FM&MDD Workshop at ICFEM 2016

Assured and Correct
Dynamic Update of Controllers

Kenji Tei
Associate Professor
National Institute of Informatics, Japan

tei@nii.ac.jp
http://researchmap.jp/teikenji/?lang=english

In collaboration with Leandro Nahabedian, Victor Braberman, Nicolas D’Ippolito,
Shinichi Honiden, Jeff Kramer, and Sebastian Uchitel.

This work was presented at SEAMS 2016 and selected as the best paper

Summary

¢ Context
— Environment will change at runtime
— How do we ensure correctness of software?
=> Use models at runtime for self-adaptation!
* Dynamic update of controller

— Software (controller) will be changed at runtime
in response to changes in the environment

— How do we ensure that update of controller is correct?
=> Synthesize updating controller!

How does the system adapt to changes?
Modern systems face changes at runtime

C ke PU—

IR0 P

. Internet of Things
cloud robots mobile Ing:

Device
failure

Sudden
increase of
user traffic

&
26

Users

Unstable
performance

software system laaS

How do we ensure correctness of software system?

I? ST Keniji Tei

* Associate Professor,
National Institute of Informatics, Japan
* Research interests:
— Software architecture, MDD
— Self-adaptive system, Models@run.time
— 10T / CPS / Smart city
* Projects

— TopSE: Education program for software
engineers in industry
* http://www.topse.jp/en/

- ClouT/BigClouT: EU-JP joint project about
cleul smart cities

* http://bigclout.eu

Context

Self-adaptive Systems

Systems that are able to modify their behavior
and/or structure in response to their perception
of the environment and the system itself,
and their requirements

R.Lemos, et al., Software Engineering for Self-Adaptive Systems: A Second Research Roadmap, SEAMS2011.

Why self-adaptation is needed?

How is its correctness guaranteed?

Requirement Engineering Perspective

Zave/Jackson Model

Requirement

Requirement Engineering Perspective

Zave/Jackson Model

Item should be eventually delivered to transfer area

Crash among robots never happened]

Requirement Engineering Perspective
Zave/Jackson Model

orld Machine
Environment) (Controller)

C* E IFG

)
Specification of the machine (controller) (03 E fills gap btw. Cand R
satisfies requirements (goals) G
onment)

under the assumed domain properties (Envir

Assurance at Development Time

control

Kind of requirements guaranteed depends on model and method adopted

Assurance at Development Time

control

Assurance at Development Time
-1. Modeling Environment-
control{ \

monltol'
[

Example : Automated Warehouse

(T

w m e
environment
controllable monitorable
i Tow arriveAtw actions
movelo arriveAtM
mpveToE arriveAtE
pickup pickupSuccess
putdown pickupFail
putSuccess
putdFail

Environment Modeling

moveloE
iV

ve ol
s =
o :
picl ess
models
|1E= (MAP| |

MAP=(> MAP['w]), W_ROBOT=(~>ROBOT),

MAP['w]=(move['e] -> > MAP['m] ROBOT= (move|Direction] -> ->ROBOT
| move['w] -> > MAP['w] | pickup -> (->ROBOT | ->ROBOT)
| putdown -> -> MAP['w] | putdown -> ->ROBOT | ->ROBOT)
| pickup -> > MAP[w]), | ended -> reset -> ROBOT).

MAP['m]=(move['e] -> > MAP[e]
| move('w] -> > MAP['w]
| putdown -> > MAP['m]
| pickup -> > MAPImI), /

MAP['e]=(move['e] -> > MAPle] R e NN
| move['w] -> -> MAP['m] AN X
| putdown -> > MAP[e]
| pickup -> -> MAP[e]).

Assurance at Development Time
- Construct Correct Specification -

control

—— —

Construct Correct Controller Specification

* by hand
— Developer specifies controller,
— checks correctness of it by model checking

* by automatic generation

— Tool generates correct specification
for the formally modeled environment and goals

Synthesize Controller

Discrete Controller Synthesis

Generate C from a control problem <E,G>
(CIIE |=G)

Environment model (as || LTS)

R RCE MR

[controller: -
- IALIGNED &5 !GRIPOPEN &5 !PICKEDUP

- -> openGripp

IALIGNED &% GRIPOPEN &6 !PICKEDUR
-> alignBall
IALIGNED &6 !GRIPOPEN &6 PICKEDUP
1t1_property SAFE -> discardBall
[1 (closeGripper -> ALIGNH
1t1_property GETEALL =
[1(alignBall -> X closeGz|

