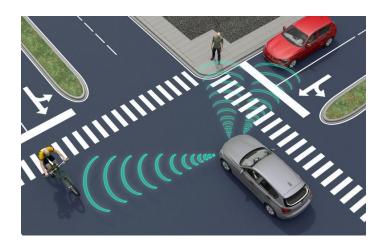
Integrated Approach to Dependable Cyber-Physical Systems:

from Category Theory to Machine Learning

Fuyuki Ishikawa, NII with ERATO-MMSD Project / QAML Project

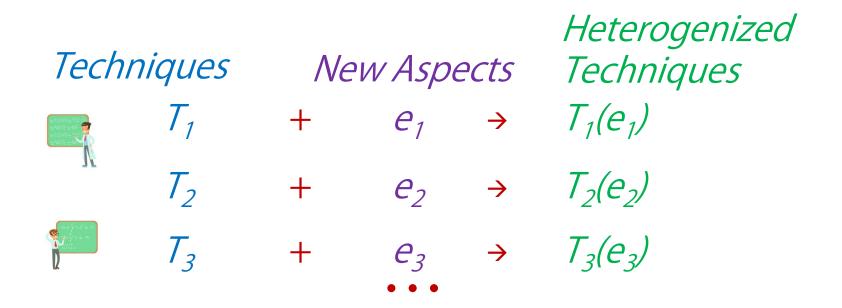
f-ishikawa@nii.ac.jp


http://research.nii.ac.jp/~f-ishikawa/en/

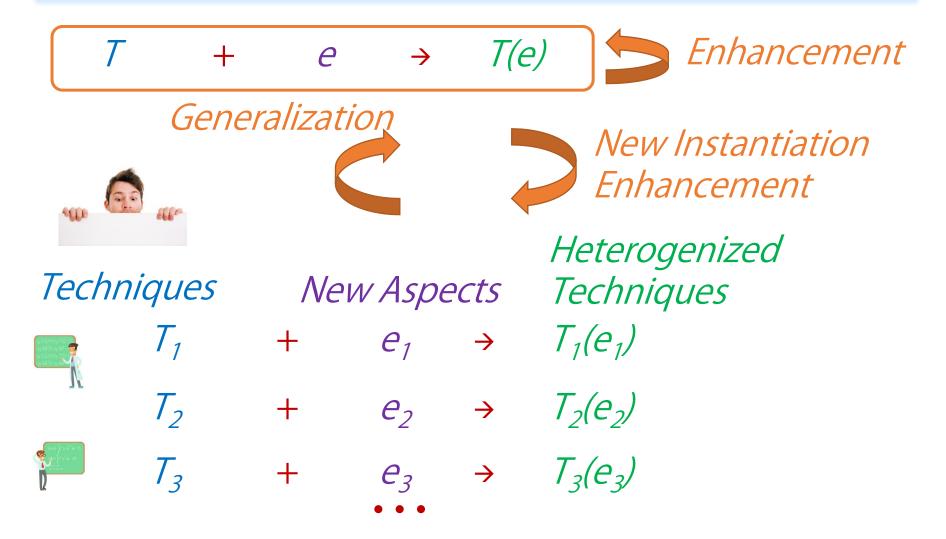
Focus on Physics, Theory Side

Cyber-Physical Systems

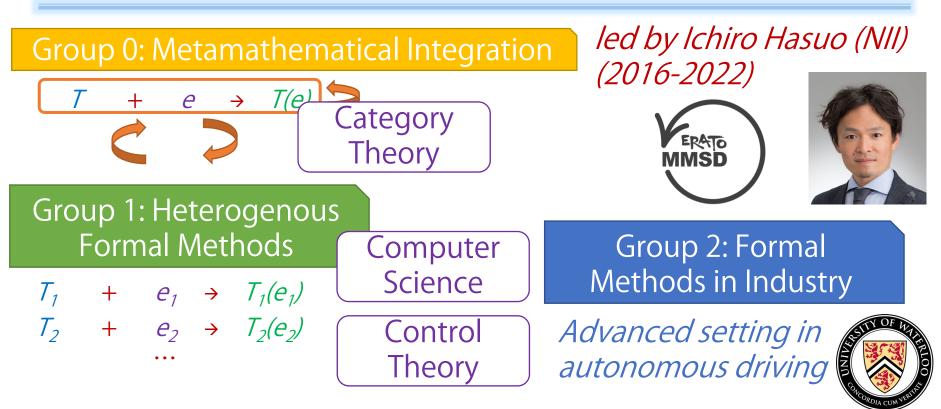
 Continuous dynamics
 Differential/Difference equations
 Quantitative goals (distance, energy, probability, etc.)


