

Lexicographic Variants in Event-B

Laurent Voisin joint work with Thai Son Hoang (U. Southampton)

Convergence in Event-B

Events can be tagged as convergent

This is proved thanks to a variant, that is a mathematical expression subject to a well-founded order (no infinite descent)

Anticipation

Convergence

Lexicographic order

Options

A convergent event must decrease the variant

Two kinds of variants implemented in Rodin:

Finite sets, ⊂

Natural numbers, <

Rodin proof obligations for convergence

Finite sets:

• FIN FINITE(v)

Natural numbers:

• cvg_evt/NAT $v \in N$

cvg_evt/VARv' < v

Convergence

Anticipation

Lexicographic order

Anticipated events

Introducing an event that will eventually converge

The event is tagged as anticipated

It will be tagged convergent in a further refinement

An anticipated event must not increase the variant

Anticipation

Convergence

Lexicographic order

Rodin proof obligations for anticipation

Finite sets:

• FIN FINITE(V)

Convergence

Anticipation

Lexicographic order

Options

Natural numbers:

Improved POs for anticipation (bonus)

Prefix PO with $V' \neq V$ (Hallerstede, ABZ2014):

• ant_evt/NAT
$$V' \neq V \implies V \in \mathbb{N}$$

We can do better for integer variants, using the equivalence with finite set 0... V, we can drop the NAT PO as the VAR PO is enough:

$$V' \leq V \implies 0...V' \subseteq 0...V$$

v' < 0	v < 0	$\implies \emptyset \subseteq \emptyset$
v' < 0	V ≥ 0	⇒ Ø ⊆ 0∨
V' ≥ 0	v < 0	⊥ ⇒
∨′ ≥ 0	V ≥ 0	$V' \leq V \Rightarrow 0V' \subseteq 0V$

Convergence

Anticipation

Lexicographic order

First step towards lexicographic variant

Example:

M1 evt (anticipated) M2 evt (anticipated) M3 evt (convergent) **v**3

Convergence

Anticipation

Lexicographic order

Options

When flattening, evt is converging on the lexicographic variant

• (v1, v2, v3)

But stronger than needed:

$$v1' \subseteq v1$$
 $(v1' \subset v1)$
 $v2' \subseteq v2 \Rightarrow v (v1' = v1 \land v2' \subset v2)$
 $v3' \subseteq v3 \Rightarrow v (v1' = v1 \land v2' = v2 \land v3' \subseteq v3)$

Lexicographic set variant

Several variants in the same machine: v1, v2, v3

POs for finite sets:

• v1/FIN FINITE(v1)

v2/FIN FINITE(v2)

v3/FIN FINITE(v3)

• cvg evt/v1/VAR v1'⊆v1

• $cvg_evt/v2/VAR$ v1'=v1 $\Rightarrow v2'\subseteq v2$

• $cvg_evt/v3/VAR$ $v1'=v1 \land v2'=v2 \implies v3' \subset v3$

• ant evt/v1/VAR v1'⊆v1

• ant_evt/v2/VAR v1'=v1 $\Rightarrow v2'\subseteq v2$

• ant_evt/v3/VAR $v1'=v1 \land v2'=v2 \Rightarrow v3' \subseteq v3$

Note: POs get simplified when some variant is not modified by the event

Convergence

Anticipation

Lexicographic order

Natural lexicographic variant (convergent)

With two variants: v1, v2

Option 1

- $cvg_evt/v1/NAT$ $v1 \in N$
- cvg_evt/v1/VAR
 v1' ≤ v1
- $cvg_evt/v2/NAT$ $v1' = v1 \implies v2 \in N$
- $cvg_evt/v2/VAR$ $v1' = v1 \implies v2' < v2$

Option 2

- cvg_evt/v1/VAR
 v1' ≤ v1
- $cvg_evt/v2/NAT$ $v1' = v1 v v1'<0 \implies v2 \in N$
- $cvg_evt/v2/VAR$ $v1' = v1 v v1'<0 \implies v2' < v2$

Convergence

Anticipation

Lexicographic order

Natural lexicographic variant (anticipated)

Option 1

- ant_evt/v1/NAT $v1 \in \mathbb{N}$
- ant_evt/v1/VAR $v1' \leq v1$
- ant_evt/v2/VAR $v1' = v1 \implies v2' \le v2$

Option 2

- ant_evt/v1/VAR $V1' \leq V1$
- ant_evt/v2/VAR $v1' = v1 \ v \ v1' < 0 \implies v2' \le v2$

Convergence

Anticipation

Lexicographic order

Will be available in Rodin 3.5