1tl_property PROGRESS =
[] (openGripper -> X alignBall)

ALIGNED &5 GRIPOPEN && !PICKEDUP
-> closeGripper

Plan (as a controller)

Goal specification (as LTL properties)

Nicolas D'Ippolito, et al., Synthesis of Live Behaviour Models, FSE2010
Nicolas D’Ippolito, et al., Synthesis of live behaviour models for fallible domains, ICSE2011

- Discrete Controller Synthesis-

Synthesis as 2 Player Game

Player Enemy

control

monitor

tries to satisfy G tries to violate G

Is there a winning strategy for the player?

- Discrete Controller Synthesis-

Synthesis as 2 Player Game

Compute winning states

* backward propagation error states for input
|

e ... for control

—020 > 0 |

- Discrete Controller Synthesis-

Synthesis as 2 Player Game

Extract winning strategy |

Reactive plan computed from set of control state

controller:- {fluents}
IALIGNED && !GRIPOPEN && !PICKEDUP
-> openGripper S —P
'ALIGNED && GRIPOPEN && !PICKEDUP input
-> alignBall

'ALIGNED && !GRIPOPEN && PICKEDUP {fluents} IS)—

-> discardBall

ALIGNED && GRIPOPEN && !PICKEDUP
-> closeGripper

- Discrete Controller Synthesis-

Tool Support
* MTSA (Modal Transition System Analyzer)

http://mtsa.dc.uba.ar

- Discrete Controller Synthesis-

Theoretical Complexity

[Linear Temporal Logic] 2-EXPTIME
Generalized Reactivity (k)
l Aoy (NSO Om v A OO) I EXPTIME
Generalized Reactivity (1) . .
(AL OOp VAL OO) Polynomial
Persistence Response Pol ial
Py Op olynomia
Obligation .
A (Orv Sa) Linear
Reachability Safety .
[S] [O»] Linear

Assurance at Development Time
-3.Develop Software-

-— .y,

oo Em m o =

Enact Model

Controller synthesis: from modelling to enactment - ICSE 2013 demonstration

Enactment framework
MTSA
o * Interpret controller
l l model
— Cihemenion ,mj * Map actions in model
to concrete implementation

Domain specific

V. 'man et al., Col is: From modelling to enactment, ICSE 2013

Assurance at development time

control

QGroundControl + Guiado WP

| Won! ¢

E may become invalid at runtime

[-> arriveAtW -> moveToE -> arriveAtW > ...]

unforseened!!

control

cl |l | E | I=

System may no longer work,
or may continue, but without any assurances

Challenge to Uncertainty

by David Garlan

Software Engineering is founded on a computational
myth that no longer fully serves its purpose: that the
computational environment is predictable and in
principle fully specifiable, and that the systems
that compute in those environments can in principle
be engineered so that they are trouble-free

D.Garlan, Software Engineering in an Uncertain World, 2010

Assuming More Realistic Environment

T ————

MAP['w]=(move['e] -> -> MAP['m] I UATCe] 8 Xmovelwl)
| move['w] -> ->MAP['w] ;
| putdown -> -> MAP['w] ‘] |
| pickup -> -> MAP['W]), [wosspontren | [iepisups
L 1
AP w=(fmoveTel = (el n]w)l T ET——
-> W,
| movelvl] 52T S — = | o | p—r—
| putdown -> -> MAP['w] [cces> 82 pikup |
esep) |

| pickup -> ->MAP['w]), ‘

Environment is Uncertain

<=
e &

Sudden Sensor/Actuator

increase of Unstable
user traffic performance
Location g
change
Cloud / External Service
Security
attack Obstacles

How to Address Uncertainty

* Do nothing
* Acknowledge it

* Delay key decisions
until more information is available

B.Cheng, A Search-based Approach to Exploring Uncertainty for
Self-Adaptive Systems, 2016

How Much Should We Assume?

high E Aich
optimistic
- Everything
works ideally

Everything
can go wrong

Epessimistic
A\ 4

risk

Ayjeuoipuny

poor

Use models at runtimel

Graceful Degradation
by Self-adaptation with Models

adaptation 1 v
engine , [

control

Self-adaptation by Models@run.time

Adaptation Engine

<
e
Requirement 2. determine func. level discrete
relaxing : controller
Analyzer : Symiess

|] 3. generate
l@ d@. controller
1. update 1 wledge]

env. model

TS enactment 4. hot-swap
Env. model controller
learning @

e

System

1. Environment model learning
make E neither optimistic nor pessimistic

2. Goal relaxation

avoid unnecessary degradation

3. Controller synthesis

generate an assured controller

4. Controller update

swap controller to new one

How do we ensure correct
update of controller?