[Lee, Cyber-Physical Systems - Are Computing Foundations Adequate?, 2006]

Scientific Challenge in CPS


- Scope beyond the classical software science
 Hybrid models with not only discrete dynamics but also continuous dynamics for speed, energy, electricity, etc.
- Heterogenization or quantification of software
 - science and formal engineering methods
 - Formal specification with probability [Morgan, ZB'05]
 - Model checking on energy consumption [Nakajima, FM'15]
 - Robustness evaluation of (un)satisfaction [Fainekos, TCS'09]
 - Theorem prover on "programs" including continuous state change by differential equations [Platzer, IJCAR'08]

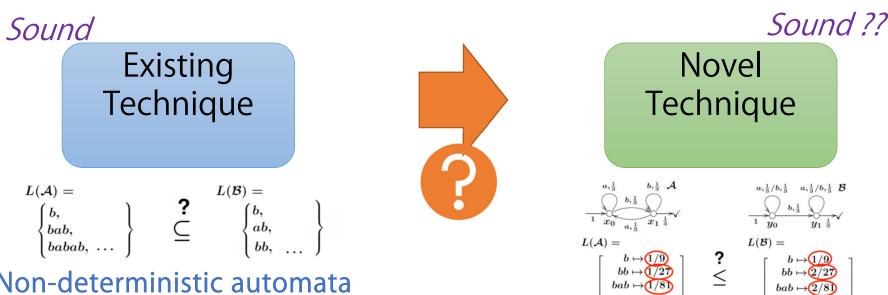
Many, Many Mathematicians?



Ask Meta-Mathematicians! (never me)

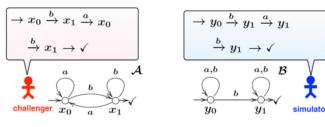

Note: here "meta-" in a general sense, not necessarily the classical area of "metamathematics"

Meta-Mathematics for Systems Design Project?



Is this all?

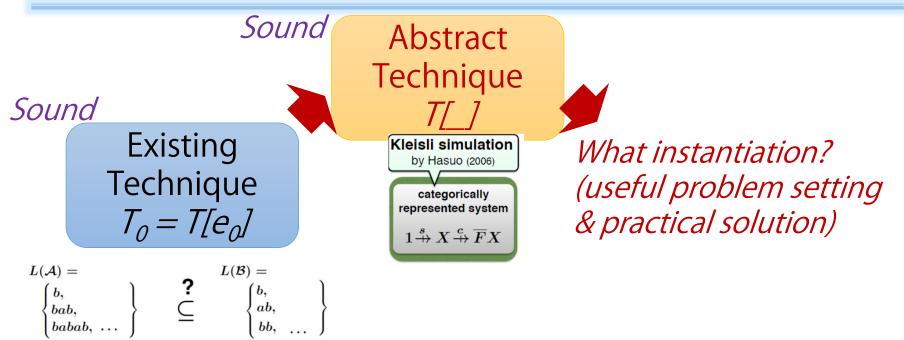
Automotive Industry



Practical setting to improve present practices

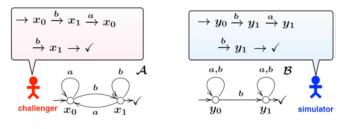
Non-deterministic automata

Solving the language inclusion problem by the simulation relationship -> By a game-theoretic algorithm

