
Stupid Tool Tricks for Smart Model Based Design

Mark Lawford & Many Others

McMaster Centre for Software Certification (McSCert)
McMaster University

Hamilton, ON, Canada

“Workshop on Formal and Model-Driven Techniques for
Developing Trustworthy Systems”

FM&MDD Workshop at ICFEM 2016
Tokyo, Japan

November 14, 2016

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 1 / 74

Outline

Outline

1 Introduction
Stupid Tricks
Background

2 Tool Qualification

3 Coding Guideline Compliance & Documentation
Data Store Push-Down Tool
Signature Tool

4 Augmenting Existing Development Processes
Calibration Generation
HEV Background
MapleSim+ATP for a specific Powertrain Architecture Model

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 2 / 74

Introduction

Self examination

I can’t do anything. I’m just an anchor for really good people.
– A well respected academic

The unexamined life isn’t worth living. –Socrates

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 3 / 74

Introduction Stupid Tricks

Stupid Pet Tricks

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 4 / 74

https://www.youtube.com/embed/JFF4rmLJ2wo?start=27&end=41

Introduction Stupid Tricks

Stupid Pet Tricks⇒ Stupid Tool Tricks

Stupid pet tricks
Now please, the pets are not stupid. The people who taught them the
tricks are not stupid. It’s just that it’s a colloquialism for . . .
“Oh! Isn’t that cute!”

Stupid tool tricks
Now please, the tools are not stupid. The people who programmed the
tool tricks are not stupid. It’s just that it’s a colloquialism for . . .
“Oh! Isn’t that useful!”

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 5 / 74

https://www.youtube.com/embed/JFF4rmLJ2wo?start=27&end=41

Introduction Stupid Tricks

Tool Links & References

Tools for Matlab/Simulink (Tool names are hyperlinked!):

Tabular Expression Toolbox
Auto Layout Tool & Line-Goto/From Tool
Data Rescoping (Pushdown) Tool
Reach/Coreach Tool
Signature Tool

References:

1 V Pantelic, S Postma, M Lawford, A Korobkine, B Mackenzie, M Bialy, M Bender, J Ong, G Marks, A Wassyng, “Software
Engineering Practices and Simulink: Bridging the Gap”, International Journal on Software Tools for Technology Transfer
(STTT), Accepted 03/11/2016.

2 C. Eles, M. Lawford, “A tabular expression toolbox for Matlab/Simulink,” NASA Formal Methods, LNCS 6617, Springer,
2011, 494-499.

3 M. Bender, K. Laurin, M. Lawford, V. Pantelic, A. Korobkine, J. Ong, B. Mackenzie, M. Bialy, S. Postma, “Signature
required: Making Simulink data flow and interfaces explicit”, Science of Computer Programming, Volume 113, Part 1, 1
December 2015, 29 - 50.

4 V Pantelic, S Postma, M Lawford, A Korobkine, B Mackenzie, J Ong, M Bender, "A Toolset for Simulink: Improving
Software Engineering Practices in Development with Simulink," Proceedings of 3rd International Conference on
Model-Driven Engineering and Software Development (MODELSWARD 2015), SCITEPRESS, 2015, 50-61.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 6 / 74

http://www.mathworks.com/matlabcentral/fileexchange/28812-tabular-expression-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/51228-auto-layout-tool
https://jp.mathworks.com/matlabcentral/fileexchange/59742-line-goto-from-tool?requestedDomain=www.mathworks.com
http://www.mathworks.com/matlabcentral/fileexchange/51160-data-store-push-down-tool
http://www.mathworks.com/matlabcentral/fileexchange/51180-reach-coreach-tool
http://www.mathworks.com/matlabcentral/fileexchange/49897-signature-tool

Introduction Background

Subsection 2

Background

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 7 / 74

Introduction Background

A Failure Example from Aerospace - Rushby

Fuel emergency on Airbus A340-
642, G-VATL, on 8 February 2005
(AAIB SPECIAL Bulletin S1/2005)

Toward the end of a flight from Hong Kong to London:
1 two engines flamed out,
2 crew found some tanks were critically low on fuel, declared an

emergency,
3 landed at Amsterdam

The plane basically landed on fumes in the tanks of the remaining 2
engines even though there was sufficient fuel in other tanks.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 8 / 74

Introduction Background

What went wrong?

