Higher-Order Fourier Analysis: Applications to Algebraic Property Testing

Yuichi Yoshida

National Institute of Informatics, and Preferred Infrastructure, Inc

October 18, 2014

Yuichi Yoshida (NII and PFI) Applications to algebraic property testing

October 18, 2014 1 / 2

Property testing

Definition

 $f: \{0,1\}^n \rightarrow \{0,1\}$ is ϵ -far from $\mathcal P$ if,

$$d_{\mathcal{P}}(f) := \min_{g \in \mathcal{P}} \Pr_{x}[f(x) \neq g(x)] \geq \epsilon.$$

Yuichi Yoshida (NII and PFI) Applications to algebraic property testing

Property testing

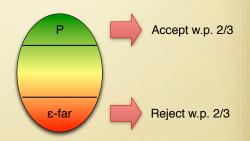
Definition

 $f: \{0,1\}^n
ightarrow \{0,1\}$ is ϵ -far from $\mathcal P$ if,

$$d_{\mathcal{P}}(f) := \min_{g \in \mathcal{P}} \Pr_{x}[f(x) \neq g(x)] \geq \epsilon.$$

A *tester* for a property \mathcal{P} : Given

- $f: \{0,1\}^n \rightarrow \{0,1\}$ as a query access.
- proximity parameter $\epsilon > 0$.



Input: a function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ and $\epsilon > 0$. **Goal:** f(x) + f(y) = f(x + y) for every $x, y \in \mathbb{F}_2^n$?

Input: a function
$$f : \mathbb{F}_2^n \to \mathbb{F}_2$$
 and $\epsilon > 0$.
Goal: $f(x) + f(y) = f(x + y)$ for every $x, y \in \mathbb{F}_2^n$?
1: **for** $i = 1$ to $O(1/\epsilon)$ **do**
2: Sample $x, y \in \mathbb{F}_2^n$ uniformly at random.
3: **if** $f(x) + f(y) \neq f(x + y)$ **then** reject.
4: Accept.

Input: a function
$$f : \mathbb{F}_2^n \to \mathbb{F}_2$$
 and $\epsilon > 0$.
Goal: $f(x) + f(y) = f(x + y)$ for every $x, y \in \mathbb{F}_2^n$?
1: **for** $i = 1$ to $O(1/\epsilon)$ **do**
2: Sample $x, y \in \mathbb{F}_2^n$ uniformly at random.
3: **if** $f(x) + f(y) \neq f(x + y)$ **then** reject.
4: Accept.

Theorem ([BLR93])

• If f is linear, always accepts. (one-sided error)

Input: a function
$$f : \mathbb{F}_2^n \to \mathbb{F}_2$$
 and $\epsilon > 0$.
Goal: $f(x) + f(y) = f(x + y)$ for every $x, y \in \mathbb{F}_2^n$?
1: **for** $i = 1$ to $O(1/\epsilon)$ **do**
2: Sample $x, y \in \mathbb{F}_2^n$ uniformly at random.
3: **if** $f(x) + f(y) \neq f(x + y)$ **then** reject.
4: Accept.

Theorem ([BLR93])

- If f is linear, always accepts. (one-sided error)
- If f is ϵ -far, rejects with probability at least 2/3.

Input: a function
$$f : \mathbb{F}_2^n \to \mathbb{F}_2$$
 and $\epsilon > 0$.
Goal: $f(x) + f(y) = f(x + y)$ for every $x, y \in \mathbb{F}_2^n$?
1: for $i = 1$ to $O(1/\epsilon)$ do
2: Sample $x, y \in \mathbb{F}_2^n$ uniformly at random.
3: if $f(x) + f(y) \neq f(x + y)$ then reject.

4: Accept.

Theorem ([BLR93])

- If f is linear, always accepts. (one-sided error)
- If f is ϵ -far, rejects with probability at least 2/3.
- Query complexity is $O(1/\epsilon) \Rightarrow constant!$

The notion of property testing was introduced by [RS96].

The notion of property testing was introduced by [RS96].