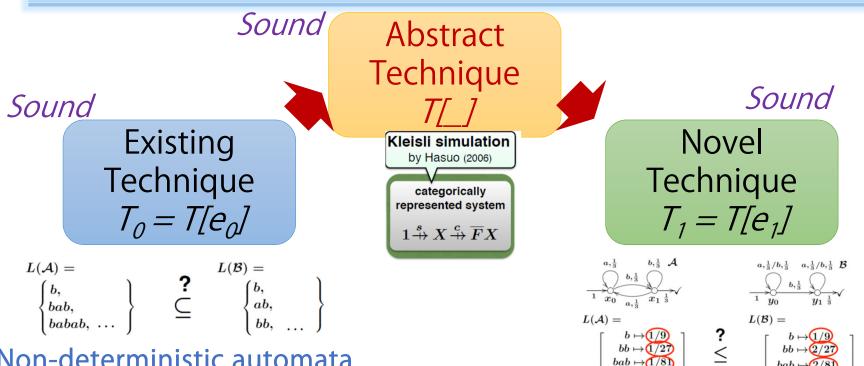


Probabilistic automata

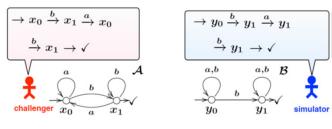
Solving the language inclusion problem by a simulation relationship ???? -> By a game ????


Figures by N. Urabe. [Urabe, CONCUR'14 / LMCS'17]

Nov 9 2018


Non-deterministic automata

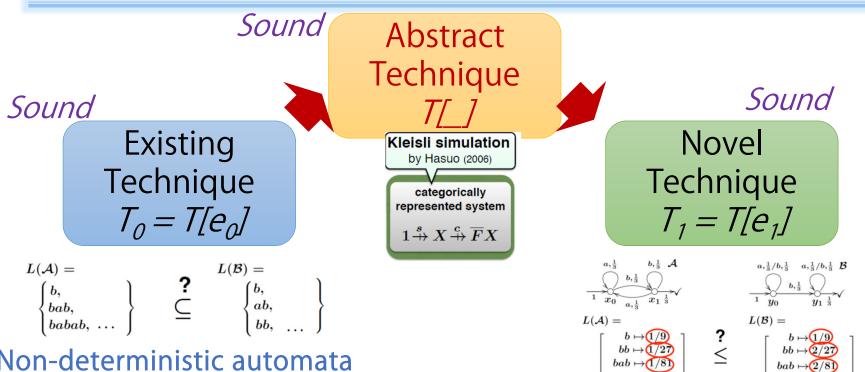
Solving the language inclusion problem by the simulation relationship -> By a game-theoretic algorithm



Nov 9 2018

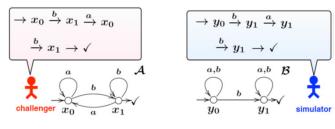
Non-deterministic automata

Solving the language inclusion problem by the simulation relationship -> By a game-theoretic algorithm



Probabilistic automata

Solving the language inclusion problem by a new "matrix simulation" relationship -> Via linear programming


Figures by N. Urabe. [Urabe, CONCUR'14 / LMCS'17]

Nov 9 2018

Non-deterministic automata

Solving the language inclusion problem by the simulation relationship -> By a game-theoretic algorithm

Probabilistic automata Weighted automata in general Solving the language inclusion problem by a new "matrix simulation" relationship -> Via linear programming

Figures by N. Urabe. [Urabe, CONCUR'14 / LMCS'17]

Nov 9 2018

It's ok if it is shown to work!

(I cannot theoretically ensure ···)

Pragmatic Side

Pragmatic Approach to be Combined

Heterogenized verification is often infeasible…
 In a sense ensuring given properties are always met

 undecidable or too time-consuming in many cases

 Mathematically rigorous models often unavailable

 (e.g., Simulink models without clear semantics)

Pragmatic Approach to be Combined

Heterogenized verification is often infeasible…
 In a sense ensuring given properties are always met

 undecidable or too time-consuming in many cases

 Mathematically rigorous models often unavailable

 (e.g., Simulink models without clear semantics)

Focus on testing / falsification !
"try to find faulty scenarios (via executions)"

Pragmatic Approach to be Combined

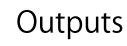
Heterogenized verification is often infeasible…
 In a sense ensuring given properties are always met

 undecidable or too time-consuming in many cases

 Mathematically rigorous models often unavailable

 (e.g., Simulink models without clear semantics)

Focus on testing / falsification ! *"try to find faulty scenarios (via executions)"*

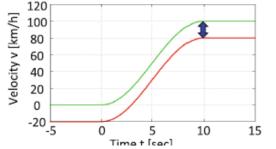

but we need "intelligent" solutions … (rather than purely random or exhaustive executions)

Typical Setting

Simulink model of car behavior with automated braking

Inputs

- User Behavior
- Throttle signals
- Brake signals
- **Environment Condition**
- Initial velocity
- Location and movement of pedestrian
- Road conditions
- •••


- Hit a pedestrian?
- Speed if hit
- *We have executables (simulation models or code)*
- At least we can execute it to evaluate the output for a certain input

One Trend: Optimization-Driven Falsification

Quantified properties

2 sample simulations

The velocity becomes <u>>= 80 km/h</u> within 10 seconds after B occurs?