Two Fuel Control Monitoring Computers (FCMCs) on this type of
airplane; each a self-checking pair with a backup (so 6-fold
redundant in total); they cross-compare and the “healthiest” one
drives the outputs to the data bus
Both FCMCs had fault indications, and one of them was unable to
drive the data bus
Unfortunately, this one was judged the healthiest and was given
control of the bus even though it could not exercise it
The backups were suppressed because the FCMCs indicated
they were not both failed

It’s the requirements, stupid!
FCMCs functioned as specified. Requirements were incorrect.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 9 / 74

Introduction Background

Lesson: Requirements are (the only) killer in Civilian
Aerospace - John Rushby@SRI

This example is typical:
all software incidents in commercial aircraft have been due to
flawed system requirements
None due to development or implementation flaws

How is this possible? 100% MCDC coverage from SRS +

Seems DO-178B/C is effective, though very expensive
Lawford et al. (McSCert) FM&MDD’16 2016/11/14 10 / 74

Introduction Background

Automotive vs. Other Industries

Source: Information is Beautiful

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 11 / 74

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Introduction Background

Automotive vs. Other Industries

Automotive has to do a lot
more . . .

. . . in a lot more less time!

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 12 / 74

Introduction Background

“Coding is over!” - John Knight

Push to
generate
Hardware

Push to
generate
Software

Push to
Validate

It doesn’t matter what language you teach anymore. Java,
Python, C, C# are irrelevant. What matters is models.
Engineers will create models and generate the code.

Long live encoding! (of models . . . in MATLAB/Simulink)

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 13 / 74

Introduction Background

So we don’t need software engineers?

Bad news for Managers. Good news for Engineers.

You’ll still need the Engineers to create the models and the Software
Engineers to help manage the models and abstractions.

Engineers will provide insight into how to model and design
control systems.
A recurring theme of MDD is moving the focus up the levels of
abstraction to a more productive layer closer to the engineering
problem.
The problem is that software engineering principles still need to be
applied to models, but most engineers developing the models are
not taught SE Fundamentals.

Coding is mostly over. (Software) Engineering is definitely not over.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 14 / 74

Introduction Background

Automotive clearly needs help

Tesla Model S
fatal Autopilot
crash

Source: Reuters

So why is the industry not using our tools/theories/methods?
The unexamined life isn’t worth living. -Socrates

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 15 / 74

http://www.reuters.com/article/us-tesla-autopilot-idUSKCN0ZN1XX

Tool Qualification

Section 3

Tool Qualification

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 16 / 74

Tool Qualification

Be like Dudley!

Make it easy for industry to use your tools.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 17 / 74

https://www.youtube.com/embed/JFF4rmLJ2wo?start=107&end=160
https://www.youtube.com/embed/JFF4rmLJ2wo?start=107&end=160

Tool Qualification

What is Tool Qualification?

In a nutshell?
Fit for use

Why should I care
about it?
Because it’s one of
the biggest hurdles
to getting your tools
and theories used.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 18 / 74

Tool Qualification

Nuclear Example: The Darlington SDS Redesign
Project

OPG worked with the regulator to get agreement on:
what would be an acceptable development process
what evidence would be sufficient for licensing

For the SDS Redesign Project formal techniques were integrated
in the forward development process.
Forward development process produced evidence for
certification/evaluation

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 19 / 74

Tool Qualification

Using Information Hiding
60 modules
280 access programs
40,000 lines of code
(including comments)
33,000 FORTRAN
7,000 assembler
84 monitored variables
27 controlled variables

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 20 / 74

Tool Qualification

The Standard Used

The CANDU Computer Systems Engineering Centre for Excellence
Standard for Software Engineering of Safety Critical Software first
fundamental principle states:

“The required behavior of the software shall be documented
using mathematical functions in a notation which has well
defined syntax and semantics.”

Determinism: Want unambiguous description of safety critical behavior
Clarity: Easier to understand functional requirements

Preference: Engineers prefer to specify precise behavior and appeal
to tolerances when necessary

Sufficient: Functional methods often sufficient - Work "most of the
time" & are easily automated

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 21 / 74

Tool Qualification

The Assurance Case Implicit in the CANDU Standard

A part of the assurance case implicitly embodied in the standard
employed in developing the SDS was as follows:

1 The requirements are specified mathematically and checked for
completeness and consistency. A hazards analysis is required to
document risks and especially to identify sources of single point
failures. These hazards have to be mitigated in the specified
requirements.