Assured and Correct
Dynamic Update of Controllers

Kenji Tei
Associate Professor

National Institute of Informatics, Japan
tei@nii.ac.jp
http://researchmap.jp/teikenji/?lang=english

In collaboration with Leandro Nahabedian, Victor Braberman, Nicolas D’Ippolito,
Shinichi Honiden, Jeff Kramer, and Sebastian Uchitel.

This work was presented at SEAMS 2016 and selected as best paper

Control Theory |

Control Theory |

Continuous Variable

Discrete Event
Dynamic System

Dynamic System

Control Theory

Continuous Variable Discrete Event Continuous Variable
Dynamic System Dynamic System

Dynamic System

Control Theory

Discrete Event
Dynamic System

d(k)

gk 4 e(k Cnmxoll . u(k), ll\m y(k))y

Controller Synthesis

Discrete Event Controller Synthesis
Problem .
World Interface Machine
Environment assumptions
Goals (Requirements) Specification
Fllzr

<\

ik
Events and
Commands

Discrete Event Controller Synthesis
World Interface Machine

Environment assumptions

Goals (Requirements) Specification

arriveAtW
moveToW arriveAtM
Lot Aol moveToE arriveAtE
Tl pickup pickupSuccess
/ ickupFail
putdown gutSuB:_cess
putdFail

Discrete Event Controller Synthesis
World Interface Machine

Environment assumptions

Goals (Requirements) Specification

T T ———

[(ATe] 82 X(movel'w]) > X{larrvel'e] W putsuccess))

\] | |

[ovicweontren | [e

Discrete Event Controller Synthesis
World Interface Machine

Environment assumptions

Goals (Requirements) Specification

Discrete Event Controller Synthesis
World Interface Machine

Environment assumptions

Goals (Requirements) Specification

Ele; = G
E .
,n:::;::?e“t}.* X

G Specification
oals

with interface /

Controller Synthesis
Problem

Ellz;EG

(of controller)
Build a strategy for the controller that always beats its adversary

Control Theory

Discrete Event
Dynamic System

Continuous Variable
Dynamic System

E

rrEG

Control Theory

Continuous Variable

Discrete Event
Dynamic System

Dynamic System

What if | need to change my controller at runtime?

nactor

Control Theory

Continuous Variable
Dynamic System

controller

Discrete Event
Dynamic System

Control Theory

Continuous Variable Discrete Event
Dynamic System Dynamic System

controller /
<

Goal Model
(System state +
System Goals +

Environment
Assumptions)

B Bl .
S
g’ E‘l (Component Architecture) '

Goal Model

)

Control Theory

Continuous Variable
Dynamic System

Discrete Event
Dynamic System

(g Goal Model
mmml I odeh 1 (System state +
J=n . vie

"('gkl’z,] Assumptions)
v ller — -
exception C)
’: Cv/
i nactor
xecute
events commands
L LL L LCLL T L Sl
5g! . —
8 ‘%I Component Architecture :

Control Theory

Continuous Variable Discrete Event
Dynamic System Dynamic System

controller

Goal Model
Goal Model | ¢ (S/sh?rnn goh-;]b: ¥
prof - Environment
(GI'E) } N sumptions)
. controller \What kind of transition
exception ©) N
Gl properties can we
’ ': ensure? Y-

(o)

What happens when you
change (a discrete event)

Lcontroller at runtime?

