
LCM ver.3: Collaboration of Array, Bitmap and Pre�x Tree
for Frequent Itemset Mining

Takeaki Uno
National Institute of

Informatics
2­1­2, Hitotsubashi,

Chiyoda­ku
Tokyo, JAPAN, 101­8430

uno@nii.jp

Masashi Kiyomi
National Institute of

Informatics
2­1­2, Hitotsubashi,

Chiyoda­ku
Tokyo, JAPAN, 101­8430

masashi@grad.nii.ac.jp

Hiroki Arimura
Information Science and
Technology, Hokkaido

University
Kita 14­jo Nishi 9­chome

060­0814 Sapporo, JAPAN
arim@ist.hokudai.ac.jp

ABSTRACT
For a transaction database, a frequent itemset is an itemset
included in at least a specified number of transactions. To
find all the frequent itemsets, the heaviest task is the com-
putation of frequency of each candidate itemset. In the pre-
vious studies, there are roughly three data structures and
algorithms for the computation: bitmap, prefix tree, and
array lists. Each of these has its own advantage and disad-
vantage with respect to the density of the input database.
In this paper, we propose an efficient way to combine these
three data structures so that in any case the combination
gives the best performance.

1. INTRODUCTION
Frequent item set mining is one of the fundamental problems
in data mining and has many applications such as associ-
ation rule mining, inductive databases, and query expan-
sion. For these applications, fast implementations of fre-
quent itemset mining problems are needed. In this paper
we propose a new data structure for decreasing the compu-
tational cost, and implemented it to obtain the third ver-
sions of LCM, LCMfreq, for enumerating all frequent closed
itemsets and all frequent itemsets, respectively. LCM is an
abbreviation of Linear time Closed itemset Miner .

According to the computational experiments in FIMI03 and
FIMI04[6], the heaviest task in the process of frequent item-
set mining is the frequency counting, which is to compute
the number of transactions including the candidate itemsets.
Thus, many techniques and data structures were proposed
for frequency counting. Among these, bitmap[4, 5, 10, 11],
prefix tree[1, 2, 7, 8, 9, 13], and “occurrence deliver” with
array lists[14, 16] are popular (see Figure 1).

The bitmap stores the transaction database by a 01 matrix,

such that the ij element of the matrix is 1 if and only if item i
is included in jth transaction. Each cell can be represented
by 1 bit, thus we can save memory, especially in the case
that the database is dense. The itemset is also represented
by the bitmap, so that the intersection and the union of two
itemsets or transactions can be done in short time, since a
32bit CPU operates 32 bits at once. Roughly speaking, the
bitmap is efficient if the input database is dense, and the
minimum support is not small, i.e., larger than 5% of the
number of transactions.

The prefix tree is a popular data structure to store strings
or sequences. It is a rooted tree such that any string (or se-
quence) is represented as a path from a leaf to the root, and
any common prefix of two strings is the common subpath of
the representative paths of them (see Figure 1). Thus, the
common prefixes save memory. The prefix tree is strong if
the data is structured, and the minimum support is not too
small, hence it is efficient in practice. We can also save com-
putations for frequency counting with respect to the com-
mon prefixes. The disadvantage of the prefix tree is the high
cost for its reconstruction in the recursive calls.

The occurrence deliver is a technique for efficiently comput-
ing the frequencies of many itemsets at once in short time.
In an iteration of mining algorithms, some candidate item-
sets are generated, and their frequencies are computed. The
occurrence deliver stores the transaction database by ar-
ray lists, and compute the frequencies by scanning the lists
once. The occurrence deliver is efficient especially for sparse
databases. With a database reduction, it is also efficient for
dense databases, but still weak for quite dense databases.

These three techniques have their own advantages, but also
have their own disadvantages. To avoid the disadvantages,
we propose a new data structure of a combination of these
three techniques. The main part of the data structure is the
array list, but for constant number of items, we use a bitmap
and a complete prefix tree (see an example in Figure 5). The
complete prefix tree is a prefix tree including all the possible
itemsets. Mining algorithms are generally recursive, and re-
duce the database recursively. Thus, the reduced databases
usually include a constant number of items in the bottom
levels of the recursion. For such small databases, we can use
the efficiency of the bitmap and the prefix tree, for frequency

gfecat8

hgbt4

b

b

b

b

b

d

d

d

f

f

f

f

h

h

h

gt9

get7

gecat6

gecat5

gct3

gecat2

gect1

geca

1

3

2

1

1

1

weight

hgedcb6t1

e

a

b

b

a

items

hg3t4, t9

g

c

c

b

f

g

d g

2t7

ge5t5,t6, t8

f4t3

ec6t2

size

array lists

with weights

transaction database

1

3

2

1

1

1

weight

11000010t4, t9

0

0

1

1

1

b

0

0

0

1

1

d

0

1

1

0

0

f

0

0

0

0

1

h

1100t7

1111t5,t6, t8

1010t3

1111t2

1110t1

geca

bitmap

representation

with weights

prefix tree

with weights

a

b

b

c

c f

g h

e

c d e g

e f g

g

c d e g h

g

t1

t2

t4,t9

t7

t5,t6,t8

t2

Figure 1: Popular data structures to store transaction databases in memory

counting. Since the computation time in these bottom levels
dominates the total computation time, the increase of the
speed in the bottom levels effects drastically. The disadvan-
tage of the prefix tree is avoided by using the complete prefix
tree by reusing the complete prefix tree in every iteration.