2 Compliance between requirements and software design is
mathematically verified.

3 Compliance between the code and software design is verified
through both mathematical verification and testing. Compliance
between code and requirements is shown explicitly through
testing. However, there is an implicit argument of compliance
between code and requirements through the transitive closure of
the mathematical verification - code to design, and design to
requirements.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 22 / 74

Tool Qualification

Tabular Expressions (Parnas Tables)

readable & precise documentation for complex relations
amenable to formal verification (e.g., PVS)

completeness – no missing cases
disjointness – deterministic, unambiguous behaviour

used in the two Darlington nuclear reactor SDSs [e.g., f_NOPsp]

Result
Condition f

C1

C1.1 res1

C1.2 res2

.
C1.m resm

.
Cn resn

IF C1
IF C1.1 THEN f = res1
ELSEIF C1.2 THEN f = res2
...
ELSEIF C1.m THEN f = resm

ELSEIF ...
ELSEIF Cn THEN f = resn

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 23 / 74

Tool Qualification

Idealized Development Process & Tools

Requirements
 Documents

 Software
 Design
Document

 Code

Requirments

 Review

 Report

Design Review and

Verification Reports

 Code Review and

Verification Reports

Unit Test

 Report

Software Integration

 Test Report

Validation Test and

 Reliability Qual.

 Reports

Legend:
 Documents produced in
 the forward going development

 Documents produced for
 verifications, reviews and
 testing

 Tools connected to documents/activities

 Activities and data flow

Table Tools

Table Tools

Table Tools

Table Tools

Table Tools

Theorem
 prover

 Id. Extraction
 Tool

Code editor
& Compiler

 Logic
analyzer

Requirements
 Tool

Design Tool

Design Veri-
fication Tool

Design Tool

 Code Veri-
fication Tool

Simulation
 Tool

 Change
Request Tool

 Config.
Mgmt. Tool

 Test
Oracles

Unit Test
 Oracle

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 24 / 74

Tool Qualification

Idealized Development Process & Tools

Requirements
Documents

Software
Design

Document

Code

Requirments
Review
Report

Design Review and
Verification Reports

 Code Review and
Verification Reports

Unit Test
Report

Software Integration
 Test Report

Validation Test and
 Reliability Qual.
 Reports

Legend:
Documents produced in
the forward going development

Documents produced for
verifications, reviews and
testing

Tools connected to documents/activities

Activities and data flow

Table Tools

Table Tools

Table Tools

Table Tools

Table Tools

Theorem
prover

Id. Extraction
Tool

Code editor
& Compiler

Logic
analyzer

Requirements
 Tool

Design Tool

Design Veri-
fication Tool

Design Tool

Code Veri-
fication Tool

Simulation
 Tool

Change
Request Tool

Config.
Mgmt. Tool

Test
Oracles

Unit Test
 Oracle

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 25 / 74

Tool Qualification

Tool Supported Formal Methods

A formal method should be tightly integrated with the software
development process - i.e. it is directly applied to project documents
used by all parties as part of the process.

SRS.rtf

SDD.rtf

DVR.rtf

PVS
processor
Word

 +
SESM
Tools

SDD.doc

DVR.doc

SRS.doc

block

proofs
comp.

Document flow
Information flow

b001.pvs
b002.pvs
b003.pvs
etc...

.
Tool
SDV
SESM

SOFi ◦ AbstVi−1 = AbstVi ◦ REQi

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 26 / 74

Tool Qualification

Every Formal Verification was done manually too!

Say what?
Tools are great, but they don’t buy you as much as you think if
they can be a single point of failure.
At the time the regulator wanted to mitigate a failure of PVS with a
known method, manual proof.
Latest version of IEC-61508-3 now provides better guidance here.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 27 / 74

Tool Qualification

Tool Qualification in DO-178C/DO-330

An assessment on all the tools used in the framework of the
tool life cycle processes should be conducted in order to
identify the need for qualification of these tools. Qualification
of these tools is needed when processes of this document
are eliminated, reduced, or automated by the use of a tool
without its output verified as specified in section 6.

