoshida (NII and PFI) Robust approximation of CSPs Universal algebra meets optimization March 19, 2013 13 / 38



Characterizing Robustly Approximable CSPs

Theorem
CSP(Γ) admits robust approximation

• via LP iff Γ has width 1 [KOT+12].
• via SDP iff Γ has bounded width [BK12].

Theorem
If Γ does not have bounded width, CSP(Γ) can "simulate" 3-LIN2 and hence
CSP(Γ) does not admit robust approximation.

Corollary

CSP(Γ) admits robust approximation iff Γ has bounded width.

Yuichi Yoshida (NII and PFI) Robust approximation of CSPs Universal algebra meets optimization March 19, 2013 13 / 38



Width 1
m

Robust approximation via LP
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Polymorphism

Definition (Polymorphism)

A function f : [q]k → [q] is called a polymorphism of Γ if for any R ∈ Γ of
arity r,

(x11, . . . , x
1
r) ∈ R

...

(xk1, . . . , x
k
r ) ∈ R

↓ f
(z1, . . . , zr) ∈ R

Pol(Γ): set of polymorphisms of Γ.
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Polymorphism

Example
• min is a polymorphism of Horn k-SAT for any k.

Consider R = {(u, v, w) | u ∧ v ⇒ w}.

(1, 0, 1) ∈ R
(0, 1, 1) ∈ R
↓ min

(0, 0, 1) ∈ R

• majority is a polymorphism of 2-SAT.
• x− y + z (mod 2) is a polymorphism of 3-LIN2.
• Essentially, the only polymorphism 3-SAT has is f(x) = xi (dictator).
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Polymorphisms Determine Complexity

Theorem ([BJK05])

Let Γ and Γ′ be constraint languages with Pol(Γ) ⊆ Pol(Γ′). Then, CSP(Γ′) is
log-space reducible to CSP(Γ).

To study computational complexity of CSP(Γ), we only have to study its
polymorphisms!

Theorem ([DK12])

Let Γ and Γ′ be constraint languages with Pol(Γ) ⊆ Pol(Γ′). If CSP(Γ) is
robustly approximable, then CSP(Γ′) is also robustly approximable.

To study robust approximability of CSP(Γ), we only have to study its
polymorphisms!
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Width 1⇔ Robust Approximation via LP

Theorem ([KOT+12])
TFAE.

1 Γ has width 1.

2 Pol(Γ) has a set operation.

3 BasicLP solves CSP(Γ).

4 BasicLP robustly approximates CSP(Γ).

Set operation: f(x1, . . . , xk) only depends on the (not multi-)set {x1, . . . , xk}.
E.g. min(x1, . . . , xk),max(x1, . . . , xk).

We will see (2)⇒ (3) (and (2)⇒ (4)).
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Proof Idea

• De-combinatorialize the local propagation algorithm for solving CSP(Γ)
when c = 1.

• Specifically, solve LP and use the set operation as a rounding procedure!
• Hope it works when c = 1− ε.

Question: How can we use set operations? We don’t have satisfying
assignments beforehand.

Answer: Set operations cannot distinguish satisfying LP solutions from
satisfying assignments!
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A Canonical LP Relaxation

BasicLP

max E
(R,S)∈C

Pr
β∼µS

[β ∈ R]

s.t. µS is a probability distribution over [q]S .
µS and µS′ have the same marginal dist. µu on every u ∈ S ∩ S′.
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Theorem
If Γ has width 1, then BasicLP solves CSP(Γ).

Proof.
Suppose lp(I) = 1.
β(u) = f(supp(µu)) is a solution:
Fix a constraint C = (R,S).

C: u ∧ v → w 
β1: 0    0     0 
β2: 0    1     1 
β3: 1    1     1	

supp(µS)	

β’: 0    0     0	
↓ f	

∈ R	
supp(µu)	

f(supp(µu))	
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Theorem

If Γ has width 1, then CSP(Γ) is O( 1
log 1/ε)-robustly approximable via BasicLP.

Proof sketch.
1 Pick θ from a certain distribution.

2 Define Ru = {a ∈ [q] | µu(a) ≥ θ} for each u ∈ V .

3 Assign each u the value f(Ru).

For each constraint C = (R,S), Ru plays the role of supp(µu) and
R ∩

∏
u∈S Ru plays the role of supp(µS).
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Bounded Width
m

Robust Approximation via SDP
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Bounded Width

Theorem ([BK12, KS09])
TFAE.

1 Γ has bounded width.

2 Pol(Γ) has pseudorandom operations.

3 BasicSDP solves CSP(Γ).

4 BasicSDP robustly approximates CSP(Γ).
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Proof Idea
• De-combinatorialize the local propagation algorithm for solving CSP(Γ)

when c = 1.
• Specifically, solve SDP and use the pseudorandom operation as a rounding

procedure!
• Hope it works when c = 1− ε.