Moreover, many large databases are in the power law in
practice, thus only few items are included in many trans-
actions. Our data structure compresses the part of the
databases with respect to such items by the bitmap.

We here list up the advantages of our data structure.

· fast construction
· fast frequency counting for high frequency items
· fast database reduction by using the bitmap
· no need of reconstruction of prefix trees
· applicable to many existing algorithms

However, when the database is very sparse and the minimum
support is very small, i.e., less than 10, the computation
time is sometime slow. In these cases, the computation time
is 3 or 4 times longer than the fastest implementation in
FIMI repository. This is because of the cost for changing the
strategy. Note that in these cases the fastest implementation
is the previous versions of LCM.

Our data structure can be applied to backtrack algorithms
(depth-first algorithm) and also apriori type algorithms. It
can also be applied to mining algorithms for any problem;
frequent itemset mining, maximal frequent itemsets mining,
and frequent closed itemset mining. We implemented codes
for both frequent itemset mining and frequent closed item-
set mining. The computational experiments shows that in
almost cases our implementation is the fastest in the imple-
mentations proposed in FIMI03 and FIMI04. A part of the
results are shown in section 4.

2. PRELIMINARIES
Let E = {1, ..., n} be the set of items. A transaction database
on E is a set T = {T1, . . . , Tm} such that each Ti is included
in E . Each Ti is called a transaction. We denote by ||T ||
the sum of sizes of all transactions in T , that is, the size
of database T . A set P ⊆ E is called an itemset. The
maximum element of P is called the tail of P , and denoted
by tail(P). An itemset Q is a tail extension of P if and
only if both Q \ P = {e} and e > tail(P) hold for an item
e. An itemset P 6= ∅ is a tail extension of Q if and only
if Q = P \ tail(P), hence Q is unique, i.e., any non-empty
itemset is a tail extension of a unique itemset.

For itemset P , a transaction including P is called an oc-
currence of P . The denotation of P , denoted by Occ(P) is
the set of the occurrences of P . |Occ(P)| is called the fre-
quency of P, and denoted by frq(P). In particular, for an
item e, frq({e}) is called the frequency of e. For given con-
stant θ, called a minimum support, itemset P is frequent if
frq(P) ≥ θ. If a frequent itemset P is included in no other
frequent itemset, P is called maximal. We define the closure
of itemset P in T , denoted by clo(P), by

T
T∈Occ(P) T . An

itemset is called closed itemset if P = clo(P). For any two
itemsets P and Q, the following properties hold.

(1) Occ(P ∪Q) = Occ(P) ∩Occ(Q)
(2) If Q is a tail extension of P ,

Occ(Q) = Occ(P ∪ {e}) for an item e
(3) If P ⊆ Q, frq(Q) ≤ frq(P)
(4) If Q is a tail extension of P , frq(Q) ≤ frq(P).

Through this paper, let c be a given constant, which we can
choose by looking the property of the input database. For
transaction T , we call the set of items in T greater than n−c
constant suffix of T , and denote it by T s. Similarly, we call
T \ T p constant prefix of T , and denote it by T p. We recall
that n is the largest item.

ecbat8

edbat4

b

b

b

b

d

d

d

d

d

t9

et7

ecat6

ecat5

ect3

eat2

ect1

eca

transaction database

Ø

a b c d e

a,b a,c a,d a,e b,c b,d b,e c,d c,e

a,b,c a,b,d a,b,e a,c,d a,c,e a,d,e b,c,d b,c,e b,d,e

a,b,c,d a,b,c,e a,b,d,e a,c,d,e b,c,d,e

a,b,c,d,e

d,e

c,d,e

- Tree structure induced by tail extensions: itemset and its extensions are connected by arrows.
- Gray itemsets are frequent when minimum support is 3: frequent itemsets are connected in the tree
- Backtrack algorithm starts from the empty set, and go up the tree in the depth-first search way
by generating tail extensions. If an extension is not frequent, then does not go up.

Figure 2: A tree induced by tail extensions: backtrack algorithm traverses the tree in a depth-first way

3. EXISTING ALGORITHMS AND DATA
STRUCTURES

In the following subsections, we explain the popular tech-
niques used in frequent itemset mining.

3.1 Backtrack Algorithm
Any itemset included in a frequent itemset is itself frequent.
Thereby, the property “frequent” is anti-monotone. In par-
ticular, any frequent itemset is a tail extension of a frequent
itemset. From this, we can see that any frequent itemset
can be constructed from the empty set by generating tail
extensions recursively. A backtrack algorithm is a depth-
first version of this generation[3, 8, 13, 14, 15, 16].

Backtrack algorithm is based on recursive calls. An iteration
of a backtrack algorithm inputs a frequent itemset P , and
generates all tail extensions of P . Then, for each extension
being frequent, the iteration generates a recursive call with
respect to it. We describe the framework of backtrack algo-
rithms below. Figure 2 shows an example of the execution
of a backtrack algorithm.