10

Production Cell Controller

out(A) => (Drilled(A) » Painted(A))
dry(A) => Painted(A)

{glossy.paint, drill, dry, error...}

E drill ok

<> D> €

Production Cell Controller

out(A) => (Drilled(A) * Painted(A))
dry(A) => Painted(A)

4 {glossy.paint, drill, dry, error...}

E drill ok

@ D> <>

in[A] gpaint drill dry out[A]

Tool 1 Tool 2 Tool 3 Tool 4

== Processed A elements

Machine

=== Processed B elements

Production Cell Controller

out(A) => (Drilled(A) * Painted(A))
dry(A) => Painted(A)

{glossy.paint, drill, dry, error...}

E drill ok

> @
Blles G

Production Cell Controller

out(A) => (Drilled(A) * Painted(A))
dry(A) => Painted(A)

{glossy.paint, drill, dry, error... }

E drill ok

<@ D> <>

in[A] gpaint drill dry out[A]

11

Production Cell Controller Update Production Cell Controller Update

out(A) => (Drilled(A) * Painted(A)) ey == (D"“eV‘"A’, h Eﬁ‘(i:‘:d““ out(A) => (Drilled(A) * Painted(A))
. A Varnished(A)) .
dry(A) => Painted(A) dry(A) => Painted(A) Painted(A)

matt.paint(A Drilled(A)
{glossy.paint, drill, dry, error...} r varnish(A) => Painted(A) sy.paint, drill, dry, error...}

1
1
1
{matt.paint, drill, dry, error, ...} I {matt.paint, drill.
-
1
1
1
1
1

[€80ut(A) = (Drilled(A) * Painted(A)
~ Varnished(A))
dry(A) => Painted(A)
matt.paint(A) rilled(A)
r varnish(A) Painted(A)

E,’ xy ,: G/

int drill dry out[A] in[A] g.paint drill dry out[A]

Production Cell Controller Update Production Cell Controller Update

out(A) => (Drilled(A) Painted(A))) = ‘D“‘.‘e\‘j““_ ' ‘:’(‘:‘id“‘) out(A) = (Drilled(A) * Painted(A))
X A Varnished(A),)
dry(A) => Painted(A) dry(A) => Painted(A) dry(A) => Painted(A)

matt.paint(A Drilled(A) I
{glossy.paint, drill, dry, error...} arnish(A) => Painted(A) {glossy.paint, drill, dry, error...}

{matt.paint, drill, dry, error, ...}

(€ 0ut(A) => (Drilled(A) ~ Painted(A)
A Varnished(A))
dry(A) => Painted(A)
rilled(A)
Painted(A)

{matt.paint, drill, dry, error, ...}

in[A] gpaint drill dry out[A] yin[A] drill m.paint varnish dry out[A] in[A] gpaint drill dry out[A] yin[A] drill m.paint varnish dry out[A]

1
1
1
1
-
1
)
1
.
1

in[A] g.paint drill

Production Cell Controller Update Production Cell Controller Update

out(A) => (Drilled(A) * Painted(A)
~ Varnished(A))
dry(A) => Painted(A)
matt.paint(A) rilled(A)
r varnish(A) => Painted(A)

out(A) => (Drilled(A) * Painted(A) out(A) = (Drilled(A) / Painted(A))
A Varnished(A)) .
dry(A) => Painted(A) dry(A) => Painted(A)
matt.paint(A Drilled(A) 1
r varnish(A) => Painted(A) {glossy.paint, drill, dry, error...}

{matt.paint, drill. 5 {matt.paint, drill.

i i
I I
I I
I I
: :
I I
: :
: :

out(A) => (Drilled(A) » Painted(A))
dry(A) => Painted(A)

{glossy.paint, drill, dry, error...}

v

in[A] g.paint drill dry out[A] in[A] drill .paint varnish dry out[A] in[A] g.paint drill dry out[A] in[A] drill m.paint varnish dry out[A]

in[A] g.paint drill Iil\[:\] drill m.paint varnish dry out[A] y; dri Im[AJ drill m.paint varnish dry out[A]

Production Cell Controller Update

(€88,ut(A) => (Drilled(A) ~ Painted(A)
A Varnished(A))
dry(A) => Painted(A)
> Drilled(A)

out(A) => (Drilled(A) » Painted(A))
dry(A) => Painted(A)

{glossy.paint, drill, dry, error...}

1

o E'
Transition .
Requirement

= Production line must be empty on update
v i

in[A] g.paint drill dry out{A] lin[A] drill m.paint varnish dry out[A]

{matt.paint, drill, dry, error, ...}

in[A] gpaint drill in[A] drill m.paint varnish dry out[A]

Production Cell Controller Update

(€85ut(A) => (Drilled(A) ~ Painted(A)
A Varnished(A))
dry(A) => Painted(A)
! pai rilled(A)
i i ainted(A)

i {matt.paint, drill, dry, error, ...}

o2 E!
Transition .