Since then, various kinds of objects have been studied. Ex.: Functions, graphs, distributions, geometric objects, images.

The notion of property testing was introduced by [RS96].

Since then, various kinds of objects have been studied. Ex.: Functions, graphs, distributions, geometric objects, images.

Q. Why do we study property testing?

The notion of property testing was introduced by [RS96].

Since then, various kinds of objects have been studied. Ex.: Functions, graphs, distributions, geometric objects, images.

Q. Why do we study property testing? A. Interested in

- ultra-efficient algorithms.
- relations to PCPs, locally testable codes, and learning.
- the relation between local view and global property.

Local testability of affine-Invariant properties

Definition

 \mathcal{P} is *affine-invariant* if a function $f : \mathbb{F}_2^n \to \{0, 1\}$ satisfies \mathcal{P} , then $f \circ A$ satisfies \mathcal{P} for any bijective affine transformation $A : \mathbb{F}_2^n \to \mathbb{F}_2^n$.

Local testability of affine-Invariant properties

Definition

 \mathcal{P} is *affine-invariant* if a function $f : \mathbb{F}_2^n \to \{0, 1\}$ satisfies \mathcal{P} , then $f \circ A$ satisfies \mathcal{P} for any bijective affine transformation $A : \mathbb{F}_2^n \to \mathbb{F}_2^n$.

Definition

 \mathcal{P} is *(locally) testable* if there is a tester for \mathcal{P} with $q(\epsilon)$ queries.

Ex.:

- degree-*d* polynomials [AKK⁺05, BKS⁺10]
- Fourier sparsity [GOS⁺11]
- Odd-cycle-freeness: the Cayley graph has no odd cycle [BGRS12]

The goal

Q. Can we characterize testable affine-invariant properties? [KS08]

The goal

Q. Can we characterize testable affine-invariant properties? [KS08]

A. Yes, in a satisfying sense.

The goal

Q. Can we characterize testable affine-invariant properties? [KS08]

A. Yes, in a satisfying sense.

In this talk, we review how we have resolved this question.

- One-sided error testable pprox Affine-subspace hereditary
- Testable ⇔ Estimable
- Two-sided error testable ⇔ Regular-reducible
- and more...

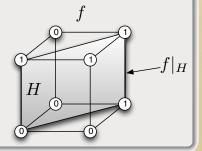
Higher order Fourier analysis has played a crucial role!

Oblivious tester

Definition

An oblivious tester works as follows:

- Take a restriction $f|_{H}$.
 - *H*: random affine subspace of dimension *h*(ε).
- Output based only on $f|_{H}$.



Motivation: avoid "unnatural" properties such as $f \in \mathcal{P} \Leftrightarrow n$ is even. For natural properties, \exists a tester $\Rightarrow \exists$ an oblivious tester.

Why is higher order Fourier analysis useful?

 $\mu_{f,h}$: the distribution of $f|_{H}$.

Observation

A tester cannot distinguish f from g if $\mu_{f,h} \approx \mu_{g,h}$.

Why is higher order Fourier analysis useful?

 $\mu_{f,h}$: the distribution of $f|_H$.

Observation

A tester cannot distinguish f from g if $\mu_{f,h} \approx \mu_{g,h}$.

Consider the *decomposition* $f = f_1 + f_2 + f_3$ for $d = d(\epsilon, h)$:

- $f_1 = \Gamma(P_1, \ldots, P_C)$ for high-rank degree-*d* polynomials P_1, \ldots, P_C .
- f₂: small L₂ norm.
- f_3 : small U^{d+1} norm.

Why is higher order Fourier analysis useful?

 $\mu_{f,h}$: the distribution of $f|_{H}$.

Observation

A tester cannot distinguish f from g if $\mu_{f,h} \approx \mu_{g,h}$.

Consider the *decomposition* $f = f_1 + f_2 + f_3$ for $d = d(\epsilon, h)$:

- $f_1 = \Gamma(P_1, \ldots, P_C)$ for high-rank degree-*d* polynomials P_1, \ldots, P_C .
- f₂: small L₂ norm.
- f_3 : small U^{d+1} norm.