[Fainekos et al., Robustness of temporal logic specifications for continuous-time signals, TheoCompSci'09] Figure from [Akazaki et al, Time Robustness in MTL and Expressivity in Hybrid System Falsification, CAV'15]

Nov 9 2018

One Trend: Optimization-Driven Falsification

Quantified properties quantitatively evaluated

2 sample simulations 120 Velocity v [km/h]

100

0

-20_5

n

Tim

The velocity becomes >= 80 km/h

within 10 seconds after B occurs?

YES, after 10 seconds +20km/h than required! Robust Satisfaction

YES, after 10 seconds exactly the required value!

Fragile Satisfaction (close to Violation)

(similar evaluation can be done for time, too)

[Fainekos et al., Robustness of temporal logic specifications for continuous-time signals, TheoCompSci'09] Figure from [Akazaki et al, Time Robustness in MTL and Expressivity in Hybrid System Falsification, CAV'15]

Nov 9 2018

One Trend: Optimization-Driven Falsification

Quantified properties quantitatively evaluated

2 sample simulations

120

100

0

-20_5

٥

Tim

Velocity v [km/h]

The velocity becomes >= 80 km/h

within 10 seconds after B occurs?

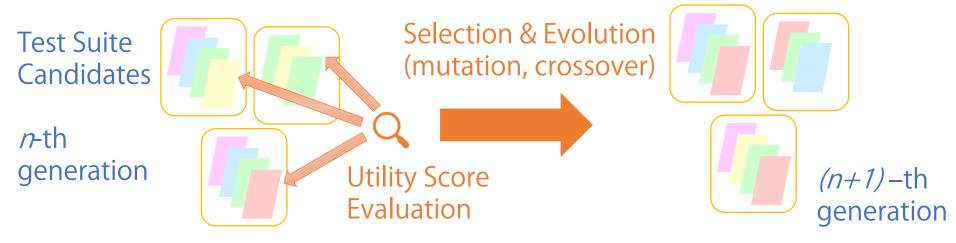
YES, after 10 seconds +20km/h than required! Robust Satisfaction

YES, after 10 seconds exactly the required value!

Fragile Satisfaction (close to Violation)

(similar evaluation can be done for time, too)

Optimization of "robustness score"


e.g., solved by "trials-evaluation" cycles

[Fainekos et al., Robustness of temporal logic specifications for continuous-time signals, TheoCompSci'09] Figure from [Akazaki et al, Time Robustness in MTL and Expressivity in Hybrid System Falsification, CAV'15]