ALGORITHM Backtrack (P :itemset)
1. Output P
2. For each e ∈ E , e > tail(P) do
3. If P ∪ {e} is frequent then call Backtrack (P ∪ {e})

We note that here an iteration of the algorithm is the com-
putation from step 1 to 3 in a recursive call, except for the
computation done in the recursive calls generated in step 3.
The advantage of the algorithm is that it needs no memory
for storing the frequent itemsets previously obtained, even
if the number of the frequent itemsets is huge. Since back-
track algorithms generate a number of recursive calls in an
iteration, the number of iterations at the kth level of the re-
cursion is small if k is closed to 1, and increases exponentially
as the increase of k. We call this property bottom-wideness.
From the bottom-wideness, we can see that the total com-
putation time of a backtrack algorithm is dominated by the
computation in the bottom levels of the recursion.

3.2 Frequency Counting

As we can see, the heaviest part of the computation in a
backtrack algorithm is in step 3, the computation of frq(P∪
{e}) to check whether P∪{e} is frequent or not. We call this
computation frequency counting. Frequency counting can be
done by taking the intersection of T (P) and T ({e}), however
it takes long time in a straightforward way. To reduce the
computation time, there are many approaches; bitmap, pre-
fix tree, occurrence deliver, and conditional database. The
conditional database is orthogonal to the others, hence we
can combine it to one of the others.

The approach of the bitmap is to use a bitmap for repre-
senting T (P) and T ({e}). Then, we can take intersection
by binary operation “and”, thus 32 or 64 operations can be
done in one step. However, if the database is sparse and the
minimum support is small, then the bitmap representation
includes so many 0’s in it, which can be omitted in the other
ways.

In the following, we explain the conditional database, the
prefix tree, and the occurrence deliver.

3.3 Conditional Database
A conditional database of an itemset P is a database used
in an iteration inputting P , and is obtained by removing
items and transactions which are not necessary in the iter-
ation and its recursive calls. Using conditional databases
we can reduce the tail extensions to be checked, and the
computation time for frequency counting.

For an itemset P , its conditional database, denoted by TP
is obtained from T by the following way (see Figure 3):

1. remove transactions not including P
(database becomes equal to Occ(P))

2. remove items no larger than tail(P)
3. remove items included in less than θ transactions of Occ(P)
4. remove items e included in all transactions of Occ(P),

and record that “e is included in all transactions”
5. after removing items as 2, 3, and 4, remove duplicated

transactions, i.e., if there are k same transactions,
remove k − 1 of them, and set the weight of T to k for
keeping that there were k − 1 more transactions equal to it.

(2) conditional database of itemset {c}:

choose transactions including c, and

remove items preceding c (a, b and c)

gfecat8

hgbt4

b

b

b

b

b

d

d

d

f

f

f

f

h

h

h

gt9

get7

gecat6

gecat5

gct3

gecat2

gect1

geca

gfet8

d

d

d

f

f

f

f

h

h

get6

get5

gt3

get2

get1

ge

gft8

f

f

f

h

h

gt6

gt5

gt2

gt1

g

(3) conditional database of itemset {c,e}:

choose transactions including e from

conditional database of itemset {c}, and

remove items preceding e (d and e)
(1) original transaction database

Figure 3: Conditional Database: example of construction

For any tail extension P ∪ {e}, Occ(P ∪ {e}) is obtained by
choosing all transactions in TP including e. The frequency
of P ∪ {e} can be computed in a similar way. Thus we can
do all operations in the recursive call with respect to P only
with the conditional database of P . As the increase of the
size of the itemset P , the size of its conditional database
decreases exponentially. Thus the computation time for fre-
quency counting is reduced in the bottom level. From the
bottom-wideness, the total computation time for mining can
also be drastically shortened. If a transaction has no weight,
we consider the weight of the transaction is 1. Thus, through
this paper, we assume that any transaction has a weight.

Actually, the term “conditional database” is used for many
kinds of restricted databases in other papers, thus its defi-
nition is different from those in the other papers.

3.4 Pre�x Tree
A Prefix tree is a tree shaped data structure for storing
strings. Itemsets and transactions can be considered as
strings composed of items, thus we can use prefix trees to
store them. A vertex of the tree has an alphabet, thus a path
of the tree gives a string. Each string is represented as the
path from a representative vertex to the root. A vertex has
no two children having the same alphabet, thus the position
of the representative vertex of any string is unique. For any
two strings having a common prefix, the paths representing
them share the path corresponding to the prefix. See an
example in Figure 1. The prefix tree is sometime called fre-
quent pattern tree, or FP-tree in short, since it is also used
in some algorithms to store the obtained frequent itemsets.
Note that we sort items in each transaction to be stored
in the order of their frequencies, so that many transactions
share prefixes with others.

To compute the occurrences and the frequency of a tail ex-
tension P ∪ {e}, we look up all vertices having e on them,
and go down (opposite direction to the root) the tree from
the vertices to find all the vertices assigned a transaction
including P . The prefix tree can be also used for storing the
conditional database. In the case, any occurrence of P ∪{e}
is assigned to a descendant of a vertex having e, and vice
versa. Thus, the computation can be efficiently done, and
computation time becomes short. This technique is popu-
lar, and many recent implementations use this technique[1,
2, 7, 8, 9, 13].