The *pseudorandom parts* f_2 and f_3 do not affect $\mu_{f,h}$ much. \Rightarrow we can focus on the *structured part* f_1 .

One-sided error testable \approx Affine-subspace hereditary

Affine-subspace hereditary

Definition

A property \mathcal{P} is *affine-subspace hereditary* if $f \in \mathcal{P} \Rightarrow f|_H \in \mathcal{P}$ for any affine subspace H.

Ex.:

- degree-d polynomials, Fourier sparsity, odd-cycle-freeness
- f = gh for some polynomials g, h of degree $\leq d 1$.
- $f = g^2$ for some polynomial g of degree $\leq d 1$.

Characterization of one-sided error testability

Conjecture ([BGS10])

 \mathcal{P} is testable with one-sided error by an oblivious tester $\Leftrightarrow \mathcal{P}$ is (essentially) affine-subspace hereditary

Characterization of one-sided error testability

Conjecture ([BGS10])

 \mathcal{P} is testable with one-sided error by an oblivious tester $\Leftrightarrow \mathcal{P}$ is (essentially) affine-subspace hereditary

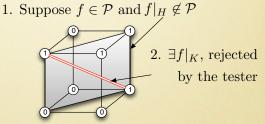
 \Rightarrow is true [BGS10].

Characterization of one-sided error testability

Conjecture ([BGS10])

 \mathcal{P} is testable with one-sided error by an oblivious tester $\Leftrightarrow \mathcal{P}$ is (essentially) affine-subspace hereditary

 \Rightarrow is true [BGS10]. Proof sketch:



3. f is also rejected w.p.> 0, contradiction.

Think of *affine-triangle-freeness*:

No $x, y_1, y_2 \in \mathbb{F}_2^n$ s.t. $f(x + y_1) = f(x + y_2) = f(x + y_1 + y_2) = 1$.

Think of affine-triangle-freeness: No $x, y_1, y_2 \in \mathbb{F}_2^n$ s.t. $f(x + y_1) = f(x + y_2) = f(x + y_1 + y_2) = 1$.

 $\Leftrightarrow \mathsf{No} x, y_1, y_2 \in \mathbb{F}_2^n \text{ s.t.}$

 $f(L_1(x, y_1, y_2)) = \sigma_1 \text{ for } L_1(x, y_1, y_2) = x + y_1 \text{ and } \sigma_1 = 1,$ $f(L_2(x, y_1, y_2)) = \sigma_2 \text{ for } L_2(x, y_1, y_2) = x + y_2 \text{ and } \sigma_2 = 1,$ $f(L_3(x, y_1, y_2)) = \sigma_3 \text{ for } L_3(x, y_1, y_2) = x + y_1 + y_2 \text{ and } \sigma_3 = 1.$

Think of affine-triangle-freeness: No $x, y_1, y_2 \in \mathbb{F}_2^n$ s.t. $f(x + y_1) = f(x + y_2) = f(x + y_1 + y_2) = 1$.

 $\Leftrightarrow \mathsf{No} x, y_1, y_2 \in \mathbb{F}_2^n \text{ s.t.}$

 $f(L_1(x, y_1, y_2)) = \sigma_1 \text{ for } L_1(x, y_1, y_2) = x + y_1 \text{ and } \sigma_1 = 1,$ $f(L_2(x, y_1, y_2)) = \sigma_2 \text{ for } L_2(x, y_1, y_2) = x + y_2 \text{ and } \sigma_2 = 1,$ $f(L_3(x, y_1, y_2)) = \sigma_3 \text{ for } L_3(x, y_1, y_2) = x + y_1 + y_2 \text{ and } \sigma_3 = 1.$

We call this $(A = (L_1, L_2, L_3), \sigma = (\sigma_1, \sigma_2, \sigma_3))$ -freeness.