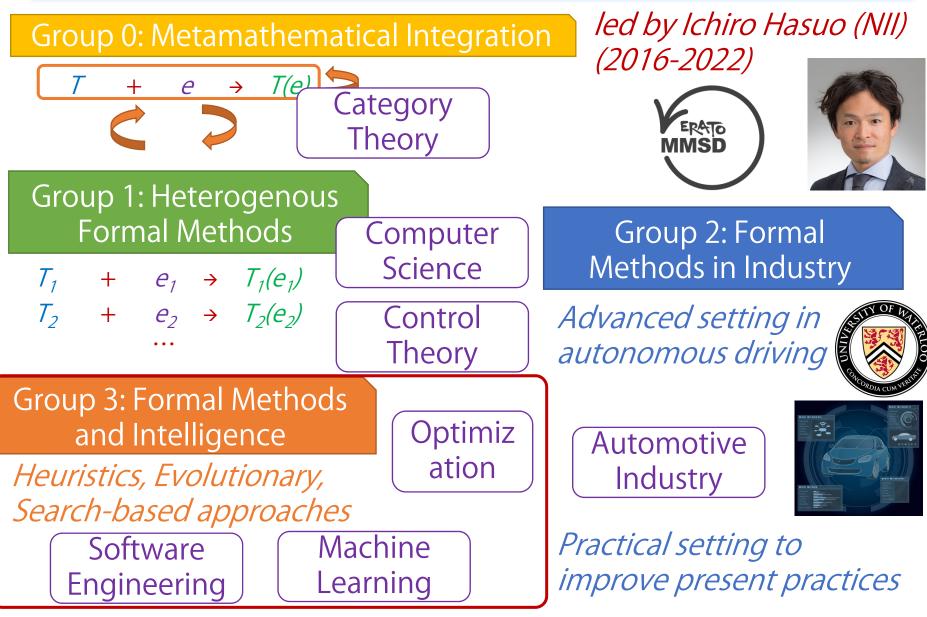
Nov 9 2018

Another Trend: Search-based Testing

Use of metaheuristic for test generation
 Again, "trials-evaluation" cycles
 Used also for generating a "good test list/suite/vector"

 e.g., 10 min. to produce the "same-level" test suite as human (in terms of code coverage and mutation score)
 e.g., use in Facebook (Sapienz)

[Molina et al, Java Unit Testing Tool Competition - Sixth Round] [https://code.fb.com/developer-tools/sapienz-intelligent-automated-software-testing-at-scale/] 9 2018 f-ishikawa 20

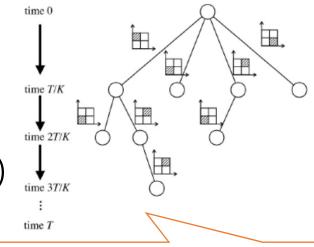

Yet Another: Statistical Model Checking

Computational models with probabilities
 "Probability calculation" of
 (un)desirable situations is
 too heavy (e.g., on Marcov models)

 Hypothesis testing or probability estimation by a lot of trials (executions/simulations)
 Capability (and demand) to tailor to the problem by using prior knowledge on the domain/problem

[Jha et al., A Bayesian Approach to Model Checking Biological Systems, CMSB'11] [Zuliani et al, Bayesian statistical model checking with application to Stateflow/Simulink verification, FMSD'13]

ERATO-MMSD Project (Complete)


Nov 9 2018

Topic Example: More Exploratory Falsification

Apply a systematic exploration method
 Avoid local optima (too much exploitation)
 Also obtain informative data on the search space

Monte-Carlo Tree Search and its algorithms

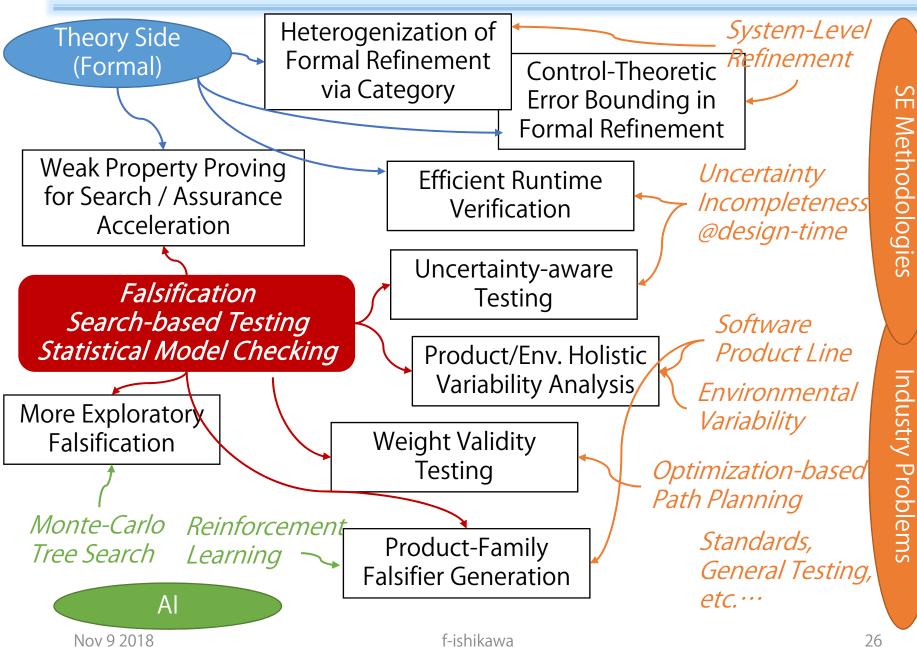
 Common for bandit problems, AI Go game player, etc.
 Used to record the "smells" over the search space (time-staged) in the "trials-evaluation" cycles