3.5 Occurrence Deliver

For an itemset P , the occurrence deliver computes the fre-
quency and occurrences of all tail extensions of P at once.
The occurrence deliver stores the transaction database by
array lists. An array list is a list represented by an array
such that the elements of the list is stored in the array. In
an array list representation, we store each transaction of the
input database in an array list so that the items in the array
is sorted. See an example of array lists in Figure 1. For the
initialization, the occurrence deliver assign an empty bucket
for each item. Then, the occurrence deliver scans each trans-
action Ti in Occ(P), and insert Ti to the bucket of each item
included in Ti. After scanning all transactions in Occ(P),
the bucket of item e is equal to Occ(P ∪ {e}).

The occurrence deliver works in the conditional database.
The process of the occurrence deliver is equivalent to the
transpose of the matrix of the conditional database, rep-
resented by array lists. We write the pseudo code of the
conditional database version of the occurrence deliver be-
low. We can also see an example of its execution in Figure
4.

ALGORITHM OccurrenceDeliver (P :itemset,
TP :conditional database)

1. Set Bucket[e] := ∅ for each item e in TP
2. For each transaction Ti ∈ TP do
3. For each item e ∈ Ti do
4. Insert Ti to Bucket[e]
5. End for
6. End for
7. Output Bucket[e] for all items e

Lemma 1. We can get the conditional database TP∪{e} by
merging the transactions of Bucket[e] including exactly the
same items into one, and put the weights.

Since array list is a compact form for sparse databases, the
occurrence deliver is efficient for sparse databases[14, 15, 16].
With the use of conditional databases, it is also efficient for
some dense databases, however, it takes much cost for quite
dense databases[16].

4. NEW DATA STRUCTURE
Although the existing algorithms and data structures are
efficient, they have their own disadvantage coming from the
density and the structure of databases. The motivation of
our new data structure is that we would have a good data

hgedcbt1

e

a

b

b

a

items

hgt4, t9

g

c

c

b

f

g

d g

t7

get5,t6,t8

ft3

ect2

a b c d e f g

hgedcbt1

e

a

b

b

a

items

hgt4, t9

g

c

c

b

f

g

d g

t7

get5,t6,t8

ft3

ect2

a

t1

b

t1

c

t1

d

t1

e f

t1

g

(1) occurrence deliver: initial stage (2) trace t1 to insert t1 to the buckets of items in t1

h

t1

h

hgedcbt1

e

a

b

b

a

items

hgt4, t9

g

c

c

b

f

g

d g

t7

get5,t6,t8

ft3

ect2

t5,t6,t8
t2

a

t4, t9
t3
t2
t1

b

t5,t6,t8
t3
t2
t1

c

t2
t1

d

t7
t5,t6,t8

t2
t1

e

t5,t6,t8
t3

f

t7
t5,t6,t8
t4, t9

t3
t2
t1

g

(4) after operating for all transactions, we

obtain occurrences of each tail extension

t4, t9
t1

h

hgedcbt1

e

a

b

b

a

items

hgt4, t9

g

c

c

b

f

g

d g

t7

get5,t6,t8

ft3

ect2

t2

a

t2
t1

b

t2
t1

c

t2
t1

d

t2
t1

e f

t2
t1

g

(3) trace t2 to insert t2 to the buckets of items in t2

t1

h

Figure 4: Occurrence deliver: example of its process

structure and a fast frequency counting algorithm by care-
fully combining them.

Our new data structure is very simple. When we input a
transaction database, we choose a constant c. We can choose
c so that the memory usage is minimal. Then, we use one
integer bit(T) and an integer array ary(T) of size |T p|. The
ith bit of bit(T) is 1 if and only if T s includes item n−i, thus
bit(T) is a bitmap representation of T s. Each item of the
constant prefix T p of T is stored in ary(T) in the increasing
order of items, thus ary(T) is an array list representation of
T p.

For efficient frequency counting, we have a complete prefix
tree for items greater than c. The complete prefix tree is
composed of vertices i for 0 ≤ i < 2n−c, so that vertex i
corresponds to the transactions T such that bit(T) = i. For
each vertex i, we have two integers w(i) and h(i). w(i) is
the weight of i, and used to keep the number (the sum of
the weights) of transactions T such that bit(T) = i. h(i)
is the highest bit in i set to 1, that is, the smallest item in
the constant suffix represented by i. The parent vertex of
vertex i is the vertex i− 2h(i), where i− 2h(i) is the number
obtained by setting h(i)th bit of i to zero. Similarly, any
child vertex j of vertex i is obtained by setting hth bit of i
to 1 for h > h(i). In contrast to the usual prefix trees, we
need neither pointers indicating the parent vertex and the
child vertices.

Further, we have a bucket for each item, which is used by the
occurrence deliver. The size of the bucket of item i is 2n−i

if i > c, and |Occ({i})| otherwise. We reuse the complete
prefix trees and the buckets in every iteration, thus we have
to allocate memory for them only once at when we input

the database.

For the memory and time efficiency, we renumber the items
of the input database so that the items of higher frequen-
cies have larger indices. We can see an example of how to
construct our data structure from an array list represented
transaction database in Figure 5. Note that the items are
sorted in the order of their frequencies so that items with
high frequencies are left (it corresponds to renumbering).
We can also see the complete prefix tree for the itemset
{a, b, c, d} in Figure 6.

