A Characterization of Locally Testable Affine-Invariant Properties via Decomposition Theorems

Yuichi Yoshida

National Institute of Informatics and Preferred Infrastructure, Inc

June 9, 2014

Yuichi Yoshida (NII and PFI) Characterizing Locally Testable Properties

Property Testing

Definition

 $f: \{0,1\}^n \to \{0,1\}$ is ϵ -far from \mathcal{P} if, for any $g: \{0,1\}^n \to \{0,1\}$ satisfying \mathcal{P} ,

 $\Pr_{x}[f(x) \neq g(x)] \geq \epsilon.$

Property Testing

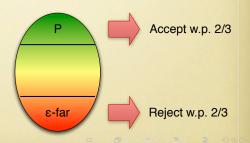
Definition

 $f: \{0,1\}^n \to \{0,1\}$ is ϵ -far from \mathcal{P} if, for any $g: \{0,1\}^n \to \{0,1\}$ satisfying \mathcal{P} ,

 $\Pr_{x}[f(x) \neq g(x)] \geq \epsilon.$

 ϵ -tester for a property \mathcal{P} :

- Given $f: \{0,1\}^n \rightarrow \{0,1\}$ as a query access.
- Proximity parameter $\epsilon > 0$.



Local Testability

Definition

 \mathcal{P} is *locally testable* if, for any $\epsilon > 0$, there is an ϵ -tester with query complexity that only depends on ϵ .

Examples of locally testable properties:

- Linearity: $O(1/\epsilon)$ [BLR93]
- *d*-degree Polynomials: $O(2^d + 1/\epsilon)$ [AKK+05, BKS+10]
- Fourier sparsity [GOS⁺11]
- Odd-cycle-freeness: $O(1/\epsilon^2)$ [BGRS12] \nexists odd k and x_1, \ldots, x_k such that $\sum_i x_i = 0$, $f(x_i) = 1$ for all i.
- k-Juntas: $O(k/\epsilon + k \log k)$ [FKR⁺04, Bla09].

Affine-Invariant Properties

Definition

 \mathcal{P} is *affine-invariant* if a function $f : \mathbb{F}_2^n \to \{0, 1\}$ satisfies \mathcal{P} , then $f \circ A$ satisfies \mathcal{P} for any bijective affine transformation $A : \mathbb{F}_2^n \to \mathbb{F}_2^n$.

Examples: Linearity, low-degree polynomials, Fourier sparsity, odd-cycle-freeness.

Affine-Invariant Properties

Definition

 \mathcal{P} is *affine-invariant* if a function $f : \mathbb{F}_2^n \to \{0, 1\}$ satisfies \mathcal{P} , then $f \circ A$ satisfies \mathcal{P} for any bijective affine transformation $A : \mathbb{F}_2^n \to \mathbb{F}_2^n$.

Examples: Linearity, low-degree polynomials, Fourier sparsity, odd-cycle-freeness.

Q. Characterization of locally testable affine-invariant properties? [KS08]

Related Work

- Locally testable with one-sided error ⇔ affine-subspace hereditary? [BGS10]
 - Ex. Linearity, low-degree polynomials, odd-cycle-freeness.
 - \Rightarrow is true. [BGS10]
 - \leftarrow is true (if the property has bounded complexity). [BFH⁺13].

Related Work

- Locally testable with one-sided error ⇔ affine-subspace hereditary? [BGS10]
 Ex. Linearity, low-degree polynomials, odd-cycle-freeness.
 - \Rightarrow is true. [BGS10]
 - \leftarrow is true (if the property has bounded complexity). [BFH⁺13].
- \mathcal{P} is locally testable \Rightarrow distance to \mathcal{P} is estimable. [HL13]

Related Work

- Locally testable with one-sided error ⇔ affine-subspace hereditary? [BGS10]
 Ex. Linearity, low-degree polynomials, odd-cycle-freeness.
 - \Rightarrow is true. [BGS10]
 - \leftarrow is true (if the property has bounded complexity). [BFH⁺13].
- \mathcal{P} is locally testable \Rightarrow distance to \mathcal{P} is estimable. [HL13]
- \mathcal{P} is locally testable \Leftrightarrow regular-reducible. [This work]

Graph Property Testing

Definition

A graph G = (V, E) is ϵ -far from a property \mathcal{P} if we must add or remove at least $\epsilon |V|^2$ edges to make G satisfy \mathcal{P} .