What about making full throttle in the first time slot, …

[Zhang et al., Two-Layered Falsification of Hybrid Systems Guided by Monte Carlo Tree Search, EMSOFT'18]

Pragmatic Side, Integrated

What I mentioned so far


Falsification Search-based Testing Statistical Model Checking

More Exploratory Falsification

Monte-Carlo Tree Search

Ongoing Work (Group 3 Viewpoint)

A Little on Machine Learning

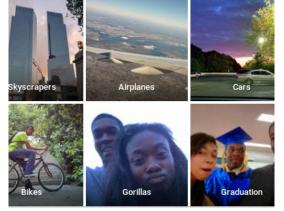
AI and ML

Everyone is talking about AI and ML, recently more about risks and concerns in terms of dependability

TECHNOLOGY

Microsoft Created a Twitter Bot to Learn From Users. It Quickly Became a Racist Jerk.

By DANIEL VICTOR MARCH 24, 2016



Improper online learning

Accidents of autonomous cars

[http://www.dailymail.co.uk/news/article-3677101/Tesla-told-regulators-fatal-Autopilot-crash-nine-days-happened.html]

Technically unsolved problems at Google Photo

[https://www.nytimes.com/2016/03/25/ technology/microsoft-created-a-twitter-botto-learn-from-users-it-quickly-becamea-racist-jerk.html] Nov 9 2018 [https://www.theguardian.com/technology/2015/jul/01/ google-sorry-racist-auto-tag-photo-app] [https://www.theguardian.com/technology/2018/jan/12/ google-racism-ban-gorilla-black-people]

What will you do if you are responsible? (1)

When Honda sees ramen shop sign First buzz in Dec 2017

[https://twitter.com/_gyochan_/status/ 938240168078622720] [https://twitter.com/Bleu_kakeru727/status/ 937680760491753473]

Now a caution on the web site

色や形の判別が つきにくく、 家の標識が無いのに、 標識を表示する

//www.tenkaippin.co.jp/
ny.html]

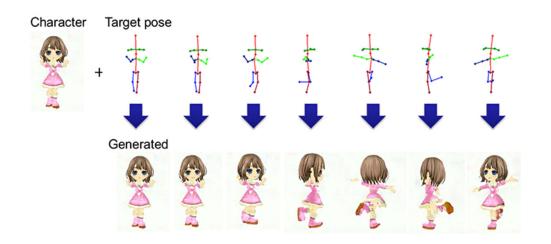
16:10

http://www.honda.co.jp/hondasensing/ feature/srf/

8:24 PM - 12 Sep 2018

15,099 Retweets 20,908 Likes 🔞 🌚 🚱 🚳 🖓 😨 😴 😤

Can you find beforehand or prevent adverse (?) news??


What will you do if you are responsible? (2)

From DeNA (May 2018)

Generate an image of a certain pose

Generate a movie given a pose sequence while

changing the character

What do you ensure to sell this to anime companies?

Essential Difference in ML

With ML, we obtain the behavior of a component (e.g., a neural net) inductively from training data Black-box, imperfect, non-testable (no or costly oracle), unexplainable, has adversarial examples, … Similar principles but methods unavailable

Existing principles do not work

Resulting Characteristics (1)

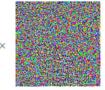
Often difficult/costly or impossible to define the right output for each arbitrary input (no deductive/logical specification)

The "unit testing" principle invalidated

- Obvious faults (in training data, configuration, learningalgorithm code) not detected, possibly
- Fault localization (debugging) very difficult
- Not to straightforward to have enormous number of test cases to increase the confidence (e.g., random testing)

Resulting Characteristics (2)

Imperfect and has limitation on performance, impossible to estimate the performance before construction or changes


- Contract not based on the specification but only on "the best effort together"
- Half-a-year effort to find "we should give up"
- Requiring much courage and creative ideas to find acceptable usages with the imperfectness

Resulting Characteristics (3)

Impossible to describe the boundary of what can be done and what cannot be done

Basically no confidence on how it works with untested data

x "panda" 57.7% confidence

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

Have adversarial examples (slight input changes cause large output change)

Very difficult to have confidence on the quality

The "equivalence class" principle invalidated

[Goodfellow et al., Explaining and Harnessing Adversarial Examples, 2015]

