An Output-Polynomial Time Algorithm for
Mining Frequent Closed Attribute Trees

Hiroki Arimura®"* and Takeaki Uno?

! Hokkaido University, Kita 14-jo, Nishi 9-chome, Sapporo 060-0814, Japan
arim@i.kyushu-u.ac.jp
2 National Institute of Informatics, Tokyo 101-8430, Japan
uno®nii. jp

Abstract. Frequent closed pattern discovery is one of the most impor-
tant topics in the studies of the compact representation for data mining.
In this paper, we consider the frequent closed pattern discovery problem
for a class of structured data, called attribute trees (AT), which is a sub-
class of labeled ordered trees and can be also regarded as a fragment of
description logic with functional roles only. We present an efficient algo-
rithm for discovering all frequent closed patterns appearing in a given
collection of attribute trees. By using a new enumeration method, called
the prefiz-preserving closure extensiton, which enable efficient depth-first
search over all closed patterns without duplicates, we show that this al-
gorithm works in polynomial time both in the total size of the input
database and the number of output trees generated by the algorithm.
To our knowledge, this is one of the first result for output-sensitive algo-
rithms for frequent closed substructure disocvery from trees and graphs.

Keywords: frequent closed pattern mining, tree mining, attribute tree,
deseription logie, semi-structured data, the least general generalization,
closure operation, output-sensitive algorithm.

1 Introduction

Frequent closed pattern discovery [19] is the problem of finding all the frequent
closed patterns in a given data set, where closed patterns are the maximal pat-
terns among each equivalent class that consists of all frequent patterns with the
same occurrence sets in a tree database. It is known that the number of frequent
closed patterns is much smaller than that of frequent patterns on most realworld
datasets, while the frequent closed patterns still contain the complete informa-
tion of the frequency of all frequent patterns. Closed pattern discovery is useful
to increase the performance and the comprehensivity in data mining.

On the other hand, rapid growth of semi-structured data [1] such as HTML
and XML data enabled us to accumulate a massive amount of weakly struc-
tured data on the networks. There is a potential demand for efficient methods

* Present address: LIRIS, University Clande-Bernard Lyon 1, France.

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 1-19, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 H. Arimura and T. Uno

for extracting uscful patterns from these semi-structured data, so called semi-
structured data mining. For the last years, a number of rescarches on cfficient al-
gorithms for semi-structured data mining have been done for ordered trees 3,27,
unordered trees [4,11,15,22] , and general graphs [14,26]. Presently, one of the
major topics in semi-structured data mining is so-called closed tree mining, an
extension of closed pattern mining framework to semi-structured data [11,23,26].

In this paper, we consider the frequent closed pattern discovery problem for a
class of structured data, called atéribute trees (AT), which is a subclass of labeled
ordered trees and can be also regarded as a fragment of description logic [9] with
functional roles only. We present an efficient algorithm for discovering all frequent
closed patterns appearing in a given collection of attribute trees.

Most of the present closed tree mining algorithms adopted an approach that
combines [ast enumeration of [requent patterns and explicit checking of its max-
imality [11,23,26]. Unfortunately, this approach does not yield any ellicient al-
gorithms with theoretical performance guarantee, in terms of output-sensitive
algorithms or enumeration algorithm. To overcome this problem, we developed
a new enumeration technique, called the prefiz-preserving closure expansion,
which is originally introduced to frequent closed itemset discovery by Uno et
al. [24], with combining the notions of the rightmost expansion [3,18,27] and the
least general generalization [20] for trees.

Based on these techniques, we present an efficient algorithm CLOATT (Closed
Attribute Tree Miner) that enumerates all frequent closed attribute trees in a
given collection of attribute trees without duplicates in polynomial time per
closed tree in the total size n of the database using a small amount of memory
space that only depends on n. The key of the algorithm is a tree-shaped search
space generated by the prefix-preserving closure expansion, that enables us to
make efficient enumeration using depth-first search of closed patterns, without
storing any of the previously discovered patterns for maximality check.

To the best of our knowledge, this is one of the first results on output-
polynomial time closed pattern miners for structured objects. Hence, this is a
first step towards efficient closed pattern discovery for general structured objects
including trees and graphs.

Related Works: Termier et al. [23] recently considered the frequent closed
tree discovery problem for a class of trees with same constraint as attribute
trees in A7 . Though they presented an efficient algorithm using an interesting
idea of hooking, its output-sensitive complexity is not yet analyzed. Cumby and
Roth [13] presented a framework for learning and inference with relation data
using a fragment of description logic, called feature description logic, which is
similar to the class A7 of attribute trees considered in this paper. However,
the focus is on the knowledge representation issues in complex structural data
domains, and closed pattern discovery is not considered [13]. Wang and Liu [25]
studied the frequent tree discovery problem for the class of sets of paths from a
given collection of labeled trees, which is closely related to frequent discoverry
problem for the class AT.

An Output-Polynomial Time Algorithm for Mining Frequent Closed AT 3

Organization of This Papcr: The rest of this paper is organized as follows.
In Scction 2, we give basic notion and definitions on attribute trees and closed
patterns. In Section 3, we give a characterization of closed trees in terms of
least general generalization. In Section 4, we develop the ppc-expansion (prefix-
preserving expansion) and then present an output-polynomial time algorithm
for frequent closed attribute trees. In Section 4, we show an experimental result,
and in Section 5, we conclude.

2 Preliminaries

In this section, we introduce basic definitions on the class of ranked trees and
closed tree discovery.

For a set A, |A| denotes the cardinality of A and £ € A* denotes the empty
sequence of length zero. We denote by A* and At = A*\{e}, respectively, the
sets of all finite sequences and all non-empty finite sequences over A. For se-
quences «, 3 € A*, we denote by a3 the concatenation of «, and 3 and by |¢]
the length of a. If ay = 3 holds for some possibly empty sequence v € A* then
we say that « is a prefiz of 8. Furthermore, if ~ is not the empty sequence then
the prefix « is said to be proper. For a binary relation R C R? over aset X, RT
denotes the transitive closure relation of RR.