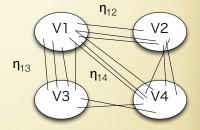
Examples of locally testable properties:

- 3-Colorability [GGR98]
- H-freeness [AFKS00]
- Monotone properties [AS08b]
- Hereditary properties [AS08a]

A Characterization of Locally Testable Graph Properties

Szemerédi's regularity lemma:

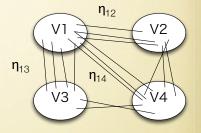
Every graph can be partitioned into a constant number of parts so that each pair of parts looks random.



A Characterization of Locally Testable Graph Properties

Szemerédi's regularity lemma:

Every graph can be partitioned into a constant number of parts so that each pair of parts looks random.



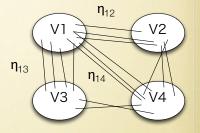
Theorem ([AFNS09])

A graph property \mathcal{P} is locally testable \Leftrightarrow whether \mathcal{P} holds is determined only by the set of densities $\{\eta_{ii}\}_{i,i}$.

A Characterization of Locally Testable Graph Properties

Szemerédi's regularity lemma:

Every graph can be partitioned into a constant number of parts so that each pair of parts looks random.



Theorem ([AFNS09])

A graph property \mathcal{P} is locally testable \Leftrightarrow whether \mathcal{P} holds is determined only by the set of densities $\{\eta_{ij}\}_{i,j}$.

Q. How can we extract such constant-size sketches from functions?

Yuichi Yoshida (NII and PFI)

Constant Sketch for Functions

Theorem (Decomposition Theorem [BFH+13])

For any $\gamma > 0$, $d \ge 1$, and $r : \mathbb{N} \to \mathbb{N}$, there exists \overline{C} such that: any function $f : \mathbb{F}_2^n \to \{0, 1\}$ can be decomposed as f = f' + f'', where

Constant Sketch for Functions

Theorem (Decomposition Theorem [BFH⁺13])

For any $\gamma > 0$, $d \ge 1$, and $r : \mathbb{N} \to \mathbb{N}$, there exists \overline{C} such that: any function $f : \mathbb{F}_2^n \to \{0, 1\}$ can be decomposed as f = f' + f'', where

- a structured part $f' : \mathbb{F}_2^n \to [0, 1]$, where
 - $f' = \Gamma(P_1, \ldots, P_C)$ with $C \leq \overline{C}$,
 - P₁,..., P_C are "non-classical" polynomials of degree < d and rank ≥ r(C).
 - $\Gamma : \mathbb{T}^C \to [0, 1]$ is a function.

Constant Sketch for Functions

Theorem (Decomposition Theorem [BFH⁺13])

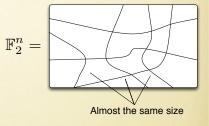
For any $\gamma > 0$, $d \ge 1$, and $r : \mathbb{N} \to \mathbb{N}$, there exists \overline{C} such that: any function $f : \mathbb{F}_2^n \to \{0, 1\}$ can be decomposed as f = f' + f'', where

- a structured part $f' : \mathbb{F}_2^n \to [0, 1]$, where
 - $f' = \Gamma(P_1, \ldots, P_C)$ with $C \leq \overline{C}$,
 - P₁,..., P_C are "non-classical" polynomials of degree < d and rank ≥ r(C).
 - $\Gamma : \mathbb{T}^C \to [0, 1]$ is a function.
- a pseudo-random part $f'' : \mathbb{F}_2^n \to [-1, 1]$
 - The Gowers norm $||f''||_{U^d}$ is at most γ .