Requirement
= Production line must be empty on update

out(A) => (Drilled(A) * Painted(A))
dry(A) => Painted(A)

{glossy.paint, drill, dry, error...}

Transitions must be controlled
out(A) => (Drilled(A) ~ Painted(A)) . Jout(A) = (Drilled(A) Painted(A)
A Varnished(A)
dry(A) => Painted(A) L ayw e raedthy
. att.paint(A) = Drilled(A)
varnish(A) ainted(A)
i {matt.paint, drill, dry, error, ...}

{glossy.paint, drill, dry, error... } 1]

!

Transition .
Requirement
= Production line must be empty on update

"q'
] [} 4 .
. Nin[A] drill m.paint varnish dry out[A]

in[A] g.paint drill

Drop Old Specification
Hot swap Start New Specification

- Transition requirements

| matter!
|
... and must be explicit.

Production Cell Controller Update

om(A) => (Drilled(A) * Painted(A)
1 ~ Varnished(A))
dry(A) => Painted(A)
matt.paint(A Drilled(A)
varnish(A) Painted(A)

out(A) => (Drilled(A) * Painted(A))
dry(A) => Painted(A)

{glossy.paint, drill, dry, error...} i r

i {matt.paint, drill, dry, error, ...}

e E'
Transition .

Requirement
= Production [ine must be empty on update

b

‘ Systems must be guided to safe update states...

...reaching such state should be guaranteed.

13

Transitions must be controlled

out(A) = (Drilled(A) ~ Painted(A)) ARE)=> (ORI BTy
. | A Varnished(A))
dry(A) => Painted(A) ! dry(A) => Painted(A)
. matt.paint(A Drilled(A)
{glossy.paint, drill, dry, error... } varnish(A) => Painted(A)

{matt.paint, drill, dry, error, ...}

Transition .

Requirement
= Production line must be empty on update

-

in[A] g.paint drill Aldrill m.paint varnish dry out[A]

m Drop Old Specification
Hot swap

Start New Specification

[ossy
painter

Transitions must be controlled

out(A) => (Drilled(A) / Painted(A)) | i °““A> => (ailaley)* Py

~ Varnished(A))

dry(A) => Painted(A) 1 dry(A) => Painted(A)

matt.paint(A) rilled(A)

{glossy.paint, drill, dry, error... } B varnish(A Painted(A)

1
{matt.paint, drill, dry, error, ...}

Transition
Requirement

in[A] g.paint drill dry

ossy
painter

Hot swap

hotswap(Cu)

[ossy
painter

Hot swap

Error Handler

ossy
painter

14

Production line empty
p———"

Hot swap

Y
painter

Production line empty

Hot swap

ossy
painter

Productic

Hot swap Stop Old Spec

[ossy
painter

Produc

Hot swap

Matt Varnisher
painter

Hot swap Start New Spec

Matt
painter

Varnisher

Hot swap Start New Spec

Matt Varnisher
painter

15

Transition Requlrements (1/3)

I

= Production line must be empty on update
(StartNewSpec => EmptyProductionLine)

Stop Start
Old New
Spec Spec
E‘
c.f. quiescence

LTransition Requirements (3/3) }

= Partially processed A elements must be discarded.
(InTransition && PartiallyProcessed => Discard before StartNewSpec)

Dynamic Controller Update
- The Full (Abstract) Picture -

Transition Requlrements (2/3)

I

= Production line must not have A elements on update
(StoppedOldSpec && !StartedNewSpec => NoAElements)

Stop Start
Old New
Spec Spec
E.
c.f. Requirements aware quiescence

Dynamic Controller Update
- The Full (Abstract) Picture -

& G
——]
— f—————
I E E

Dynamic Controller Update
- The Full (Abstract) Picture -

16

Dynamic Controller Update Dynamic Controller Update
- The Full (Abstract) Picture - - The Full (Abstract) Picture -

Stop
old
Spec
r G
el
E

] G
—
———
I -

How do we build a controller
« T holds that can do this?
* G holds until StopOldSpec

* G holds until StopOldSpec
* G’ holds after StartNewSpec

* G’ holds after StartNewSpec
« If HotSwap then StartOldSpec, StartNewSpec and Reconfigure » If HotSwap then StartOldSpec, StartNewSpec and Reconfigure
will occur will occur