2.1 Attribute Trees

In this subsection, we model semi-structured data by a special type of labeled
rooted trees, called attribute trees.

Let A = {ag,a1,as,...} be a countable set of labels associated with a total
order < over A. Sometimes, we call the elements of A atiributes or value, too.
For simplicity, we use a single alphabet A, and think of the labels at internal
nodes and leaves as the encodings of attributes and values, respectively, as in [10].
Throughout this paper, we assume without loss of generality that A is the set of
all nonnegative integers A = {0,1,2,...} and < is the partial order over integers.

Definition 1. Let A is an alphabet of labels. An attribute tree on A (tree, for
short) is a rooted, node labeled, directed acyclic graph T = (V, E, r, label), where

1. The set V. ={v1,...,0,} (n > 0) is a finite set of nodes.
2. The set E CV xV is a finite set of edges. If (u,v) € E then we say that
either u is the parent of v or v is a child of u.
8. The node v € V is a distinguished node, called the root. Any node v except
r has exactly one parent.
. The function label : V. — A is a labeling function for assigning a label
label(v) to each node v of T.
5. For every label a € A, each node v € V has at most one child w labeled by
a. Then, the unique node w is called the a-child of v.

B

We assume that Vr = {1,...,n} and identify the isomorphic patterns. The
size of T, denoted by |T, is defined by the number |V| of the nodes in T'. Let
u,v € V. If (u,v) € (E)" then we say that either u is an ancestor of v or v

4 H. Arimura and T. Uno

Database D Pattern T1

Oce(T) = {2, 36}

Datatree D1

3006 b-machines intel 1.2GHz pen3 arm sdeard toshiba itanium harddisk toshiba harddisk toshiba

0 @

5 o 2 Pattern T3 Pattern T2
harddisk 120GR foshiba QQ stonase

e mater OS6(T8)={16,81,42) Oce(T2) ={2, 23, 36)

® product
@ makers epn storuge

toshiba

Fig. 1. An example of a tree database and patterns in attribute trees, where each circle
indicates a node, each number in a circle indicates the node number, and each name
in italic or bold face next to a circle indicates a node label. For instance, the pattern
Ty occurs in the database at positions 2 and 36.

is a descendant of u, where (ET) is the transitive closure of E. A path in T is
a sequence of nodes © = (v1,...,v4), d > 0, such that (v;,v;y1) € IZ for every
i=1,...,d—1 and its length is the number of its nodes |r| = d. The depth of
node v is the length of the unique path from the root to v. Other notions on
trees such as height can be found in a standard textbook, e.g., [2]. We denote
by AT the class of all attribute trees over A. In what follows, for an attribute
tree T = (V, E,r,label), we refer to V, E, <, r,label as Vr, Er,rr, and labelr,
respectively if it is clear from context.

In Fig. 1, we show an example of attribute trees, where nodes are numbered
in the preorder (as ordered trees), and each label is used to represents either an
attribute (in italic face) or a value (in block face). These labels can be used to
represent edge labels, too, since we deal with trees only.

2.2 Tree Matching Relation
The semantics of attribute trees is given by the matching functions as fol-
lows [3,8,16,17].

Definition 2. T.et S and T' € AT be attribute trees over A. Then, S maiches
T, denoted by S C T, if there exists some function ¢ : Vg — Vi that satisfies
the following conditions (i)—(iv) for any v, vy, v2 € V.

(i) ¢ is a one-to-one mapping: vy # vo implics p(vy) # @(va).
(ii) ¢ preserves the parent-child relation: (vi,v2) € Eg iff (p(v1), o(v2)) € Er.
(iil) ¢ preserves the node labels: labelg(v) = labelr(p(v)).

The function ¢ is called a matching function from S to T." We denote by
&(S,T) the sct of all matching function from S to T.

! In Kilpelainen and Mannila [16], ¢ is called a path inclusion since it preserves the
parent-child relationship. The fuction ¢ is called an embedding.

An Output-Polynomial Time Algorithm for Mining Frequent Closed AT 5

Ezample 1. In the example of Fig. 1, the tree T with node set Vi, = {1,2, 3,4}
oceurs in the data tree D with matching functions @1 = (2,7,9,16), @2 =
(23,26,28,31), and 3 = (36,37, 39,42), where cach ¢ is represented by tuple of
its images (¢(1),¢(2), 9(3), ©(4))-

If S C T holds, then we also say that S occurs in T', S is included by T, or
S subsumes T. Tt S © T and T Z S then we define S C T and say that S is
properly included in T or S properly subsumes T. For convention, we assume a
special tree | of size 0, called the empty tree, such that 1 & T for every T € AT.

Lemma 1. The subsumption relation C is a partial order over AT .

The matching problem w.r.t. C is the problem to decide if a pattern tree P
matches a data tree D, i.e., P C D holds.

Lemma 2. The matching problem w.r.t. T is computable in O(mn) time for
attribute trees, where m and n are the sizes of a pattern tree and a data trees.

2.3 Databases, Patterns, Denotations, and Closed Patterns

Let D = {Dy,..., Dy} be a tree database (database, for short), where each D; €
AT is an attribute tree, called a data tree, and the node sets Vp,,...,Vp, are
mutually disjoint. In the later sections, we often identify D as a single database
tree with a virtual master root vg labeled by a null label.? We define the domain
and the size of D by Vp = J, Vp, and ||D|| = |Vp|, respectively.