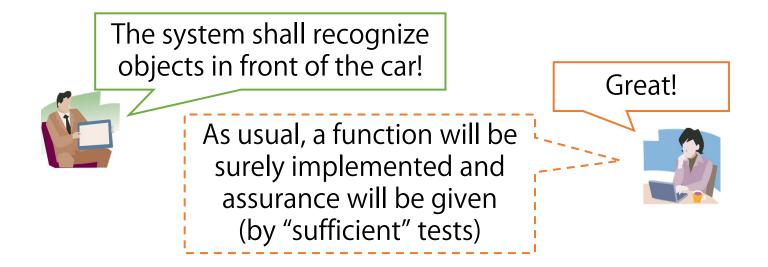
[Wicker et al., Feature-Guided Black-Box Safety Testing of Deep Neural Networks, 2018]

60

80

100

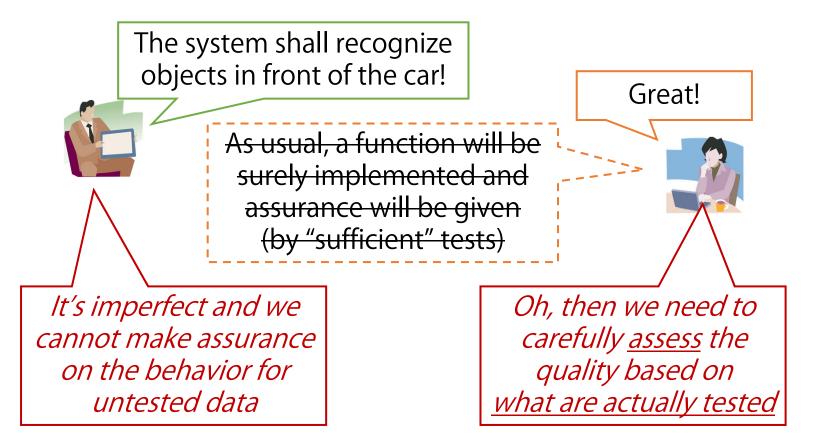
Nov 9 2018

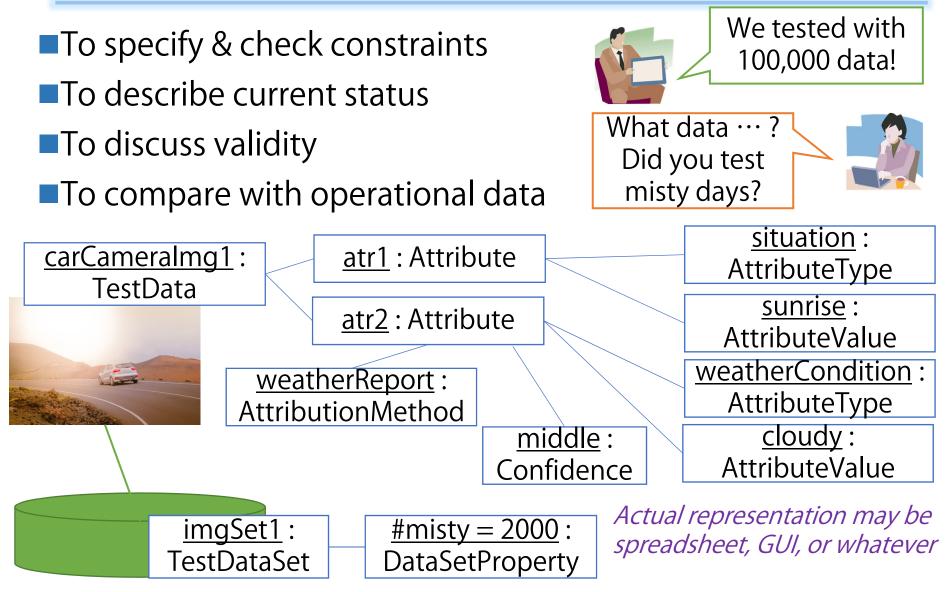

V&V Research Emerging in SE Community

- SMT-based verification [CAV'17]
- Search-based testing with "neuron coverage" criteria [SOSP'17] [ICSE'18]
- Testing based on System-Level Requirements [NFM'17]
- Safe reinforcement learning by formal methods (a few papers on very similar goals) [AAAI'18]
- Verification by stochastic game [TACAS'18]
- Metamorphic testing [ISSTA'18]
- Empirical study on bug statistics [ISSTA'18]
- Mutation Analysis [ISSRE'18]
- Updated coverage criteria [ASE'18]
- Fairness testing [ASE'18]
- **and more** [https://github.com/TrustAl/Literature-on-DNN-Verification-and-Testing]

Example of Change: Requirements & Tests

Argue the product and its quality!