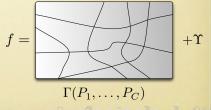
Factors

Polynomial sequence
$$(P_1, \ldots, P_C)$$

partitions \mathbb{F}_2^n into atoms
 $\{x \mid P_1(x) = b_1, \ldots, P_C(x) = b_C\}.$



The decomposition theorem says:



Yuichi Yoshida (NII and PFI)

Characterizing Locally Testable Properties

What is the Gowers Norm?

Definition

Let $f : \mathbb{F}_2^n \to \mathbb{C}$. The *Gowers norm of order d* for f is

$$||f||_{U^d} := \left(\sum_{x, y_1, \dots, y_d} \prod_{I \subseteq \{1, \dots, d\}} J^{|I|} f(x + \sum_{i \in I} y_i) \right)^{1/2^d}$$

where J denotes complex conjugation.

•
$$||f||_{U^1} = |\mathbf{E}_x f(x)|$$

•
$$||f||_{U^1} \le ||f||_{U^2} \le ||f||_{U^3} \le \cdots$$

• $||f||_{U^d}$ measures correlation with polynomials of degree < d.

Correlation with Polynomials of Degree < d

Proposition

For any polynomial $P : \mathbb{F}_2^n \to \{0,1\}$ of degree < d, $\|(-1)^P\|_{U^d} = 1$.

Correlation with Polynomials of Degree < d

Proposition

For any polynomial $P : \mathbb{F}_2^n \to \{0,1\}$ of degree < d, $\|(-1)^P\|_{U^d} = 1$.

However, the converse does not hold when $d \ge 4...$

Correlation with Polynomials of Degree < d

Proposition

For any polynomial $P : \mathbb{F}_2^n \to \{0,1\}$ of degree < d, $\|(-1)^P\|_{U^d} = 1$.

However, the converse does not hold when $d \ge 4...$

Definition

 $P : \mathbb{F}_2^n \to \mathbb{T}$ is a non-classical polynomial of degree < d if $\| \exp(2\pi i \cdot f) \|_{U^d} = 1.$

It turns out that the range of P is $\mathbb{U}_{k+1} := \{0, \frac{1}{2^{k+1}}, \dots, \frac{2^{k+1}-1}{2^{k+1}}\}$ for some k (= *depth*).

Is This Really a Constant-size Sketch?

- Structured part: $f' = \Gamma(P_1, \ldots, P_C)$.
- Γ indeed has a constant-size representation, but P₁,..., P_C may not have (even if we just want to specify the coset {P ∘ A}).
- The rank of (P_1, \ldots, P_C) is high
 - \Rightarrow Their degrees and depths determine almost everything. Ex. the distribution of the restriction of f to a random affine subspace.

Regularity-Instance

Formalize "f has some specific structured part".

Definition

A regularity-instance I is a tuple of

- an error parameter $\gamma > 0$,
- a structure function $\Gamma : \prod_{i=1}^{C} \mathbb{U}_{h_i+1} \to [0,1]$,
- a complexity parameter $C \in \mathbb{N}$,
- a degree-bound parameter $d \in \mathbb{N}$,
- a degree parameter $\mathbf{d} = (d_1, \dots, d_C) \in \mathbb{N}^C$ with $d_i < d$,
- a depth parameter $\mathbf{h} = (h_1, \dots, h_C) \in \mathbb{N}^C$ with $h_i < \frac{d_i}{p-1}$, and
- a rank parameter $r \in \mathbb{N}$.