DO-330 S. 4.4(e)
Tool Planning Process Activities

Example of Elimination
Doing formal proof that code conforms to low level requirements then
saying that as a result you don’t need to do MCDC test from low level
requirements.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 28 / 74

Tool Qualification

Tool Qualification in ISO 26262

11.4 Requirements and recommendations
11.4.1 General requirement
11.4.1.1 If the safety lifecycle incorporates the use of a
software tool for the development of a system, or its hardware
or software elements, such that activities or tasks required by
ISO 26262 rely on the correct functioning of a software tool,
and where the relevant outputs of that tool are not examined
or verified for the applicable process step(s), such software
tools shall comply with the requirements of this clause.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 29 / 74

Tool Qualification

Solving the Tool Qualification Problem

The bad news:
You will, in all likelihood, need two different tools in order to avoid
having to do it manually because “demonstrating soundness of the
tools” will likely be difficult or impossible

The good news:

Its not as hard as you might think to knock the tool qualification
requirements down a level by doing the same thing with 2+ tools.

DSLs can be used to generate code for multiple theorem provers,
or SMT solvers, or model checkers
There is often more than one way to get a result
This can help avoid vendor lock-in

Consider this in developing your tools and process

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 30 / 74

Tool Qualification

New Tabular Expression Toolbox Architecture

Completeness & disjoint-
ness checks generated 2
ways:

1 TET→PVS Table
2 TET→CVC3 queries

Embedded Matlab genera-
tor only path to code
Table Data structure is also
single point failure for every-
thing

Design for Qualification

No need to qualify PVS or
SMT solver.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 31 / 74

Tool Qualification

Stupid Tool Trick #1

Do everything twice in two different ways.

Be like Dudley.

Make it easy for industry to use your tools by thinking about tool
qualification!

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 32 / 74

Coding Guideline Compliance & Documentation

Section 4

Coding Guideline Compliance & Documentation

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 33 / 74

Coding Guideline Compliance & Documentation

Be like Twig!

Go with the [data] flow!

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 34 / 74

https://www.youtube.com/embed/JFF4rmLJ2wo?start=240&end=305

Coding Guideline Compliance & Documentation Data Store Push-Down Tool

Subsection 1

Data Store Push-Down Tool

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 35 / 74

Coding Guideline Compliance & Documentation Data Store Push-Down Tool

Motivation

Some of the industrial models we have been working with define
most of their data stores at the top level of a model’s hierarchy

This is analogous to programming with many global variables
Data stores, like variables in traditional programming languages,
should be restricted in scope in order to

Avoid inadvertent/unwanted access
Increase understandability
Hide low-level details
Reduce the number of (implicit) inputs for testing, resulting in
decreased number of test cases

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 36 / 74

Coding Guideline Compliance & Documentation Data Store Push-Down Tool

Application

S1

DSMA DSMB SUB2

S2

R1

F1

SUB3

S3

SUB4

S4

DSRA B1 B2

B3 B4 B5 SUB5

S5

DSWA B6 B7 DSRB

Figure: Data store push-down: before

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 37 / 74

Coding Guideline Compliance & Documentation Data Store Push-Down Tool

Data store localization: after

S1

SUB2

S2

R1

F1

SUB3

S3

DSMA SUB4

S4

DSRA B1 B2

B3 B4 B5 SUB5

S5

DSWA B6 B7 DSMB DSRB

Figure: Data store push-down: after

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 38 / 74

Coding Guideline Compliance & Documentation Data Store Push-Down Tool

Illustration of Push-Down on an Industrial Model

Before: 78 top level data stores After: 24 top level data stores

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 39 / 74

Coding Guideline Compliance & Documentation Data Store Push-Down Tool

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 40 / 74

Coding Guideline Compliance & Documentation Data Store Push-Down Tool

Application

The push-down operation improves models’ modularity,
comprehensibility, maintainability, reusability
Proper scoping of data stores can be enforced as a rule in
guidelines

Companies typically use guidelines for MBD with Simulink
E.g., naming conventions, grouping blocks into subsystems, etc.

Japan MathWorks Automotive Advisory Board (JMAAB)
guidelines strongly recommends positioning Data Store Memory
blocks as low as possible in the model hierarchy

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 41 / 74

Coding Guideline Compliance & Documentation Data Store Push-Down Tool

Stupid Tool Trick # 2

Be like Twig!