A pattern or tree in D is any attribute tree T € A7 that occurs in D.
A position in D is any node v € Vp. If there exists some matching function
@ € ®(T,D) such that p = @(rr), then we say that either 7' occurs at position
p or p is an occurrence of T. For attribute trees, each occurrence p = (rp)
of tree T determines the matching function ¢ in a unique way. The occurrence
set of T in D, denoted by Ocep(T), is the set of all occurrences of T in D,
that is, Ocep(T) = { @(rr) | € $(T,D) }. Trees S and T are equivalent if
Ocep(S) = Ocep(T). The equivalent class for T on D is denoted by FQ(T) =
{T" € AT |Occp(T") = Ocep(T) }. From now on, we fix a database D, and we
may omit the subscript D if no confusion arises in the future sections.

Let 0 < o < ||D|| be a nonnegative integer, called a minimum frequency
threshold or a min-freq. Then, a tree T' € AT is frequent in D if |Ocep(T)| = o
holds. Both of Ocep (T') and |Ocep (T)| are computable in O(|T| - ||D]]) time.

Definition 3 (Closed trees). A frequent tree T is closed in D if there exists
no equivalent tree to T within AT that properly includes T, that is, there exists
no such T' € AT that (i) T T T and (i) Ocep(T') = Ocep(T).

Example 2. In the database of Fig. 1, patterns 77 and 75 have the occurrence
sets Ocep(Ty) = {2,36} and Ocep(Tz) = {2,23,36}, respectively. We also see

2 Note that the whole database tree D with the master root vo is not an attribute tree
and represents a forest of data trees, since vo may have children with possibly same
labels. However, it is justified whenever no pattern is allowed to occur at .

6 H. Arimura and T. Uno

that T3 C Ty holds. Let ¢ = 2 be a minimum frequency threshold. 7y, 75, and
Ts arc frequent patterns in D since. Ty is closed in D.

In other words, a closed tree 1" is a maximal element of EQ(1’). For threshold
o, F» and C, denotes the classes of all frequent trees and all frequent closed trees,
respectively, in D. We write F and C for the threshold ¢ = 1. Now, we state our
data mining problem as follows.

CLOSED PATTERN MINING PROBLEM FOR ATTRIBUTE TREES

Given a database D = { Dy, ..., Dy} (m > 0) of attribute trees and a minimum
frequency threshold 0 < o < ||D]], find all frequent closed trees T € AT in D
without duplicates.

Our goal in this paper is to design an output-polynomial time algorithm for
the frequent closed pattern problem for the class A7 using as small memory
footprint as possible. An algorithm M solves an enumeration problem IT in
output-polynomial time [5] if the running time of M is bounded by a polynomial
time in m and n, where m = |C,| and n = ||D||.

Since a transaction database with attributes A can be encoded by a forest of
depth three over alphabet A U {{qp, record }, the following lemmas for attribute
trees follows from the corresponding lemmas for transaction databases.

Lemma 3. There exist some database D C AT and 0 > 0 such that |C]| is
exponentially larger than the input size ||D|].

Lemma 4 (Uno et al. [24]). There exists some database D C AT and o > 0
such that |Fs| is exponentially larger than |Cy|.

From Lemma 3 and Lemma 4, we see that a naive generate-and-test algorithm
with enumeration of all frequent patterns cannot be output-sensitive.

2.4 Relationship to Other Models of Semi-structured Data

The class AT of attribute trees can be related in several ways to the existing
models of structured and semi-structured data as follows.

o AT is a slight modification of ranked trees in the studies of tree automata
and formal logic. In ranked trees, the domain of indices is restricted to non-
negative integers rather than arbitrary countable set A. Also the number of
children of each node, called rank is determined by the symbol attached to
the node.

e AT is a special case of labeled ordered trees [3,18,27] and labeled unordered
trees [4,15], which arc extensively studied in semi-structured data mining.
Trees in A7 have the constraint that the labels of the children of cach node
are mutually distinct.

e AT is corresponds to the class of complex objects with the tuple constructor
only [6,10] where a complex object over an attribute alphabet A is either an
empty object O = @ or a hierarchical tuple O = {ay : O1,...,an : Oy} for
attributes ay,...,a, € A and complex objects Oq,...,Op.

An Output-Polynomial Time Algorithm for Mining Frequent Closed AT 7

e AT can be considered as a fragment of description logic [9] where only func-
tional roles/attributes arc allowed and equivalenee constraints and complex
logical constructs are not allowed. The relation E corresponds to the sub-
sumption relation of such logic. Furthermore, roughly speaking, if we regard
a tree database D as a model I'p and a tree pattern T as a formula ¢ in this
version of description logic, then the occurrence set Oce(T) of T corresponds
to the extension of ¢ in Ip, where a matching function is not necessarily
one-to-one.

o AT corresponds to a simple subclass of conjunctive queries in deductive
databascs and first-order logic programs. The database has monadic predi-
cates Q1(7),...,@m(") for labels and a binary predicate R(-,-) for edges. A
database has tree structure in the edge predicate, and a pattern is a definite
clause of the form

P(X) A Ql(Xl)v s 7Qm(Xm)aE1(Yla Zl)a . -aEn(Yna Zn)

with an underlying variable dependency structure of tree-shape, with some
constraint on the appearance of monadic predicate corresponding to the def-
inition of attribute trees.

A natural question is how useful the class of attribute trees is. Clearly, not
all XML databases are attribute trees. For a non-attribute labeled tree T, there
are two possible ways to derive an attribute tree version of T as follows. The
first way is to simply remove all but first nodes with the same label in siblings.
The second way is recursively merge the siblings with the same labels starting
from the root node of T. In Section 5, we give an example of such an attribute
tree derived from a real world dataset.

3 Characterization of Closed Attribute Trees

In this section, we give a characterization for closed attribute trees, which plays
a central role in our output-polynomial time algorithm for frequent closed tree
mining. This characterization used the notion of least general generalization for
trees, and is a natural gencralization of propertiecs of closed itemsets to attribute
trees.

In this and the next sections, we identify a tree in A7 and its address set
representation if no confusion arises.

3.1 A Representation for Attribute Trees

In this subsection, we introduce the address set representation of attribute trees,
which is a combination of sequence representation for frequent itemsets [7] with
tree domains for ranked trees.