The size of the complete prefix tree increases exponentially
as the increase of c, and the memory space needed by array
lists and the bitmap can decrease by the increase of c. Thus,
we choose c so that the memory use is optimal, and larger
than a specified minimum threshold such as 12, for speeding
up. The optimal c can be found in O(||T ||) time since the
memory use can be computed from the frequencies of items.
If c = 12, the complete prefix tree has 4096 vertices. It is
not so large. However, if c = 32, the number of vertices
grows up to 4,000 million.

We have some motivations and ideas on the new data struc-
ture. We briefly explain them below.

1. Many datasets in the real world are in the power
law, thus the bitmap is efficient for and only for a
small number of items.
Roughly speaking, the bitmap is efficient if items are in-
cluded in at least 1% of transactions. Under the power
law, databases include few, constant number of, such items.
The part with respect to such items are dense part of the
database, and the bitmap can compress it. For the sparse

(1) input transaction

database as array lists

(2) sort items by # appearance

ge2t7

gfeca5t8

hgb3t9

gfeca5t5

hgedcb6t1

a

b

b

a

items

hg3t4

c

c

b

f

g

d g

ge5t6

f4t3

ec6t2

size

eg2t7

faecg5t8

hbg3t9

faecg5t5

dhbecg6t1

g

g

g

g

items

hb3t4

c

c

c

a

f

b d

fe5t6

b4t3

ae6t2

size

(3) represent first
C(=4) items by bitmap

(4) merge the
identical transactions

10102t7

fa11105t8

h10013t9

fa11105t5

dh11116t1

1110

1001

1101

1111

items

h3t4

a

f

d

f5t6

4t3

a6t2

size

10102t7

fa11105t5,t6,t8

dh11116t1

1001

1101

1111

items

h3t4,t9

f

d

4t3

a6t2

size

Figure 5: Example of the construction of our database

0000

1000

0010

0100

0001

1110

1010

1100

0101

0110

0011

0111

1101

1011

1111

1001a

c

b

d

c

c

b

d

c

d

d

d

d

d

d

Complete prefix tree for 4 items (a,b,c,d) Bitmap pattern corresponding to each cell

Figure 6: The complete prefix tree: each vertex of the tree on the right-side has the bitmap pattern corre-
sponding to the string which the vertex representing.

(non-dense) part of databases, array lists are efficient. The
prefix tree does not compress sparse databases as well as
dense databases, but takes much cost. Hence, we do not use
it for storing the transactions.

2. For the constant number of items, the size of the
complete prefix tree is also constant.
Under the power law, the database has few items, usually
bounded by a constant, with high frequencies. The use of the
prefix tree for such items is efficient for frequency counting.
Although the number of the items in the complete prefix
tree is small, the computation time is drastically reduced
because of bottom-wideness.

3. The complete prefix tree can be re-used.
A disadvantage of the prefix tree is that they need pointer
operations and reconstructions. The complete prefix tree
includes a vertex corresponding to any pattern composed
of items larger than c, thus it needs no reconstruction, but
only initialization of accessed vertices in the previous itera-
tions. Thus, by using the complete prefix tree and reused it
again and again in every iterations, we can avoid this disad-
vantage. It shortens the computation time of the iterations
in the bottom level of the recursion, especially if the input
database is dense.

4. In many iterations databases are small and dense
By sorting and re-numbering the items in the increasing or-
der of their frequency, the computation time for frequency
counting decreases, since the sizes of the conditional databases
become smaller, more dense, and more structured on aver-
age. According to bottom-wideness, in many iterations, the

conditional database includes at most c items. Hence, we
can use the bitmap and the complete prefix tree, so that the
computation time is reduced especially in the case that the
input database is dense.

5. Constructing conditional databases becomes easy
The heaviest task in the constructing conditional databases
for array lists is to find the duplicated transactions. Actu-
ally, it can be done by applying radix sort to the transac-
tions. By using the bitmap, we can omit the computation
of the radix sort for items with high frequencies. Thus, the
computation time is reduced.

4.1 Frequency Counting with Complete Pre�x
Tree

By using the complete prefix tree, we can get both the fre-
quency and the conditional databases for all extensions of
the current itemset P by a sweep on the complete prefix
tree.

Suppose that we have an itemset P and want to compute the
frequencies and the conditional databases for all extensions
of P . First, we initialize the complete prefix tree and the
buckets, so that the weight of any vertex is zero and any
bucket is empty. It can be done by initializing the vertices
v with h(v) > tail(P) of non-zero weights, and non-empty
buckets of items e > tail(P), hence we do not need initialize
all the vertices and buckets.