Think of affine-triangle-freeness: No $x, y_1, y_2 \in \mathbb{F}_2^n$ s.t. $f(x + y_1) = f(x + y_2) = f(x + y_1 + y_2) = 1$.

 $\Leftrightarrow \mathsf{No} x, y_1, y_2 \in \mathbb{F}_2^n \text{ s.t.}$

 $f(L_1(x, y_1, y_2)) = \sigma_1 \text{ for } L_1(x, y_1, y_2) = x + y_1 \text{ and } \sigma_1 = 1,$ $f(L_2(x, y_1, y_2)) = \sigma_2 \text{ for } L_2(x, y_1, y_2) = x + y_2 \text{ and } \sigma_2 = 1,$ $f(L_3(x, y_1, y_2)) = \sigma_3 \text{ for } L_3(x, y_1, y_2) = x + y_1 + y_2 \text{ and } \sigma_3 = 1.$

We call this $(A = (L_1, L_2, L_3), \sigma = (\sigma_1, \sigma_2, \sigma_3))$ -freeness.

A is called an *affine* system of *linear forms*.
 ⇒ well studied in higher order Fourier analysis.

Testability of subspace hereditary properties

Observation

The following are equivalent:

- \mathcal{P} is affine-subspace hereditary.
- There exists a (possibly infinite) collection {(A¹, σ¹),...} s.t. f ∈ P ⇔ f is (Aⁱ, σⁱ)-free for each i.

Testability of subspace hereditary properties

Observation

The following are equivalent:

- \mathcal{P} is affine-subspace hereditary.
- There exists a (possibly infinite) collection {(A¹, σ¹),...}
 s.t. f ∈ P ⇔ f is (Aⁱ, σⁱ)-free for each i.

Theorem $([BFH^+13])$

If each (A^i, σ^i) has bounded complexity, then the property is testable with one-sided error.

Proof idea

Let's focus on the case $f = \Gamma(P_1, \ldots, P_C)$ and $\mathcal{P} = \text{affine } \triangle$ -freeness.

Proof idea

Let's focus on the case $f = \Gamma(P_1, \ldots, P_C)$ and $\mathcal{P} = \text{affine } \triangle$ -freeness.

f is *ϵ*-far from \mathcal{P} ⇒ There are $x^*, y_1^*, y_2^* \in \mathbb{F}_2^n$ spanning an affine triangle.

Proof idea

Let's focus on the case $f = \Gamma(P_1, \ldots, P_C)$ and $\mathcal{P} = affine \triangle$ -freeness.

 $f \text{ is } \epsilon\text{-far from } \mathcal{P}$ $\Rightarrow \text{ There are } x^*, y_1^*, y_2^* \in \mathbb{F}_2^n \text{ spanning an affine triangle.}$ $\Pr_{x, y_1, y_2}[f(x + y_1) = f(x + y_2) = f(x + y_1 + y_2) = 1]$ $\geq \Pr_{x, y_1, y_2}[P_i(L_j(x, y_1, y_2)) = P_i(L_j(x^*, y_1^*, y_2^*)) \quad \forall i \in [C], j \in [3]],$

which is non-negligibly high from the *equidistribution theorem*. ⇒ Random sampling works.

Testability ⇔ Estimability

Definition

 \mathcal{P} is *estimable* if we can estimate $d_{\mathcal{P}}(\cdot)$ to within δ with $q(\delta)$ queries for any $\delta > 0$.

Definition

 \mathcal{P} is *estimable* if we can estimate $d_{\mathcal{P}}(\cdot)$ to within δ with $q(\delta)$ queries for any $\delta > 0$.

Trivial direction: \mathcal{P} is estimable $\Rightarrow \mathcal{P}$ is testable.

Definition

 \mathcal{P} is *estimable* if we can estimate $d_{\mathcal{P}}(\cdot)$ to within δ with $q(\delta)$ queries for any $\delta > 0$.

Trivial direction: \mathcal{P} is estimable $\Rightarrow \mathcal{P}$ is testable.

Theorem ([HL13])

 \mathcal{P} is testable $\Rightarrow \mathcal{P}$ is estimable.