When in Rome, do as the Romans do. – St. Ambrose

No company is going to throw out all of its process, tools & code
and start using your pet method tomorrow

Be like Twig.

Recognize that a seemingly
“trivial” tool to you could be a
useful trick that gets collaborative
research going.

No tool is stupid if its useful. It will only be used if you put it in their
environment.
Trust is the Trojan horse that will help you slowly try to get
industry to use your methods.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 42 / 74

Coding Guideline Compliance & Documentation Signature Tool

Subsection 2

Signature Tool

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 43 / 74

Coding Guideline Compliance & Documentation Signature Tool

Motivation

Bring the basic self-documentation components of traditional
programming languages to Simulink

In C, the interface to a module is defined in a header file

Understanding data flow in Simulink models can be very difficult
Blocks can be connected by signal lines
Further, Simulink includes mechanisms such as Goto/From pairs
and data stores to implicitly connect blocks
One may need to search through many levels in the system
hierarchy

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 44 / 74

Coding Guideline Compliance & Documentation Signature Tool

What is a Signature?

A representation of the interface of a Simulink subsystem
Explicit (ports)
Implicit (inherited data stores and non-local Goto/From tags)
Imposed (declarations)

The tool identifies two signatures for a subsystem S
Weak signature Sigw (S): the resources the subsystem S can
access
Strong signature Sigs(S): the resources the subsystem S is
actually accessing

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 45 / 74

Coding Guideline Compliance & Documentation Signature Tool

Data Flow in Simulink: An Illustration

Out2
2

Out1
1

Unit Delay
z
1

Sub1

In1

In2

Out1

Out2

Out3

Goto Tag
Visibility

{Scoped1}

Goto

{Scoped1}

Gain

2

Data Store
Write B

B

Data Store
Memory B

B

Data Store
Memory A

A

In3
3

In2
2

In1
1

Out3
3

Out2
2

Out1
1

Unit Delay
z
1

Gain

2

From

{Scoped1}

Data Store
Write C

C

Data Store
Write A

A

Data Store
Read C

C

Data Store
Read B

B

Data Store
Read A

A

Data Store
Memory

C

In2
2

In1
1

Figure: A top level of a model (left) and the contents of its subsystem Sub1 (right)

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 46 / 74

Coding Guideline Compliance & Documentation Signature Tool

Strong Signature for Sub1

Inputs

Data Store Reads

Scoped Froms

Updates

Outputs

Declarations

3

2

1

z
1 [GotoOut13]

[GotoOut12]

[GotoOut10][GotoIn9]

[GotoIn15]

2

{Scoped1}

[GotoOut13]

[GotoOut12]

[GotoOut10]

[GotoIn9]

[GotoIn15]

{Scoped1}

A

B

C A

C

B

A

C

2

1

Figure: Sub1 with its strong signature (left) included

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 47 / 74

Coding Guideline Compliance & Documentation Signature Tool

Signature Tool

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 48 / 74

Coding Guideline Compliance & Documentation Signature Tool

Signature Tool

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 49 / 74

Coding Guideline Compliance & Documentation Signature Tool

Signature Tool Defeat

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 50 / 74

Coding Guideline Compliance & Documentation Signature Tool

Signature Tool Victory #1!

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 51 / 74

Coding Guideline Compliance & Documentation Signature Tool

Signature Tool Victory #2

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 52 / 74

Coding Guideline Compliance & Documentation Signature Tool

Stupid Tool Trick # 3

If the tool isn’t useful to your partner in the way you think it
should be, ask yourself if the tool could be used in another
way.

Listen to the engineers.
Sometimes you have to be wrong before you get it right.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 53 / 74

Coding Guideline Compliance & Documentation Signature Tool

Coverage and Testing Effort Reductions

vs.