After the initialization, for each transaction T in the condi-
tional database TP , we add the weight of T to vertex bit(T).
Then, set the weight of vertex to the sum of weights of its

0000

1000

0010

0100

0001

1110

1010

1100

0101

0110

0011

0111

1101

1011

1111

1001

(0) Computing frequency and occurrences of tail extensions

by complete prefix tree: initial stage

1111

0101

0111

1010

1110

bitmap

pattern

t5

t4

t3

t2

t1 1

3

1

1

2

weight

bucket

database in

our data structure

0000

1000

0010

0100

0001

1110

1010

1100

0101

0110

0011

0111

1101

1011

1111

1001

(1) Write weights on the corresponding cells,

and insert bitmap patterns to buckets below

0111

1111

01011110

1010

3

1

1

2

1

0000

1000

0010

0100

0001

1110

1010

1100

0101

0110

0011

0111

1101

1011

1111

1001

0111

1111

01011110

1010

3

1

1

2

4

(2) Add weights of the cells of the rightmost column

to their parents, and insert to the buckets below

1

1

0110

0100

0000

1000

0010

0100

0001

1110

1010

1100

0101

0110

0011

0111

1101

1011

1111

1001

0111

1111

01011110

1010

3

1

1

2

4

(3) Do the same for the second-rightmost column

1

2

0110

0100

1100

1000

2

4

0000

1000

0010

0100

0001

1110

1010

1100

0101

0110

0011

0111

1101

1011

1111

1001

0111

1111

01011110

1010

3

1

1

2

4

(4) Do the same for the third-rightmost column,

then we have conditional database for each item

1

2

0110

0100

1100

1000

6

4

(5) For each item, add the weights of bitmap patterns in

its bucket, and we have frequency of each tail extension

0000

1000

0010

0100

0001

1110

1010

1100

0101

0110

0011

0111

1101

1011

1111

1001

0111

1111

01011110

1010

3

1

1

2

4

1

2

0110

0100

1100

1000

6

4

5

(=3+1+1)

7

(=4+2+1)

6

(=4+2)

6

(=6)

Figure 7: Example of complete prefix tree: re-use and frequency counting

descendants, and insert each vertex i of non-zero weight to
the (n−h(i))th bucket. The former operation can be done in
linear time of |TP |. In a bottom up way, or sweep the buck-
ets in the increasing order, the latter computation can be
done in time linear to the number of vertices with non-zero
weights.

Lemma 2. After this operation, for any i > c, the ith
bucket is the bitmap representation of the conditional database
TP∪{i}, i.e., each vertex and its weight in ith bucket are
the bitmap representation of a transaction in TP∪{i} and its
weight.

From the lemma, we can see that the sum of the weights of
the vertices in the ith bucket is the frequency of P ∪ {i} for
any i > c, i 6∈ P . See an example in Figure 7.

4.2 Reuse of Complete Pre�x Tree
To use prefix trees and the conditional database for fre-
quency counting, we have to construct a prefix tree for the
conditional database. We avoid this construction by reusing

the complete prefix tree in every iteration, with the use of
the rightmost sweep proposed in the first version of LCM[14].

Suppose that we have an itemset P , and completed the
sweep described in the previous subsection. Then, we make
recursive calls with respect to each tail extension P ∪ {e},
in the decreasing order of items. In the recursive call with
respect to P ∪ {e}, the buckets of items no greater than e
never be accessed. The vertices i with n − h(i) ≤ e never
be also accessed. This shows that during the recursive call,
the buckets and weights of vertices in the buckets are pre-
served for any item smaller than e. Therefore, we can reuse
the complete prefix trees and buckets without disturbing
the later recursive calls. This saves the memory space and
computation time to allocate new memory space.

4.3 Pre�x Maintenance for Closure and Max­
imality Checking

To apply our data structure to closed itemset mining al-
gorithms and maximal frequent itemset mining algorithms,
we have to modify the data structure so that we can com-
pute the closure and checking the maximality in short time.
In LCM ver.2[16], we propose a technique for efficiently

maintaining the prefixes of the transactions in conditional
databases. Here the prefix of a transaction T in a condi-
tional database TP is the set of items in T no larger than
tail(P).

Suppose that transactions T1, · · · , Tk are merged into one
transaction T in TP . For taking closure, we put to T the
intersection of the prefixes of T1, · · · , Tk.

For the check of the maximality, we take union of T1, ..., Tk,
and put it to T . We further put a weight to each item i of
the prefix, where the weight is the number of transactions
in T1, ..., Tk containing i. If the transactions are already
merged in the operations previously done, the weight of i is
given by the sum of the weights of i over T1, ..., Tk.

These operations can be easily treated by our new data
structure, just by doing them when we compute the fre-
quencies and conditional databases of tail extensions in the
way described in the previous subsection. Thus, our new
data structures are efficiently applicable to closed itemset
mining and maximal frequent itemset mining.

5. COMPUTATIONAL EXPERIMENTS
In this section, we show the results of our computational
experiments. We implemented our new data structure and
apply it for the second version of LCM and LCMfreq, which
are for frequent itemset mining and frequent closed itemset
mining. They are coded by ANSI C, and complied by gcc,
and the machine was a PC with Pentium4 3.20E GHz CPU
and 2GB memory. Due to the time limitation, we have no
implementation for LCMmax for maximal frequent itemset
mining. The performance of LCM algorithms are compared
with the algorithms which marked good score on FIMI 03
or FIMI 04: fpgrowth[7], afopt[9], aim2[1], MAFIA[4, 5],
kDCI and DCI-closed[10, 11], nonodrfp[2], and PATRICI-
AMINE[13]. We note that aim2, nonodrfp and PATRICI-
AMINE are only for all frequent itemset mining.