Yuichi Yoshida (NII and PFI) Applications to algebraic property testing

Definition

 \mathcal{P} is *estimable* if we can estimate $d_{\mathcal{P}}(\cdot)$ to within δ with $q(\delta)$ queries for any $\delta > 0$.

Trivial direction: \mathcal{P} is estimable $\Rightarrow \mathcal{P}$ is testable.

Theorem ([HL13])

 \mathcal{P} is testable $\Rightarrow \mathcal{P}$ is estimable.

Algorithm:

1: $H \leftarrow$ a random affine subspace of a constant dimension.

2: **return** Output $d_{\mathcal{P}}(f|_H)$.

Why can we expect $d_{\mathcal{P}}(f) \approx d_{\mathcal{P}}(f|_{H})$?

Why can we expect $d_{\mathcal{P}}(f) \approx d_{\mathcal{P}}(f|_{H})$?

(Oversimplified argument)

• Since \mathcal{P} is testable, $d_{\mathcal{P}}(f)$ is determined by the distribution $\mu_{f,h}$.

Why can we expect $d_{\mathcal{P}}(f) \approx d_{\mathcal{P}}(f|_{H})$?

(Oversimplified argument)

- Since \mathcal{P} is testable, $d_{\mathcal{P}}(f)$ is determined by the distribution $\mu_{f,h}$.
- If f = Γ(P₁,..., P_C), then μ_{f,h} is determined by Γ, degrees and depths of P₁,..., P_C (rather than P_i's themselves).

Why can we expect $d_{\mathcal{P}}(f) \approx d_{\mathcal{P}}(f|_{H})$?

(Oversimplified argument)

- Since \mathcal{P} is testable, $d_{\mathcal{P}}(f)$ is determined by the distribution $\mu_{f,h}$.
- If f = Γ(P₁,..., P_C), then μ_{f,h} is determined by Γ, degrees and depths of P₁,..., P_C (rather than P_i's themselves).
- $f = \Gamma(P_1, \ldots, P_C)$ and $f_H = \Gamma(P_1|_H, \ldots, P_C|_H)$ share the same Γ , degrees and depths.
 - $\stackrel{\Rightarrow}{\Rightarrow} \mu_{f,h} \approx \mu_{f|_{H},h}. \\ \stackrel{\Rightarrow}{\Rightarrow} d_{\mathcal{P}}(f) \approx d_{\mathcal{P}}(f|_{H}).$

Two-sided error testability ⇔ Regular-reducibility

Structured part

Recall that, for
$$f = \Gamma(P_1, \ldots, P_C) + f_2 + f_3$$
,

 $\mu_{f,h}$ is determined by Γ , and degrees and depths of P_i 's. Let's use them as a (constant-size) sketch of f.

Regularity-instance

Definition

A regularity-instance I is a tuple of

- an error parameter $\gamma > 0$,
- a structure function $\Gamma : \prod_{i=1}^{C} \mathbb{U}_{h_i+1} \to [0, 1]$,
- a complexity parameter $C \in \mathbb{N}$,
- a degree-bound parameter $d \in \mathbb{N}$,
- a degree parameter $\mathbf{d} = (d_1, \ldots, d_C) \in \mathbb{N}^C$ with $d_i < d$,
- a depth parameter $\mathbf{h} = (h_1, \dots, h_C) \in \mathbb{N}^C$ with $h_i < \frac{d_i}{p-1}$, and
- a rank parameter $r \in \mathbb{N}$.

Satisfying a regularity-instance

Definition

Let $I = (\gamma, \Gamma, C, d, \mathbf{d}, \mathbf{h}, r)$ be a regularity-instance. *f* satisfies *I* if it is of the form

$$f(x) = \Gamma(P_1(x), \ldots, P_C(x)) + \Upsilon(x),$$

where

- P_i is a polynomial of degree d_i and depth h_i ,
- (P_1, \ldots, P_C) has rank at least r,
- $\|\Upsilon\|_{U^d} \leq \gamma.$

Testing regularity-instances

Theorem ([Yos14a])

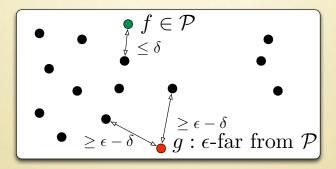
For any high-rank regularity-instance I, there is a tester for the property of satisfying I.