Satisfying a Regularity-Instance

Definition

Let $I = (\gamma, \Gamma, C, d, \mathbf{d}, \mathbf{h}, r)$ be a regularity-instance. *f* satisfies *I* if it is of the form

$$f(x) = \Gamma(P_1(x), \ldots, P_C(x)) + \Upsilon(x),$$

where

- P_i is a polynomial of degree d_i and depth h_i ,
- (P_1, \ldots, P_C) has rank at least r,
- $\|\Upsilon\|_{U^d} \leq \gamma.$

Testing the Property of Satisfying a Regularity-Instance

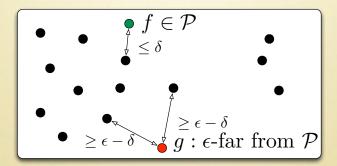
Theorem

Let $\epsilon > 0$ and $I = (\gamma, \Gamma, C, d, \mathbf{d}, \mathbf{h}, r)$ be a regularity-instance with $r \ge r(\epsilon, \gamma, C, d)$. Then, there is an ϵ -tester for the property of satisfying I with a constant number of queries.

Yuichi Yoshida (NII and PFI) Characterizing Locally Testable Properties

Regular-Reducibility

A property \mathcal{P} is *regular-reducible* if for any $\delta > 0$, there exists a set \mathcal{R} of constant number of high-rank regularity-instances with constant parameters such that:



Our Characterization

Theorem

Yuichi Yoshida (NII and PFI) Characterizing Locally Testable Properties

Proof Sketch

- Regular-reducible ⇒ Locally testable Combining the testability of regularity-instances and [HL13], we can estimate the distance to *R*.
- Locally testable ⇒ Regular-reducible
 The behavior of a tester depends only on the distribution of the
 restriction to a random affine subspace. Since Γ, d, and h
 determines the distribution, we can find R using the tester.

Testability of the Property of Satisfying a Regularity-Instance

Input: $f : \mathbb{F}_2^n \to \{0, 1\}, I = (\gamma, \Gamma, C, d, \mathbf{d}, \mathbf{h}, r), \text{ and } \epsilon > 0.$

- 1: Set δ small enough and *m* large enough.
- 2: Take a random affine embedding $A : \mathbb{F}_2^m \to \mathbb{F}_2^n$.
- 3: if $f \circ A$ is δ -close to satisfying I then accept.

4: else reject.

Testability of the Property of Satisfying a Regularity-Instance

Input: $f : \mathbb{F}_{2}^{n} \to \{0, 1\}, I = (\gamma, \Gamma, C, d, \mathbf{d}, \mathbf{h}, r), \text{ and } \epsilon > 0.$ 1: Set δ small enough and *m* large enough. 2: Take a random affine embedding $A : \mathbb{F}_{2}^{m} \to \mathbb{F}_{2}^{n}$. 3: **if** $f \circ A$ is δ -close to satisfying *I* **then** accept. 4: **else** reject.

Q. If f satisfies I, $f \circ A$ is close to I? Q. If f is far from I, $f \circ A$ is far from I?

If f satisfies I

- $f(x) = \Gamma(\mathbf{P}(x)) + \Upsilon(x)$ with $\|\Upsilon(x)\|_{U^d} \leq \gamma$.
- f(Ax) almost satisfies I:
 - $f(Ax) = \Gamma(\mathbf{P}(Ax)) + \Upsilon(Ax)$ with $\|\Upsilon(Ax)\|_{U^d} \le \gamma + o(\gamma)$.
 - **P**(*Ax*) meets the requirement of *I*.
- By perturbing f(Ax) up to δ-fraction, we obtain a function satisfying I.

We will show that " $f \circ A$ is δ -close to I" implies "f is ϵ -close to I."

- δ -close: $f(Ax) \approx \Gamma(\mathbf{P}'(x))$.
- Decomposition: $f(x) \approx \Sigma(\mathbf{R}(x))$. $\Rightarrow f(Ax) \approx \Sigma(\mathbf{R}'(x))$, where $\mathbf{R}' = \mathbf{R} \circ A$.

We will show that " $f \circ A$ is δ -close to I" implies "f is ϵ -close to I."