For an attribute tree T' € AT, each node v of T has the unique path =
from the root to v. Then, the address of v, denoted by dom(v), is the sequence
a=(a,...,an) € A* of node labels spelled out by the path 7. We also call any
element of A4* an address on A. The address set (or domain) of a tree T € AT
is defined by the set dom(T) = { dom(v) € A*|v € Vp } U {e}, the set of all

8 H. Arimura and T. Uno

Address set dom(T)

€

product

product. maker

product.cpu

product.cpu.arch
product.storage.
product.storage.type
product.storage.type.harddisk
product.storage.maker
product.storage.maker.toshiba

harddisk toshiba

O 0~ R WD — O

Fig. 2. A attribute tree 7" and its address set dom(T')

addresses for the nodes of T'. For the empty tree L, we define dom(Ll) = {e}.3
Intuitively, an address and an address set over A* correspond to a node and a
tree in A, respectively.

For an address a = (ay, ...,aq4_1,aq) of length d > 1, the parent address of «
is the address pa(a) = ay,...,aq1 of length d—1. A set A C A* is prefiz-closed
if @« € A implies pa(a) € A for any address « € A*. The following lemmas are
well known saying that the address set precisely encodes an attribute tree.

Lemma 5. Let A C A* be any set of addresses. Then, dom(T) = A for some
tree T' € AT iff A is prefiz-closed.

Lemma 6. Trees Ty and Tz € AT are isomorphic iff dom(Ty) = dom(Tz) holds.

The conversion between T and dom(T) can be done in each direction in linear
time of the input size.
Consider the set A* of all addresses and the lexicographic order <jex over

A*. Tt is often convenient to regard an address set A = {aq,...,a,} as an or-
dered sequence (o, ..., @), where o, <jex - -+ <lex @, for some permulation
{#1,.. i, = {1,...,n}. With this sequence notation, we have the following

definition. Let v € A* be any address. The ~-prefiz and the strict v-prefiz of A
are the elements of A that are less than or equal to + and strictly less than ~,
that is, A(y) ={a € Ala<ixv}, and A(y —1) ={a € A|a <jex v }, respec-
tively. The head and the tail of A is the the minimum and the maximal elements
hd(A) = min(A) and t1(A) = max(A), respectively (They are equivalent to «,
and ¢, in the sequence notation above).

For a tree A, an address o € A* is open for an address set A if pa(a) € A
and a € A hold. We denote by Open(A) the set of all open addresses for A.

3 Here, we assume that every tree T’ contains an invisible grand root with the address
€. This treatment is just necessary to ensure a tree domain to be the prefix-closed.

4 If A is finite then actually the address v — 1 exists as the predecessor of address ~.
Tt is not the case when A4 is countably infinite and ~v ends with the smallest letter in
A. However, we can still use this notation safely if A is finite as in our case.

An Output-Polynomial Time Algorithm for Mining Frequent Closed AT 9

s1 $={s1,52} s2 T =Lgg(S)

9 produsci @ product 6 product

pen3 harddisk toshiba tanium harddisk toshiba harddisk toshiba

Fig. 3. The least general generalization T' = Lgg(S) of set of trees {S1,S2}. The tree
T is the unique maximal tree that is more general than both of 51 and Ss.

3.2 The Least General Generalization and Closure Operation

In this subsection, we introduce the least general generalization for attribute
trees by extending the original definition for atomic formulas by Plotkin [20]
and Reynolds [21]. Then, we give the closure operation for trees in A7

We define a binary relation < over A7, called the generalization relation,
as follows. For any trees S, T € AT, if there exists some ¢ € ¢(S5,T) such that
p(rs) = rp then we define S < T and say that S is more general than T or T
is more specific than S. If S <X T but T A S then S is properly more general
than T or T is properly more specific than S. Clearly, S < T implies S C T, and
thus, < is a partial order. However, the converse does not hold in general since
¢ have to map the root of S into the root of T' in the casc for <.

Lemma 7. For any S,T € AT, S <X T iff dom(S) C dom(T).
The generalization relation satisfies the following anti-monotonicity.
Lemma 8. Let S,T € AT be any trees.

1. If S 2T then Oce(S) 2 Oce(T).
2. If S =T then |Oce(S)| = |Oce(T)).

Then, the least general generalization of a set of trees is defined as follows. Let
S C AT be a finite set of trees. A tree T' € AT is a common generalization for
SifT < S for every S € S. A common generalization T" of S is the least general
generalization (lgg) of S if T is more specific than any common generalization
for S, i.e., T % T for any common generalization 7" for S. We denote the lgg of
8 by Lgg(S). The following theorem says that Lgg(S) always exists and unique.

Lemma 9. For any set & C AT, Lgg(S) is the unique tree T such that
dom(Tr) = Ngeg dom(S).

Proof: Let & = {S51,...,5,} € AT be a finite set of trees, where m > 0.
Then, we can show that Lgg(S) is the unique tree T~ € A7 whose address set
is given by the intersection of all address sets Aq,..., Ay, that is, A~ =, 4;,
where A; = ad(S;) for every i = 1,...,m. Now, we give the proof for the above

10 H. Arimura and T. Uno

claim. Let T € AT be the tree defined in the above statement. If both scts Ay
and A, arc prefix-closed then so is Ay N As. Thus, the intersection Anq is also
prefix-closed. From Lemma 6 and Lemma 5, such a tree T always oxists and is
unique. On the other hand, assume that we have a common p-generalization 7’
of S. U T" = S; then A’ = ad(T") is included in A; = ad(S;) for every i. Thus,
A" C (), ad(S;) = An holds. From Lemma 7, this implies that 77 < T for any
common generalization 7”. Hence, we know that T is the unique least general
generalization of & w.r.t. <. m|

Theorem 1. The least general generalization Lgg(S) for a finite set S C AT
of attribute trees is unique, of polynomial size, and polynomial time computable
in the total size of S.