Controller Update Synthesis Goal for Controuer Update
Synthesis

Find C, with interface]u such that: Find C, with interface Iu such that:

EuHCu ’: Gu E11||Cu ': Gu

. G W stopOldSpec
T

3. O(startNewSpec = 0OG’)
. O(hotSwap = (<OstopOldSpec A
Oreconfigure A OstartNewSpec))

Goal for Controller Update Goal for Controller Update
Synthesis

Find C, with interface]lL such that:

Synthesis

Find C, with interface Iu such that:
Eu”Cu): Gu Eu”Cu ': Gu

. G'W stopOldSpec . G W stopOldSpec
. T . T
3. O(startNewSpec = 0OG’) = 3. O(startNewSpec = 0OG’)
. O(hotSwap = (<OstopOldSpec A . O(hotSwap = (<OstopOldSpec A
Oreconfigure A OstartNewSpec)) Oreconfigure A OstartNewSpec))
1,=1 U I’ U {hotSwap, startNewSpec, stopOldSpec, reconfig.} 1,=1 U I U {hotSwap, startNewSpec, stopOldSpec, reconfig.}

Environment for Controller
Update Synthesis
Eu”Cu ’: Gu

Stop
old

Environment for Controller
Update Synthesis
Eu”Cu ’: Gu

Stop
old
Spec

Reconfigure

R ————
I(V‘II- -

Environment for Controller
Update Synthesis
Eu”Cu ’: Gu

Stop
old

By = (B||C) B hotswap B E B reconfig. B L'

Environment for Controller
Update Synthesis
E11||Cu ': Gy

Stop
old
Spec

E,=E M reconfig. » £

Environment for Controller
Update Synthesis
Eu”Cu ': Gu

Stop Start
0Old New
Spec Spec

N ———
R e

Structurally
equivalent

Goal for Controller Update
Synthesis
E11||Cu ': Gy

1. G W stopOldSpec
2.T
3. O(startNewSpec = 0OG')
4. O(hotSwap = (<OstopOldSpec A
Oreconfigure A OstartNewSpec))

1,=1 U I U {hotSwap, startNewSpec, stopOldSpec, reconfig.}

Ey, = (E||C) » hotswap B E B reconfig. B E’

18

Transitions must be controlled

out(A) => (Drilled(A) * Painted(A)) & i °““A’ => @il sy
. A Varnished(A))
dry(A) => Painted(A) 1 dry(A) => Painted(A)
int(A) => Drilled(A)
(A) => Painted(A)

1 | {matt.paint, drill, dry, error, ...}

Transition .

Requirement
= Production line must be empty on update

=,

Lin[A] drill m.paint varnish dry out[A]

{glossy.paint, drill, dry, error... }

in[A] g.paint drill

Dynamic Controller
Update

* Model-based development of dynamically adaptive
software. Zhang and Cheng. ICSE'16

® Formalizing Correctness Criteria of Dynamic
Updates Derived from Specification Changes.
Panzica La Manna, Greenyer, Ghezzi, Brenner.
SEAMS'13

® Synthesizing Dynamically Updating Controllers from
Changes in Scenario-Based Specifications. Ghezzi,
Greenyer, Panzica La Manna. SEAMS'12

Acknowledgements

-

7

e

Leandro Nahabedian Victor Braberman Nicolas D’Ippolito

F N
=

| | L 4
Shinichi Honiden Jeff Kramer Sebastian Uchitel

Dynamic Controller
Update

*Model-based development of
dynamically adaptive software. Zhang
and Cheng. ICSE'16

® Specifying adaptation semantics.
Zhang and Cheng WADS'05

Dynamic Controller
Update

® General: Supports explicit transition
requirements and reconfiguration

® Assured: System is guaranteed to reach an
updatable state

® Correct: Transition requirements and new
specification are guaranteed by construction

® Fully automated: We use controller synthesis

Summary
* Context
— Environment will change at runtime

— How do we ensure correctness of software?
=> Models@run.time approach enables

decision making when more information

is available
* Tech. Topic: Update of controller

— Software (controller) will be changed at runtime
in response to changes in the environment

— How do we ensure that update of controller is correct?
=> Synthesize updating controller!

19

Thank you

20