Algorithm:

- 1: $H \leftarrow$ a random affine subspace of a constant dimension.
- 2: **if** $f|_H$ is close to satisfying *I* **then** accept.
- 3: else reject.

Regular-reducibility

A property \mathcal{P} is *regular-reducible* if for any $\delta > 0$, there exists a set \mathcal{R} of constant number of high-rank regularity-instances such that:



Characterization of two-sided error testability

Theorem

Characterization of two-sided error testability

Theorem

Proof sketch:

- Regular-reducible ⇒ testable Regularity-instances are testable, and testability implies estimability [HL13]. Hence, we can estimate the distance to *R*.
- Testable \Rightarrow regular-reducible

The behavior of a tester depends only on $\mu_{f,h}$. Since Γ , **d**, and **h** determines the distribution, we can find \mathcal{R} using the tester.

 $f,g: \mathbb{F}_2^n \to \{0,1\}$ are indistinguishable if $\mu_{f,h} \approx \mu_{g,h}$ $\Leftrightarrow v^d(f,g) := \min_A \|f - g \circ A\|_{U^d}$ is small.

 $f,g: \mathbb{F}_2^n \to \{0,1\}$ are indistinguishable if $\mu_{f,h} \approx \mu_{g,h}$ $\Leftrightarrow v^d(f,g) := \min_A ||f - g \circ A||_{U^d}$ is small.

Q. Can we generalize v^d to functions over different domains? A. Yes, with the aid of *non-standard analysis*.

 $f, g : \mathbb{F}_2^n \to \{0, 1\}$ are indistinguishable if $\mu_{f,h} \approx \mu_{g,h}$ $\Leftrightarrow v^d(f, g) := \min_A ||f - g \circ A||_{U^d}$ is small.

Q. Can we generalize v^d to functions over different domains? A. Yes, with the aid of *non-standard analysis*.

We can define a counterpart of graphons [LS06] and a metric on it.

 $f,g: \mathbb{F}_2^n \to \{0,1\}$ are indistinguishable if $\mu_{f,h} \approx \mu_{g,h}$ $\Leftrightarrow v^d(f,g) := \min_A ||f - g \circ A||_{U^d}$ is small.

Q. Can we generalize v^d to functions over different domains? A. Yes, with the aid of *non-standard analysis*.

We can define a counterpart of graphons [LS06] and a metric on it.

Theorem ([Yos14b])

A property \mathcal{P} is testable \Leftrightarrow for any sequence $(f_i : \mathbb{F}_2^{n_i} \to \{0, 1\})$ that converges in the v^d -metric for any $d \in \mathbb{N}$, the sequence $d_{\mathcal{P}}(f_i)$ converges.

Summary

Higher order Fourier analysis is useful for studying property testing as

- we care about the distribution $\mu_{f,h}$ for h = O(1),
- which is determined by the structured part given by the decomposition theorem.

Summary

Higher order Fourier analysis is useful for studying property testing as

- we care about the distribution $\mu_{f,h}$ for h = O(1),
- which is determined by the structured part given by the decomposition theorem.

We are almost done, *qualitatively*.

- one-sided error testability ≈ affine-subspace hereditary (of bounded complexity)
- two-sided error testability ⇔ regular-reducibility.

Summary

Higher order Fourier analysis is useful for studying property testing as

- we care about the distribution $\mu_{f,h}$ for h = O(1),
- which is determined by the structured part given by the decomposition theorem.

We are almost done, *qualitatively*.

- one-sided error testability \approx affine-subspace hereditary (of bounded complexity)
- two-sided error testability ⇔ regular-reducibility.

Thanks!