From the proof of the above theorem, we present an O(mn) time algorithm
for Lgg(S) as in [20]. Cohen et ol. [12] studied the least general generalization
for a more general fragment of description logic, called CrASSIC.

Now, we give the closure operation for trees.

For a position v € Vp, the subtree (or half-tree) rooted at position v is the
tree S whose domain is given by dom(S) = { 8 € A" |aB € dom(D) } for the
address « of v. For a set P C Vp of positions, the tree set of tree T for P,
denoted by Tree(T), is the set of all subtrees of D rooted at some positions in
P.

Definition 4 (The closure operation). Let D be a database. The closure of
atree T € AT is the tree Clop(T) = Lgg(Treep(Ocep(T))).

Lemma 10. Clo(T) is computable in O(mn) time in the size m = |T| of T and
the total size n = ||D|| of D.

Theorem 2. Clo(T) is the unique mazimal tree in the equivalence class EQ(T)

Proof: T.et § be the set of all half-trees in D rooted at the occurrences of T' in
the database. Then, the closure of T is L = Lgg(S). Now, we show that if P is
any member of EQ(T') then the pattern P is also more general than the closure
Lgg(S). Let P be any member of EQ(T). Then, P occurs at all occurrences
of T in the database, i.e., Occ(T) C Occ(P). By the definition of half-trees,
this implies that P is more general than all half-trees in . From the definition,
Lgg(S) is the unique greatest tree that is more general than all half-trees in S.
Thus, it immediately follows that P is more general than Lgg(S). Since this is
valid for all P € EQ(T), we see that Lgg(S) is the greatest member of EQ(T)
in terms of <. O

Theorem 3. A iree T € AT is a closed tree in D iff Clo(T)=T.

From Theorem 3 and Lemma 10, we can test if T is closed or not in polyno-
mial time in |T'| and ||D|]. We listed below some properties of closed trees, which
are useful in show in the above theorems and also for the discussion in the later
sections.

An Output-Polynomial Time Algorithm for Mining Frequent Closed AT 11

Lemma 11. For any trees T,Ty,T> € AT, the following properties hold:

T < Clo(T).

Tf Th = T then Clo(Ty) = Clo(Ts).

If Oce(Ty) C Oce(Ty) then Clo(Th) <X Clo(Ts).
Clo(Clo(T)) = Clo(T).

Clo(T) is the unique smallest closed tree including T

For closed trees Ty, T> € C, Th X Ty iff Occ(Ty) = Oce(T?).

S Trds o o~

4 Output-Polynomial Time Algorithm for Closed Trees

In this section, we present an efficient algorithm for enumerating all frequent
closed trees in polynomial time per tree without duplicates in the total size of
the input databasc.

4.1 Possible Approaches

In this subsection, we consider and briefly summarize the possible approaches
for computing frequent closed trees and point out some problems in them.

The first approach is to use a frequent tree mining algorithm. Tn mining
of labeled ordered trees, an efficient enumeration technique, called rightmost
expansion in [3], is used for generating all frequent labeled ordered trees with
depth-first scarch. In our representation for attribute trees with address sct, the
definition is given as follows.

Definition 5 (Rightmost expansion). Let k > 1 and S € AT be a tree of
size k — 1. Then, a tree T of size k is said to be a rightmost expansion of S if
T = SU{38} for some open address 3 € Open(S) such that 3 >1ex td(S).

Using rightmost expansion, we can implement an algorithm that enumerates
all frequent trees in A7 without duplicate, which starts from the empty tree,
and searches all frequent trees from smaller to larger by the rightmost expansion
as Asai el al. showed for the computation of frequent ordered trees [3].

We can modify this algorithm to compute all frequent closed trees by first
enumerating each tree, and then testing if it is closed. This algorithm requires
at least time proportional to ||F,|| > ||Cs||- Thus, it cannot be an output-
polynomial time algorithm at all.

The second approach is to use the closure operation to generate closed trees.
T is an expansion for § if T = S5 U {3} for some open address 3 € Open(S5).

Dcfinition 6 (Closurc cxpansion). Let k > 1 and S € AT be a tree of size
k—1. Then, a tree T of size k is said to be a closurc cxpansion of S if T is the
closure of an expansion for S, that is, T = Clop(SU{3}) for some 3 € Open(S).

It is not hard to see that any closed tree T is a closure expansion of some
closed tree S. Then, we can implement an algorithm for computing all frequent
closed trees working with level by level using breadth-first search or level-wise
search as Uno et al. showed for the computation of frequent closed itemsets [24].

12 H. Arimura and T. Uno

This algorithm starts from the sct of frequent closed trees of size one, and for
cvery level k& = 1,2,... then iteratively computes from the set Cp, of trees of
size k the sct Cpiy by using closurce cxpansion. Since the same tree can be
generated more than one parent tree by closure expansion, we have to check if
each generated closed tree is not repeated, using the current set of closed trees
in a breadth-first manner.

We can prove that the computation time of this approach can be output-
polynomial in |[D||, using the results to be shown in the following sections.

Corollary 4. There exists an output-polynomial time algorithm in ||D|| for
the frequent closed pattern problem using the space proportional to the output
size ||Cs||.

However, this algorithm with closure expansion alone requires at least the
memory space proportional to the total size ||C,|| of outputs due to its breadth-
first search scheme.

Overall, neither of the approaches with rightmost expansion alone and with
closure cxpansion alone arc not satisfactory yet. To overcome these problems,
we combine both approaches in the following sections to achicve cfficient enu-
meration with small amount of space proportional to ||D]| rather than ||F,||
and ||D||.

4.2 Tree-Shaped Search Space for Closed Trees

In this subscection, we introduce a trec-shaped scarch structure over C, which is
based on a scarch technique, called reverse scarch [5)].