- δ -close: $f(Ax) \approx \Gamma(\mathbf{P}'(x))$.
- Decomposition: $f(x) \approx \Sigma(\mathbf{R}(x))$. $\Rightarrow f(Ax) \approx \Sigma(\mathbf{R}'(x))$, where $\mathbf{R}' = \mathbf{R} \circ A$.

 $\Sigma(\mathbf{R}'(x)) \approx \Gamma(\mathbf{P}'(x)).$

We will show that " $f \circ A$ is δ -close to I" implies "f is ϵ -close to I."

- δ -close: $f(Ax) \approx \Gamma(\mathbf{P}'(x))$.
- Decomposition: $f(x) \approx \Sigma(\mathbf{R}(x))$. $\Rightarrow f(Ax) \approx \Sigma(\mathbf{R}'(x))$, where $\mathbf{R}' = \mathbf{R} \circ A$.

 $\Sigma(\mathbf{R}'(x)) \approx \Gamma(\mathbf{P}'(x)).$

We can find an extension $\overline{\mathbf{R}'}$ of \mathbf{R}' (of high rank) such that:

 $P_{i} = \Gamma_{i}(\overline{\mathbf{R}'}(x)) \text{ for some } \Gamma_{i}.$ $\Rightarrow \Sigma(\mathbf{R}'(x)) \approx \Gamma(\Gamma_{1}(\overline{\mathbf{R}'}(x)), \dots, \Gamma_{C}(\overline{\mathbf{R}'}(x))).$

Lemma

The identity holds for every value in the range of $\overline{\mathbf{R}'}$.

Lemma

The identity holds for every value in the range of $\overline{\mathbf{R}'}$.

We can replace $\overline{\mathbf{R}'}$ (on *m* variables) by a polynomial sequence $\overline{\mathbf{R}}$ on *n* variables such that $\overline{\mathbf{R}} \circ A = \overline{\mathbf{R}'}$. $\Rightarrow f(x) \approx \Sigma(\mathbf{R}(x)) \approx \Gamma(\Gamma_1(\overline{\mathbf{R}}(x)), \dots, \Gamma_C(\overline{\mathbf{R}}(x))) := \Gamma(\mathbf{P}(x)).$

Lemma

The identity holds for every value in the range of \mathbf{R}' .

We can replace $\overline{\mathbf{R}'}$ (on *m* variables) by a polynomial sequence $\overline{\mathbf{R}}$ on *n* variables such that $\overline{\mathbf{R}} \circ A = \overline{\mathbf{R}'}$. $\Rightarrow f(x) \approx \Sigma(\mathbf{R}(x)) \approx \Gamma(\Gamma_1(\overline{\mathbf{R}}(x)), \dots, \Gamma_C(\overline{\mathbf{R}}(x))) := \Gamma(\mathbf{P}(x)).$

Lemma

With high probability $\mathbf{P}(x)$ is consistent with I.

```
\Rightarrow f \text{ is } \epsilon \text{-close to satisfying } I.
\Rightarrow \text{Contradiction.}
```

Conclusions

- Easily extendable to \mathbb{F}_p for a prime p.
- Query complexity is actually unknown due to the Gowers inverse theorem. Other parts involve Ackermann-like functions.

Conclusions

- Easily extendable to \mathbb{F}_p for a prime p.
- Query complexity is actually unknown due to the Gowers inverse theorem. Other parts involve Ackermann-like functions.
 ⇒ Obtaining a tower-like function is a big improvement!

Open Problems

- Characterization based on function (ultra)limits?
- locally testable with one-sided error ⇔ affine-subspace hereditary? [BFH⁺13]
- Characterization of linear-invariant properties?
- Study other groups?
 - Abelian \Rightarrow higher order Fourier analysis developed [Sze12].
 - Non-Abelian ⇒ representation theory?
- Why is affine invariance easier to deal with than permutation invariance?