(engineer-engineer or engineer-customer)


Example of Change: Requirements & Tests

Argue the product and its quality!

(engineer-engineer or engineer-customer)

Topic Example: Attributed Tests to Arguments

[Ishikawa, Concepts in Quality Assessment for Machine Learning - From Test Data to Arguments, ER'18]

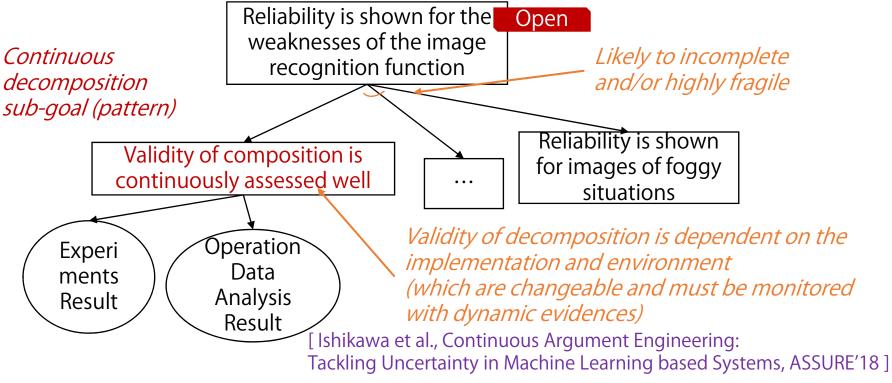
Nov 9 2018

Not Sufficient (Always, Forever)

This attribution/requirement-based testing is necessary

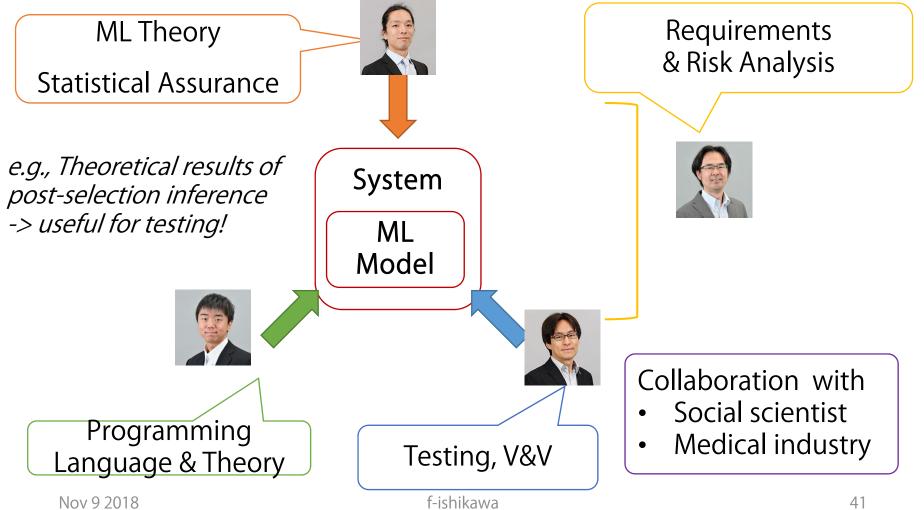
Convincing with human-explainable "exhaustiveness"To collect "missing" test data

But this is just a "hope" and cannot be perfect
 The implementation (neural net) may be looking at different aspects


[Ribeiro et. al., KDD'16]

Need to look at experimental and operational

results and update the test plan, continuously


Topic Example: Continuous Arguments Eng.

 Explicitly model intrinsic uncertainty in arguments to be aware of risk and need for continuous update
 Uncertainty in goal decomposition, evidence contribution, and feasibility of goals

Toward (Another) Integrated Approach

QAML: a new project for Quality Assurance on Machine Learning-based Systems

Summary

 Integrated Approach to (Intelligent) CPS
 Necessary to be pragmatically effective for the very difficult problems

Team prepared to answer to various queries from the industry (with collective expertise)

Just a fun !

Long ago I was talking about "categories", when my core area was the web: like "travel" and "sport", and now again!