We first give a parent function over closed trees. Let D be a database. Then,
the root closed pattern is the smallest tree roote = Clo(L) equivalent to the
empty pattern 1 and always exists. Let A C A* be an address set of a tree.
Recall that we introduced the notations A(v) and A(y—1) for an address v € A*
in Section 3.1, where A() is the set of addresses in A less than or equal to ~
and A(y—1) is the set of addresses strictly less than v. We define the core index
of A by

core_i{A) = min{ vy € A| Occ(A) = Occ(A(%)) },

that is, the minimum address v € A such that Occ(A) = Occ(A(v)). For roote,
we define core_i(roote) = —1.

Definition 7 (The parent tree). Let T € C\{rootc} be any non-root closed
tree. Then, the parent of T, denoted by P(T) € AT, is defined by

P(T) = Clo(T (core_i(T) — 1)).

Lemma 12. For any non-root closed tree T € C\{rootc}, the parent tree P(T)
always exists, is unique, and is also a member of C.

Proof: Since T € C\{rootc}, T is not equivalent to the empty tree L in its
occurrence set. Thus, its core index v = core_i(T) must be greater than zero,
and thus the prefix T'(y—1) is defined. For any tree T, its closure Clo(T') always
exists. Hence, the result follows. O

An Output-Polynomial Time Algorithm for Mining Frequent Closed AT 13

Lemma 13. For any non-root closed tree T € C\{rootc}, the following proper-
ties hold:

1. [P(T)| < |T| holds.
2. P(T) < T holds.

Proof: The proof follows from Lemma 11. O

Let us consider a directed graph T = (C, P, root¢), called a search graph for
C, where each node is a closed tree T and there exists an edge (a reverse edge)
from a tree T to tree S if P(T) = S. From Lemma 12 and Lemma 13, we have
the following lemma.

Lemma 14 (Existence of tree-shaped search space for C). The search
graph T = (C,P,roote) for C is a spanning tree over all closed trees in C with
the unique root roote.

Lemma 14 is also valid for frequent closed trees in C, with min-freq threshold
o since the parent edge satisfies the anti-monotonicity in frequency (Lemma 8).

4.3 Prcfix-Prescrving Closurce Expansion

In this subsection, we give the prefix-preserving closure expansion. Let S,T €
AT be trees. T € AT is said to be a prefiz-preserving closure expansion (ppe-
expansion) of S if

(i) T = Clo(S U {8}) for some 3 € Open(S), that is, T is obtained by first
adding a new node to .S, and then taking its closure.
(ii) the address 3 satisfies 3 > core_i(.9).
(iii) S(3—1) =T(8—1), that is, the strict F-prefix of S is preserved.

In the search, starting from the root tree roote, we search the search tree 7°
by growing the present tree by taking its ppc-expansions. The next lemma says
that the core index can be recursively computed.

Lemma 15. Let S be a closed tree and T = Clo(SU{3}) be a ppe-expansion of
S. Then, 3 is the core index of T.

Proof: Since Clo(T(3)) =T by assumption, we at least know that core_i(T) <
3. Assume to contradict that core_i(T) < 3 and that Clo(T'(8)) = T holds for
some § < 3 such that § ¢ S. Then, we can show that Clo(S U {é}) = T holds.
However, this implies the contradiction that S(3) # T'(3) since § € S but § € T.
Thus, we conclude that core_i(T) = 3. |

Lemma 16. Let S be a closed tree. Then, all ppc-expansions of S can be gen-
erated in polynomial time per ppe-expansions in |S| and ||D||.

We show that any non-root tree T' can be generated from its parent P(7T') by
ppe-expansion. In the following proofs, we assume that A is finite for simplicity.
However, these lemmas also hold for infinite .A.

14 H. Arimura and T. Uno

Lemma 17. Let T be a non-root closed tree, and S = P(T) be the parent tree
of T. Then, T is a ppc-expansion of S.

Proof: Let v = core_i(T). We will show that T = Clo(SU{~}). By assumption,
S = Clo(T(y — 1)). Thus, the core index of S is at least strictly smaller than ~
and this satisfies condition (i) of ppc-expansion. Since T'(y) = T'(y — 1) U {~}.
By Lemma 11, we have T'(y) < S U {y} =< T. Since Clo(T(y)) = T for the
core index -, it follows (rom Lemma 11 that condition (i) Clo(SU{~}) =T of
ppe-expansion. Since S = Clo(T(y — 1)), S(y — 1) already includes T'(y — 1).
The converse is also true T is a closure of S U {~}. Thus, we have condition (iii)
S(y—1)=T(y —1) of ppc-expansion. O

Lemma 18. Let S be a closed tree, and T be a ppc-expansion of S. Then, S is
the parent tree of T, i.e., S = P(T).

Proof: By assumption, (i) 7' = Clo(S U{3}) for some 3 > core_i(S). Then, by
condition (iii) of ppe-expansion S(8—1) = T(8—1), we know that v = core_i(T)
is at least larger than 3, and thus strictly larger than core_i(S). This implies
that v — 1 is larger than or equal to core_i(S). Since v — 1 > 3 — 1, we have
S(y—1) XT(y—1). On the other hand, since v — 1 > core_i(S) as above, we
have Clo(S(y — 1)) = S. This implies that Clo(T(y — 1)) is at least as general
as S, and thus equivalent to .S. This shows that P(T(corei(T)—1))=S5. O

Combining Lemma 17 and Lemma 18, we show that the ppe-expansion cor-
rectly generates the children of a closed pattern in the scarch graph.

Theorem 5. Let S and T be a closed tree such that T' # roote. Then, S is the
parent tree of T iff T is a ppc-expansion of S.

4.4 Algorithm

In Fig. 4, we show our algorithm CLOATT (Closed Attribute Tree Miner) for
discovering all frequent closed trees in a given database. This algorithm uses
ppe-expansion introduced in the previous section. Starting from the smallest
closed tree roote, the algorithm performs depth-first search for closed trees by
finding the children of the present closed tree using ppc-expansion.