From the performances of implementations, the instances
were classified into four groups, in each of which the results
are similar. Due to the space limitation, we show one in-
stance as a representative for each group.

The first group is composed of BMS-WebView1, BMS-WebView2,
T10I4D100K, and retail. These datasets have many items
and transactions but are sparse, and even if the minimum
support is very small, such as 10, the number of frequent
itemsets is not so huge, i.e., frequent itemsets are enumerat-
able. We call these datasets very sparse datasets. We chose
BMS-WebView2 as the representative.

The second group is of mushrooms, BMS-POS, kosarak,
Webdoc, and T40I10D100K. They are also sparse, but the
number of frequent itemsets is quite huge when the mini-
mum support is very small. We call them sparse datasets.
We chose kosarak as the representative.

The third group is composed of connect, chess, pumsb, and
pumsb-star. These datasets are generated in mathematical
ways but are not natural data, thus they are structured.
They have many transactions but few items. Transactions
have many items, so the dataset is dense. Moreover, the

number of frequent closed itemsets is very much smaller than
the number of frequent itemsets for smaller minimum sup-
ports. We call these datasets structured dense datasets. As
a representative, we show the result of chess.

The fourth group is composed only of accidents, since its
density is different from any other dataset. It has huge
number of transactions, but few items. Each transaction
includes many items, so the dataset is very dense, and is
not structured so that the number of frequent itemsets and
the number of frequent closed itemsets are almost equal for
any enumeratable minimum support. We call this dataset
dense dataset.

In the following, we show the results for representatives. The
new implementation in this paper is written as “LCM3”. To
reduce the time for experiments, we stop the execution when
an implementation takes more than 10 minutes. We do not
plot if the computation time is over 10 minutes, or abnormal
termination.

 0.1

 1

 10

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-all

afopt_all

 0.1

 1

 10

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-all

afopt_all
fpg_all

 0.1

 1

 10

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-all

afopt_all
fpg_all
lcm_all

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-all

afopt_all
fpg_all
lcm_all

mafia_all

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

aim2_all

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

aim2_all
nonodrfp_all

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

aim2_all
nonodrfp_all

 0.1

 1

 10

 100

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-closed

afopt_closed

 0.1

 1

 10

 100

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-closed

afopt_closed
fpg_closed

 0.1

 1

 10

 100

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-closed

afopt_closed
fpg_closed
lcm_closed

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

lcm3_closed

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

lcm3_closed

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

cp
ut

im
e

(s
ec

)

minsup (%)

BMS-WebView2-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

lcm3_closed

 1

 10

 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-all

afopt_all

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-all

afopt_all
fpg_all

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-all

afopt_all
fpg_all
lcm_all

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-all

afopt_all
fpg_all
lcm_all

mafia_all

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

aim2_all

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

aim2_all
nonodrfp_all

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

aim2_all
nonodrfp_all

 1

 10

 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-closed

afopt_closed

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-closed

afopt_closed
fpg_closed

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-closed

afopt_closed
fpg_closed
lcm_closed

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

lcm3_closed

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

lcm3_closed

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
ut

im
e

(s
ec

)

minsup (%)

kosarak-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

lcm3_closed

 0.01

 0.1

 1

 10

 100

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-all

afopt_all

 0.01

 0.1

 1

 10

 100

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-all

afopt_all
fpg_all

 0.01

 0.1

 1

 10

 100

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-all

afopt_all
fpg_all
lcm_all

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-all

afopt_all
fpg_all
lcm_all

mafia_all

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

aim2_all

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

aim2_all
nonodrfp_all

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

aim2_all
nonodrfp_all

 0.01

 0.1

 1

 10

 100

 1000

 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-closed

afopt_closed

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-closed

afopt_closed
fpg_closed

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-closed

afopt_closed
fpg_closed
lcm_closed

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

lcm3_closed

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

lcm3_closed

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

chess-closed

afopt_closed
fpg_closed
lcm_closed

mafia_closed
dci_closed

lcm3_closed

 1

 10

 100

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents-all

afopt_all

 1

 10

 100

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents-all

afopt_all
fpg_all

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents-all

afopt_all
fpg_all
lcm_all

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents-all

afopt_all
fpg_all
lcm_all

mafia_all

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

aim2_all

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

aim2_all
nonodrfp_all

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents-all

afopt_all
fpg_all
lcm_all

mafia_all
dci_all

lcm3_all
patriciamine_all

aim2_all
nonodrfp_all

 1

 10

 100

 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents

afopt_closed

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents

afopt_closed
fpg_closed

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents

afopt_closed
fpg_closed
lcm_closed

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents

afopt_closed
fpg_closed
lcm_closed

mafia_closed

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents

afopt_closed
fpg_closed
lcm_closed

mafia_closed
lcm3_closed

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

cp
ut

im
e

(s
ec

)

minsup (%)

accidents

afopt_closed
fpg_closed
lcm_closed

mafia_closed
lcm3_closed

In almost instances and minimum supports, LCM3 performs
the best. For unstructured dense datasets, and dense datasets
with large minimum supports, nonodrfp sometime outper-
forms LCM3. For quite small minimum supports, LCM3
algorithms are fast but not the fastest. This is because of
the cost for changing the strategy, which is from array lists
to the prefix tree. If the cost per a frequent itemset is large,
i.e., iterations generates few recursive calls on average, then
LCM3 is slow. Moreover, in some sparse datasets, only few
transactions of conditional databases share prefixes on av-
erage. In such cases, frequency counting with a prefix tree

takes longer time than that with array lists, hence the first
version and the second version of LCM are fast.