Harness Generated by Commercial Testing Tool (H)
vs. Signature-Extended Harness + Commercial Tool (EH)

Harness (H) Extended Har-
ness (EH)

Improvement
(|EH−H|

H ×100%)
Test Steps 1165 392 66%
Branch

1

88% (58/66) 100% (66/66) 14%
Decision 100% (34/34) 100% (34/34) 0%
MC/DC

1

95% (19/20) 95% (19/20) 0%
Boundary 100% (15/15) 100% (21/21) 0%
TOTAL

1

95% (126/135) 99% (140/141) 4%

Reduced # of Test Steps is significant

Before a new vehicle SW release Hardware In the Loop (HIL) access
is a major bottleneck.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 54 / 74

Coding Guideline Compliance & Documentation Signature Tool

Application of Signatures

Signatures can be:
Expressed in Simulink and included in the subsystem itself
Exported into separate software documentation

This is how our industrial partner is using the Signature Tool

Signatures aid in comprehension
Signatures can be employed as interface specifications for
subsystems

Enforce encapsulation by restricting access to data (For example,
by forcing a data store to be read-only)

Can be used for inputs classification, typing, test harnessing, etc.
Can be used to improve test coverage with reduced effort

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 55 / 74

Coding Guideline Compliance & Documentation Signature Tool

Signatures as Metric

Let Size(SigX (S)) = # of inputs + # outputs + 2×# updates
Then define the signature metric as

d(S) = Size(Sigw (S))− Size(Sigs(S))

gives indication of how “modular” subsystem hierarchy is.
d(S)=0 indicates that the subsystem S only has access to
resources it is using
d(S) >> 0 indicates that it is potentially possible for a subsystem
to influence or be influenced by many other subsystems.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 56 / 74

Coding Guideline Compliance & Documentation Signature Tool

Signatures as Metric + Datastore Pushdown =
Improved Modularity

Syst Qnty Before pushdown
(BP)

After pushdown
(AP) BP − AP BP−AP

BP × 100%

Sub1

Size(Sigw (S)) 182 74 108 59.3
Size(Sigs(S)) 12 12 0 0.0

d(S) 170 62 108 63.6

Sub2

Size(Sigw (S)) 231 123 108 46.8
Size(Sigs(S)) 155 87 68 43.9

d(S) 76 36 40 52.6

Sub3

Size(Sigw (S)) 156 150 6 3.9
Size(Sigs(S)) 8 6 2 25.0

d(S) 148 144 4 2.7

Sub4

Size(Sigw (S)) 277 169 108 39.0
Size(Sigs(S)) 95 95 0 0.0

d(S) 182 74 108 59.3

Sub5

Size(Sigw (S)) 214 196 108 50.5
Size(Sigs(S)) 57 57 0 0.0

d(S) 157 49 108 68.8

Sub6

Size(Sigw (S)) 220 214 6 2.7
Size(Sigs(S)) 70 70 0 0.0

d(S) 150 144 6 4.0

Sub7

Size(Sigw (S)) 104 104 0 0.0
Size(Sigs(S)) 91 91 0 0.0

d(S) 13 13 0 0.0

Subi has 800 blocks on average, with a hierarchical depth of 6.
Lawford et al. (McSCert) FM&MDD’16 2016/11/14 57 / 74

Coding Guideline Compliance & Documentation Signature Tool

Stupid Tool Trick # 4

Ask yourself: “Why is that stupid tool trick is useful?”

The stupid tool trick is useful for a reason.
We built the data store rescoping tool to help us understand
models.
It was suprisingly useful . . . because it improved the modularity of
the system.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 58 / 74

Augmenting Existing Development Processes

Section 5

Augmenting Existing Development Processes

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 59 / 74

Augmenting Existing Development Processes

Be like Nicky!

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 60 / 74

https://www.youtube.com/embed/7ADhKTNkIPI?start=200&end=280

Augmenting Existing Development Processes Calibration Generation

Automotive “Calibrations” circa 1980

e(t) u(t)
Σ+
−

r(t) y(t)
1

s(s+2)K

1 “Tune” the gain in an analog
control loop for the vehicle

2 Home (y = 0) position
corresponds to potentiometer
voltage 1.46

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

K=0.5
K=2

Step response for K=0.5 & K=2

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 61 / 74

Augmenting Existing Development Processes Calibration Generation

Automotive “Calibrations” circa 2016

1 Torque transfer function from electric motor 1 to wheels is G(z)
2 This product doesn’t have an onboard charger - disable the

onboard charger code

“He’s dead Jim.”
“No, he’s deactivated Bones.”

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 62 / 74

Augmenting Existing Development Processes Calibration Generation

How this subproject started

Academic: (writing grant) Project deliverable: Use of symbolic tools
for SE of CPS

Academic: We think this would be really useful to you.
Industry: Not interested. We use Matlab/Simulink.