Theorem 6. Let D C AT be a database and o > 1 be a minimum frequency
threshold. Then, the algorithm CLOATT of Fig. 4 finds all frequent closed trees
T € AT appearing in D in O(bm>n) amortized time per tree without duplicates
using O(n) memory space, where b is the maximal branching of each data trees
in D, m = |T| is the size of the tree found, and n = ||D|| is the total size of the
database ||D||.

Proof: From Lemma 14 and Theorem 5, the algorithm CLOATT correctly
searches all closed trees on the spanning tree 7 for F. Since this search space
forms tree, each closed tree is generated exactly once. For each closed tree T,
we can compute Oce(T) in O(mn) time. From Lemma 16, we can also com-
pute all ppc-expansions of 7' in polynomial time, more exactly in O(bm2n) time

An Output-Polynomial Time Algorithm for Mining Frequent Closed AT 15

1 Algorithm CLOATT

2 input: a database D and a min-frequency threshold 1 <o < ||D||.
3 output: all frequent closed patterns in P with min-freq o;

4 Ty := Clo(L). // Most general closed pattern rootc

5 ~o := core_i(Tp). // Core index of Ty

6 PPC-Ezxpand(To, ~o, Occ(Th), D, o).

7 Proc. PPC-Ezxpand(S, ~, Occ(S), D, o)

8 If |Oce(S)| < o then return // Not frequent

9 Else if Clo(S) # S then return // Not closed

10 FElse // Closed pattern

11 Output S.
12 For each address 3 € Open(S) such that 8 >iex v do:
// PPC-Ezpansion

13 T :=Clo(SU{3});
14 If S(v—1) 5 T(v— 1) then return.
15 PPC-Expand(T, 3,0cc(T), D, 7).

16 Prefix(y) :={a € A" | <jex v }.

Fig.4. A frequent closed pattern miner using prefix-preserving closure (PPC) expan-
sion. This algorithm runs in output-polynomial time also with a small amount of mem-
ory due to the pure depth-first search.

since there are at most bm ppe-extensions of T'. From the recursive computa-
tion scheme of the algorithm, if all ppc-expansions of T" are not closed then this
branch of computation is terminated and the algorithm backtracks. Therefore,
the amortized computation time per generated tree is again O(bm?n) time. Since
the recursive call for the subprocedure PPC-FExpand can be implemented by us-
ing a stack of length at most m = |T| where each entry contains a pair of an
ancestor tree S of T and its occurrence set Oce(S), the memory space used is
O(¢) = O(mn), where £ is the sum of |Occ(S)| = O(||D||) for all ancestors of the
current tree 7. Furthermore, this can be reduced to O(n) by recording only the
differences of these occurrence lists. This completes the proof. O

Corollary 7. There exists an output-polynomial time algorithm for the frequent
closed pattern problem using the space proportional to the total database size.

5 Experiments

In this section, we present some experimental results on a qualitative assessment
at the utility of closed attribute tree mining. In particular, we examine how much
reduction is possible by closed pattern discovery on a real world dataset.

16 H. Arimura and T. Uno

Table 1. The size of original and pruned datasets

Dataset H # documents # nodes Is AT?
dblp1830.xml 986 37,276 No
dblp1830at.xml 986 33,468 Yes

Numbers of Closed Trees vs. All Frequent Trees
(Dataset: An attribute tree version of a subset of dblp.xml, 37276nodes)

[# FreqClosed O# AllFreq|

6759
10000¢
1937
841
1000/ o
135
2
£ 5
[0
£ 100/
a 25
H
12 13
10/
;
80.0 40.0 20.0 10.0 5.0

minsup [%] (in document frequency)

Fig. 5. The number of frequent closed trees and all frequent trees against the minimum
frequency thresholds

We first build a pruned dataset consisting of attribute trees derived from a
real world dataset as follows. The orignal dataset is a subset of an XML dataset
dblp1830.xml consisting of 986 XML documents extracted from a bibliographic
database DBLP (dblp.xml).> Since this dataset contains repeated occurrences
of the same label, such as author and ee in siblings, we prune the dataset by
removing all but first occurrences of the repeated attributes and its subtrees in
siblings. The resulting dataset, called dblp1830at . xml, consists only of attribute
trees. In Table 1, we show statistics of the original and pruned datasets. From
the table, we can see that the dataset retains a large part of the structure in the
original datasets.

Then, we compute the sets of all frequent closed trees and frequent trees in
the pruned dataset dblp1830at.xml. To compute all frequent attribute trees,
we used an implementation of a frequent unordered tree miner UNOT [4]. Since

® http://www.informatik.uni-trier.de/~ ley/db/

An Output-Polynomial Time Algorithm for Mining Frequent Closed AT 17

we have not implemented the algorithm CLOATT in the previous scction, we
compute all closed patterns by explicitly checking if the condition of Definition 3
holds for cach frequent trees computed by UNoT. In Figure 5, we show the
number of the frequent closed trees and the number of all frequent trees when
we vary the minimum frequency threshold from 80.0% to 5.0% in document
frequency. From this figure, we can observe that the number of the frequent
closed trees is order of magnitude smaller than the number of all frequent trees
for most minimum frequency threshold values. Some of the discovered closed
trees corresponded to a schema structure inherent to the DBLP database.

6 Conclusion

In this paper, we presented an output-polynomial time algorithm for mining all
frequent closed patterns for the class of attribute trees.

This algorithm computes all frequent closed trees in polynomial time per
closed tree without duplicates in the total size of the input database using a
small amount of memory with depth-first search. For the purpose, we gave a
characterization of closed trees in terms of the least gencralization for attribute
trees, and an cfficient ecnumeration method, called pee-cxpansion, for realizing
direct cnumeration of closed trees only using the depth-first scarch.