For very sparse datasets, the memory usage is almost the
same as array list, which is used in LCM ver.2. However,
for the other datasets, the memory usage decreases to half
in average.

6. CONCLUSION
In this paper, we proposed a new data structure for frequent
itemset mining algorithms. We applied our data structure to
the second version of LCM algorithms, and gave implemen-
tations of them. We show by computational experiments
that our implementations perform above the other imple-
mentations for almost almost datasets in any minimum sup-
port, except for very small minimum support. For these very
small minimum support, the second version of LCM is the
fastest, thus we conclude that we can get a fast implemen-
tation by a combination of the second version and the new
version of LCM algorithms.

For very huge datasets such that 10 or 100 times larger than
the fimi datasets, optimizing the memory usage is quite im-
portant. In this sense, our data structure is not the best:
perhaps the combination of array list and prefix trees (pa-
tricia trees[13]) might be the best. In particular, if the
database is quite structured so that many transactions share
prefixes, but includes no item of a high frequency. For max-
imal frequent itemsets mining and frequent closed itemset
mining, if the number of output itemsets is small, then the
checking the maximality and taking closure take long time
rather than the way with storing all the itemsets obtained.
Our data structure is not weak in these cases, but the next
goal is how to perform better than others for such cases.

Acknowledgment
We sincerely thank to the organizers of FIMI03 and FIMI04,
and all the authors gave implementations to FIMI, especially
for Prof. Bart Goethals for his working for constructing and
maintaining FIMI repository. This research is supported
by Grant-in-Aid for Scientific Research of Japan and joint-
research funds of National Institute of Informatics.

7. REFERENCES
[1] A. Fiat and S. Shporer, “AIM2: Improved

implementation of AIM” In Proc. IEEE ICDM’04
Workshop FIMI’04, 2004.

[2] B. Racz, “nonordfp: An FP-growth variation without
rebuilding the FP-tree,” In Proc. IEEE ICDM’04
Workshop FIMI’04, 2004.

[3] R. J. Bayardo Jr., “Efficiently Mining Long Patterns
from Databases”, In Proc. SIGMOD’98, pp. 85–93,
1998.

[4] D. Burdick, M. Calimlim, J. Gehrke, “MAFIA: A
Maximal Frequent Itemset Algorithm for
Transactional Databases,” In Proc. ICDE 2001,
pp. 443-452, 2001.

[5] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and
T. Yiu, “MAFIA: A Performance Study of Mining
Maximal Frequent Itemsets,” In Proc. IEEE ICDM’03
Workshop FIMI’03, 2003.

[6] B. Goethals, the FIMI repository,
http://fimi.cs.helsinki.fi/, 2003.

[7] G. Grahne and J. Zhu, “Efficiently Using Prefix-trees
in Mining Frequent Itemsets,” In Proc. IEEE
ICDM’03 Workshop FIMI’03, 2003.

[8] J. Han, J. Pei, Y. Yin, “Mining Frequent Patterns
without Candidate Generation,” SIGMOD Conference
2000, pp. 1-12, 2000

[9] Guimei Liu, Hongjun Lu, Jeffrey Xu Yu, Wang Wei,
and Xiangye Xiao, “AFOPT: An Efficient
Implementation of Pattern Growth Approach,” In
Proc. IEEE ICDM’03 Workshop FIMI’03, 2003.

[10] S. Orlando, C. Lucchese, P. Palmerini, R. Perego and
F. Silvestri, “kDCI: a Multi-Strategy Algorithm for
Mining Frequent Sets,” In Proc. IEEE ICDM’03
Workshop FIMI’03, 2003.

[11] C. Lucchese, S. Orlando and R. Perego, “DCI Closed:
A Fast and Memory Efficient Algorithm to Mine
Frequent Closed Itemsets,” In Proc. IEEE ICDM’04
Workshop FIMI’04, 2004.

[12] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal,
Efficient Mining of Association Rules Using Closed
Itemset Lattices, Inform. Syst., 24(1), 25–46, 1999.

[13] A. Pietracaprina and D. Zandolin, “Mining Frequent
Itemsets using Patricia Tries,” In Proc. IEEE
ICDM’03 Workshop FIMI’03, 2003.

[14] T. Uno, T. Asai, Y. Uchida, H. Arimura, “LCM: An
Efficient Algorithm for Enumerating Frequent Closed
Item Sets,” In Proc. IEEE ICDM’03 Workshop
FIMI’03, 2003.

[15] T. Uno, T. Asai, Y. Uchida, H. Arimura, “An Efficient
Algorithm for Enumerating Closed Patterns in
Transaction Databases,” Lecture Notes in Artificial
Intelligence 3245, pp. 16–31, 2004.

[16] T. Uno, M. Kiyomi, H. Arimura, “LCM ver. 2: Efficient
Mining Algorithms for Frequent/Closed/Maximal Itemsets”,
In Proc. IEEE ICDM’04 Workshop FIMI’04, 2004.