Academic: Okay. What can we do for you?
Industry: Help us make sure our Hybrid Electric Drive train software

can be used across all our current & future product line.
Academic: OK. I think that if we use symbolic tools to model all of the

different architectures we can help determine if your drive
train architecture hardware hiding module will work.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 63 / 74

Augmenting Existing Development Processes HEV Background

A Few Hybrid Drive train Architectures [Wikipedia]

Series
Parallel

Engine

Battery Converter
Electric
motor

Reservoir

Combined

Engine

Generator Charger

Battery

Converter
Electric
motor

Reservoir

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 64 / 74

Augmenting Existing Development Processes HEV Background

Parallel Hybrid Modes [Wikipedia]

For a given architecture there are many different modes

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 65 / 74

Augmenting Existing Development Processes HEV Background

How current “calibration” of architecture hardware
hiding module works

1 Derive equations for different modes by hand and linearize
2 Use in house Matlab scripts to produce relations and transfer

functions between different relevant quantities
3 Check equations and transfer functions by hand
4 Encode equations for transfer functions as calibration in hardware

hiding module

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 66 / 74

Augmenting Existing Development Processes MapleSim+ATP for a specific Powertrain Architecture Model

MapleSim for a Powertrain Architecture Model

A first attempt
1 The powertrain architecture was modeled using MapleSim
2 State-space representations of the four operation modes

(M1/M2/MB/M12) were retrieved
3 Speed and torque equations (in fully symbolic form) defining the

four operation modes were retrieved
Equation retrieval is fully automated using a Maple script
Equations were verified against the equations from inhouse matlab
scripts and they are identical
Finished generating and validating – calibration coefficients are
identical (within 1e−5 tolerance)

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 67 / 74

Augmenting Existing Development Processes MapleSim+ATP for a specific Powertrain Architecture Model

Figure: MapleSim Model for a Powertrain Architecture (MB)
Lawford et al. (McSCert) FM&MDD’16 2016/11/14 68 / 74

Augmenting Existing Development Processes MapleSim+ATP for a specific Powertrain Architecture Model

Figure: Part of the Maple Script for Equation Retrieval (MB)

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 69 / 74

Augmenting Existing Development Processes MapleSim+ATP for a specific Powertrain Architecture Model

How new “calibration” of architecture hardware hiding
module works

1 Model in Maplesim
2 Extract equations from model
3 Solve for equations and transfer functions
4 Check equations and transfer functions by hand
5 Encode equations for transfer functions as calibration in hardware

hiding module

The next step is to replace the manual check using automatically
generated PVS code. This has been done and proofs are largely
automated.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 70 / 74

Augmenting Existing Development Processes MapleSim+ATP for a specific Powertrain Architecture Model

Automated Checking of Generated Calibrations

Architecture
of BSG Arch 2 Arch 3

Equations Speed Torque Speed Torque Speed Torque
Generated 5 26 8 60 5 56
Solved for 2 3 5 4 2 3

AutoProved Yes Yes Yes 1/4 Yes No

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 71 / 74

Augmenting Existing Development Processes MapleSim+ATP for a specific Powertrain Architecture Model

Stupid Tool Trick # 5

If at first you don’t succeed, try, try again.

Be like Nicky.

Eventually you can make it work.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 72 / 74

Augmenting Existing Development Processes MapleSim+ATP for a specific Powertrain Architecture Model

Collaborators

Many people are responsible for this work, such as:

Faculty: Alan Wassyng, Tom Maibaum, Jacques Carette
Research Engineers: Vera Pantelic, Alex Korobkine, Steven
Postma
Postdocs: Marc Bender, Jason Joskola
Students: Monika Bialy, Romi Bomier, Kevin Bruer, Matthew
Dawson, Colin Eles, Bennet Mackenzie, Jeff Ong, Alexander
Schaap, . . .

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 73 / 74

Augmenting Existing Development Processes MapleSim+ATP for a specific Powertrain Architecture Model

Conclusions

Remember stupid tricks might have interesting outcomes.

Lawford et al. (McSCert) FM&MDD’16 2016/11/14 74 / 74

	Introduction
	Stupid Tricks
	Background

	Tool Qualification
	Coding Guideline Compliance & Documentation
	Data Store Push-Down Tool
	Signature Tool

	Augmenting Existing Development Processes
	Calibration Generation
	HEV Background
	MapleSim+ATP for a specific Powertrain Architecture Model