[BK12] Instead of pseudorandom operations, we would use more sophisticated
universal algebraic tool!
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A Canonical SDP Relaxation

BasicSDP

max E
(R,S)∈C

Pr
β∼µS

[β ∈ R]

s.t. µS is a probability distribution over [q]S .
µS ,µS′ have consistent marginal dist. µuv on every {u, v} ⊆ S ∩ S′.
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Theorem
If Γ has bounded width, then BasicSDP solves CSP(Γ).

• Can assume every constraint is binary.
• Make an instance with

• a constraint Ru = (supp(µu), u) for each u.
• a constraint Ruv = (supp(µuv), {u, v}) for each {u, v}.

• If the new instance has a solution, then the old one has a solution.

• Why?
• (a, b) ∈ supp(µuv) implies (a, b) is a satisfying tuple from
sdp(I) = 1.

• a ∈ supp(µu) from consistency.

We now show several facts about Ru and Ruv.
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Ru = supp(µu) and Ruv = supp(µuv).

Lemma
Ruv is a subdirect subset of Ru ×Rv.

Proof.
• It is a subset: If (a, b) ∈ supp(µuv), then a ∈ supp(µu) and
b ∈ supp(µb).

• It is subdirect: If a ∈ supp(µu), then (a, b) ∈ supp(µuv) for some b.
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For B ⊆ Ru, let B + (u, v) = {c ∈ [q] | ∃b ∈ B, (b, c) ∈ Ruv}.

Ru Rv 

B 
B + (u, v) 

Lemma
For B ⊆ Ru, µv(B + (u, v)) ≥ µu(B). The equality holds iff
B = B + (u, v)− (u, v).
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Definition (Pattern)
A (correct) sequence p of variables is called a pattern.
B + p, B − p defined in a natural way.
Ru Rv Ru 

B 

Rw … 

B+p 

Lemma
For any B ⊆ Ru and patterns p, q from u to u we have

• If B + p = B, then B − p = B.
• If B + p+ q = B, then B + p = B.
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Definition (Weak Prague instance)

An instance with constraints {Ru} and {Ruv} is a weak Prague instance if (for
every u, v ∈ V , B ⊆ Ru and patterns p, q from u to u)

• Ruv is a subdirect subset of Ru ×Rv.
• If B + p = B, then B − p = B.
• If B + p+ q = B, then B + p = B.

Theorem ([BK12])
Every weak Prague instance has a solution.

⇒ SDP solves bounded-width CSPs.

For the general case, polish the input instance a lot to obtain a weak Prague
instance.
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Other Topics
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Quantitative Characterization of Boolean CSPs

Theorem ([DK12])
Let Γ be a Boolean constraint language.

• If Pol(Γ) contains x ∨ (y ∧ z) or x ∧ (y ∨ z), we can O(ε)-robustly
approximate.

• Otherwise, if Pol(Γ) contains a majority, we can O(
√
ε)-robustly

approximate.
• Otherwise, if Pol(Γ) contains min or max, we can O( 1

log 1/ε)-robustly
approximate.

• Otherwise, robust approximation is NP-Hard.

All these positive results are (almost) tight under UGC.

Open Problem: Can we generalize to non-Boolean CSPs?
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Ordering CSPs

Definition (Ordering CSPs)
• Assignment: ordering of the variables without ties.
• Constraints: allowed relative orderings of k-subsets of variables.

Example: Max Acyclic Subgraph

Theorem ([GMR08])
Assuming UGC, no (interesting) ordering CSP admits robust approximation.
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Temporal CSPs

Temporal CSPs
• Assignment: ordering of the variables possibly with ties.
• Constraints: allowed relative orderings of k-subsets of variables.

Example: Correlation Clustering

Theorem ([TY13])

CSP(Γ) admits robust approximation iff Γ is Horn =-SAT. That is, each
constraint is of the form

(u1 = v1) ∧ (u2 = v2) ∧ · · · ∧ (uk−1 = vk−1)⇒ (uk = vk).

Quantitative version is also available.
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Graph Isomorphism

Graph Isomorphism (MaxGI)

Given two graphs G = (V,E) and H = (V, F ), find a bijection σ : V → V
that maximizes the number of matched edges, i.e.,
{(u, v) ∈ E | (σ(u), σ(v)) ∈ F}.

Theorem ([WYZV13])
• MaxGI is NP-Hard.
• Trees admit robust approximation.

Open Problem:
• Do planar graphs admit robust approximation?
• Sherali-Adams LP relaxation solves GI of planar graphs. Does it give

robust approximation?
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Summary

Universal algebra is a useful tool to study robust approximation of CSPs.
Standard CSPs and temporal CSPs are basically solved.

Open Problem: What comes next by unifying universal algebra and
optimization?

Fin.
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