The class AT of attribute trees can be related in several ways to the existing
models of structured and semi-structured data. In particular, A7 has a close
relationship to a fragment of description logic with functional roles only. Thus,
it is an interesting future work to generalize the result of this paper to richer
fragment of description logic. This may include the introduction of equivalence
constraints and non-functional roles.

In this paper, we are working only with theoretical framework for efficient
closed tree miners using ppc-extension. The implementation of the proposed
algorithm CLOATT and the estimation of its efficiency on realworld datasets will
be future works.

Acknowledgment

The authors would like to thank Ken Satoh, Shinichi Nakano, Ryutaro Tchise,
Hidecaki Takeda, Akihiro Yamamoto, Hiroshi Sakamoto, and Shinichi Shimozono
for their valuable discussions and comments. The first author also would like to
thank Fabien de Marchi and Salima Benbernou of UCBL1 and Makoto Haraguchi
of Hokkaido University for their introduction to and discussions on description
logic and to also thank Mohand-Said Hacid of UCBL1 and Yuzuru Tanaka of
Hokkaido University for giving the opportunity for the research. The authors
also thank anonymou referees for their valuable comments that greatly improve
the quality of this paper. This research is partly supported by Grant-in-Aid for
Scientific Researchon Priority Areas on “Informatics,” Ministry of Education,
Culture, Sports, Science and Technology of Japan, and Cooperative Fund by
National Institute of Informatics, Japan.

18

H. Arimura and T. Uno

References

1

2.

(o]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

S. Abiteboul, P. Buneman, D. Suciu, Data on the Web, Morgan Kaufmann, 2000.
Aho, A. V., Hopceroft, J. E., Ullman, J. D., Data Structures and Algorithms,
Addison-Wesley, 1983.

. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa. Efficient

substructure discovery from large semi-structured data. In Proc. the 2nd SIAM
Int’l Conf. on Data Mining (SDM2002), 158-174, 2002.

. T. Asai, H. Arimura, T. Uno, S. Nakano, Discovering frequent substructures in

large unordered trees, In Proc. the 6th Int’l Conf. on Discovery Science (DS’03),
T.INAT 2843, Springer-Verlag, 47-61, 2003.

. D. Avis, K. Fukuda, Reverse search for enumeration, Discrete Applied Mathemat-

ics, 65(1 3), 21 46, 1996.

. Bancilhon, Khoshafian, A calculus for complex objects, In PODS’86, 53-59, 1986.
. R. J. Bayardo Jr., Efficiently Mining Long Patterns from Databases, In Proc. SIG-

MOD98, 1998, pp. 85-93.

. B. Bringmann, Matching in Frequent Tree Discovery, In ‘Proc. IEEE ICDM 2004,

335-338, 2004.

. A. Borgida, R. J. Brachman, D. L. McGuinness, L. A. Resnick, CLASSIC: A

Structural Data Model for Objects, In Proc. SIGMOD’89, ACM, 5867, 1989.

P. Buneman, S. B. Davidson, G. G. Hillebrand, D. Suciu, A query language and
optimization techniques for unstructured data, In Proc. SIGMOD 96, ACM, 505—
516, 1996.

Y. Chi, Y. Yang, Y. Xia, and R. R. Muntz, Cmtreeminer: Mining both closed and
maximal frequent subtrees, In Proc. PAKDD’04, 2004.

W. W. Cohen, A. Borgida, H. Hirsh, Computing Least Common Subsumers in
Description Logics, In Proc. AAAT'92, 754-760, 1992.

C. M. Cumby and D. Roth, Learning with feature description logic, In Proc. ILP
2002, LNAT 2583, 23-47, 2003.

A. Inokuchi, T. Washio, H. Motoda, An Apriori-Based Algorithm for Mining
Frequent Substructures from Graph Data, In Proc. PKDD 2000, 13-23, LNAI
1910, Springer-Verlag, 2000.

S. Nijssen, J. N. Kok, Effcient Discovery of Frequent Unordered Trees In Proc. the
First International Workshop on Mining Graphs, Trees and Sequences (MGTS 03),
Sep. 2003.

P. Kilpelainen, H. Mannila, Ordered and Unordered Tree Inclusion, STAM J. Com-
puting, 24(2), 340-356, 1995.

Kosaraju, S. R., Efficient tree pattern matching, In Proc. 30th FOCS, 178 183,
1989.

S. Nakano, Efficient generation of plane trees, Information Processing Letters, 84,
167-172, Elsevier,2002.

N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering Frequent Closed Itemsets
for Association Rules, In Proc. ICDT’99, 398-416, 1999.

G. D. Plotkin, A note on inductive generalization. Machine Intelligence, 5, 153~
163, Edinburgh University Press.

J. C. Reynolds, Transformational systems and the algebraic structure of atomic
formulas, Machine Intelligence 5, 135-151, Edinburgh University Press.

A. Termier, M.-C. Rousset, M. Sebag, Treefinder: a first step towards xml data
mining, In Proc. ICMD’02, 2002.

A. Termier, M.-C. Rousset, M. Sebag, DRYADE: a new approach for discovering
closed frequent trees in heterogeneous tree databases, In Proc. ICMD’04, 2004.

24.

25.

26.

27.

An Output-Polynomial Time Algorithm for Mining Frequent Closed AT 19

T. Uno, T. Asai, Y. Uchida, H. Arimura, An efficient algorithm for enumerating
closed patterns in transaction databases, In Proc. DS’04, LNAI 3245, Springer-
Verlag, 16-30, 2004.

K. Wang, H. Liu, Schema Discovery for Semistructured Data, In Proc. KDD’97,
271 274, 1997.

X. Yan, J. Han, CloseGraph: Mining Closed Frequent Graph Patterns In
Proc. SIGKDD’08, ACM, 2003.

M. J. Zaki. Efficiently mining frequent trees in a forest, In Proc. SIGKDD’02,
ACM, 2002.

