# Lexicographic Variants in Event-B 

Laurent Voisin<br>joint work with Thai Son Hoang (U. Southampton)

## Convergence in Event-B

Events can be tagged as convergent

This is proved thanks to a variant, that is a mathematical expression subject to a well-founded order (no infinite descent)

Convergence

Anticipation

Lexicographic order

Options

A convergent event must decrease the variant

Two kinds of variants implemented in Rodin:
Finite sets, $\subset$
Natural numbers, <

## Rodin proof obligations for convergence

Finite sets:

- FIN

FINITE(v)

- cvg_evt/VAR

$$
v^{\prime} \subset v
$$

Options

Natural numbers:

- cvg_evt/NAT
$v \in \mathbb{N}$
- cvg_evt/VAR $v^{\prime}<v$


## Anticipated events

Introducing an event that will eventually converge

The event is tagged as anticipated

It will be tagged convergent in a further refinement

An anticipated event must not increase the variant

## Rodin proof obligations for anticipation

Finite sets:

- FIN
- ant_evt/VAR

$$
\begin{aligned}
& \text { FINITE (v) } \\
& \mathrm{v}^{\prime} \subseteq \mathrm{v}
\end{aligned}
$$

Natural numbers:

- ant_evt/NAT
$v \in \mathbb{N}$
- ant_evt/VAR
$v^{\prime} \leq v$


## Improved POs for anticipation (bonus)

Prefix PO with $V^{\prime} \neq \mathrm{V}$ (Hallerstede, ABZ2014):

- ant_evt/NAT $\quad V^{\prime} \neq v \Rightarrow V \in \mathbb{N}$

We can do better for integer variants, using the equivalence with finite set 0 .. V, we can drop the NAT PO as the VAR PO is enough:

$$
\mathrm{v}^{\prime} \leq \mathrm{V} \Rightarrow 0 . . \mathrm{V}^{\prime} \subseteq 0 . . \mathrm{V}
$$

| $\mathrm{v}^{\prime}<0$ | $\mathrm{v}<0$ | $\ldots$... $\square$ ¢ $\varnothing$ |
| :---: | :---: | :---: |
| $\mathrm{V}^{\prime}<0$ | $v \geq 0$ | ... $\Rightarrow \varnothing \subseteq 0 . . \mathrm{V}$ |
| $v^{\prime} \geq 0$ | $v<0$ | $\perp \Rightarrow$... |
| $\mathrm{v}^{\prime} \geq 0$ | $v \geq 0$ | $\mathrm{v}^{\prime} \leq \mathrm{v} \Rightarrow 0 . . \mathrm{v}^{\prime} \subseteq 0 . . \mathrm{v}$ |

## First step towards lexicographic variant

When flattening, evt is converging on the lexicographic variant

- (v1, v2, v3)

But stronger than needed:
$\mathrm{v} 1^{\prime} \subseteq \mathrm{v} 1$
(v1' c v1)
$\wedge \mathrm{v}^{\prime} \subseteq \mathrm{v} 2 \quad \Rightarrow \quad \vee\left(\mathrm{v} 1^{\prime}=\mathrm{v} 1 \wedge \mathrm{v}^{\prime} \subset \mathrm{v} 2\right)$
^ v3' c v3

$$
v\left(v 1^{\prime}=v 1 \wedge v 2^{\prime}=v 2 \wedge v 3^{\prime} \subset v 3\right)
$$

## Lexicographic set variant

FINITE(v1)
FINITE(v2)
FINITE(v3)

$$
\begin{array}{rr}
\mathrm{v}^{\prime}=\mathrm{v} 1 & \Rightarrow \mathrm{v} 2^{\prime} \subseteq \mathrm{v} 2 \\
\mathrm{v} 1^{\prime}=\mathrm{v} 1 \wedge \mathrm{v} 2^{\prime}=\mathrm{v} 2 \Rightarrow & \mathrm{v} 3^{\prime} \subseteq \mathrm{v} 3 \\
& \mathrm{v} 1^{\prime} \subseteq \mathrm{v} 1 \\
& \Rightarrow \mathrm{v} 2^{\prime} \subseteq \mathrm{v} 2 \\
\mathrm{v} 1^{\prime}=\mathrm{v} 1 & \\
\mathrm{v} 1^{\prime}=\mathrm{v} 1 \wedge \mathrm{v} 2^{\prime}=\mathrm{v} 2 \Rightarrow & \mathrm{v} 3^{\prime} \subseteq \mathrm{v} 3
\end{array}
$$

- ant_evt/v2/VAR
- ant evt/v3/VAR
- v1/FIN
- v2/FIN
- v3/FIN
- cvg_evt/v1/VAR
- cvg_evt/v2/VAR
- cvg_evt/v3/VAR
- ant_evt/v1/VAR

Note: POs get simplified when some variant is not modified by the event

## Natural lexicographic variant (convergent)

With two variants: v1, v2
Option 1

- cvg_evt/v1/NAT v1 $\in \mathbb{N}$
- cvg_evt/v1/VAR v1' $\leq$ v1
- cvg_evt/v2/NAT $v 1^{\prime}=\mathrm{v} 1 \Rightarrow \mathrm{v} 2 \in \mathbb{N}$
- cvg_evt/v2/VAR v1' = v1 $\Rightarrow$ v2' < v2


## Option 2

- cvg_evt/v1/VAR v1' $\leq$ v1
- cvg_evt/v2/NAT v1' = v1 v v1'<0 $\Rightarrow$ v2 $\in \mathbb{N}$
- cvg_evt/v2/VAR v1' = v1 v v1'<0 $\Rightarrow$ v2' < v2


## Natural lexicographic variant (anticipated)

Option 1

- ant_evt/v1/NAT

$$
\mathrm{v} 1 \in \mathbb{N}
$$

- ant_evt/v1/VAR $\mathrm{Vl}^{\prime} \leq \mathrm{v} 1$
- ant_evt/v2/VAR $\mathrm{V1}^{\prime}=\mathrm{v} 1 \Rightarrow \mathrm{v} 2^{\prime} \leq \mathrm{v} 2$

Option 2

- ant_evt/v1/VAR $\mathrm{VI}^{\prime} \leq \mathrm{V} 1$
- ant_evt/v2/VAR $\mathrm{V}^{\prime}=\mathrm{v} 1 \mathrm{v} \mathrm{v} 1^{\prime}<0 \Rightarrow \mathrm{v} 2^{\prime} \leq \mathrm{v} 2$

Will be available in Rodin 3.5

