
1

Assured and Correct
Dynamic Update of Controllers

Kenji	Tei
Associate	Professor

National	Institute	of	Informatics,	Japan
tei@nii.ac.jp

http://researchmap.jp/teikenji/?lang=english

FM&MDD	Workshop	at	ICFEM	2016

In	collaboration	with	Leandro	Nahabedian,	Victor	Braberman,	Nicolas	D’Ippolito,	
Shinichi	Honiden,	Jeff	Kramer,	and	Sebastian	Uchitel.

This	work	was	presented	at	SEAMS	2016	and	selected	as	the	best	paper

Kenji	Tei
• Associate	Professor,	
National	Institute	of	Informatics,	Japan

• Research	interests:
– Software	architecture,	MDD
– Self-adaptive	system,	Models@run.time
– IoT /	CPS	/	Smart	city

• Projects
– TopSE:	Education	program	for	software
engineers	in	industry

• http://www.topse.jp/en/
– ClouT/BigClouT:	EU-JP	joint	project	about
smart	cities

• http://bigclout.eu

Summary

• Context
– Environment	will	change	at	runtime
– How	do	we	ensure	correctness	of	software?

• Dynamic	update	of	controller
– Software	(controller)	will	be	changed	at	runtime
in	response	to	changes	in	the	environment

– How	do	we	ensure	that	update	of	controller	is	correct?

=>	Use	models	at	runtime	for	self-adaptation!

=>	Synthesize	updating	controller!

Context

How	does	the	system	adapt	to	changes?

cloud robots

Continuous real-time data

Internet	of	Thingsmobile

Modern	systems	face	changes at	runtime

IaaSUsers software	system

Sudden	
increase	of
user	traffic

Unstable
performance

How	do	we	ensure	correctness	of	software	system?

IoT devices

Device	
failure

Self-adaptive	Systems

Systems	that	are	able	to	modify	their	behavior
and/or structure in	response	to	their	perception
of	the	environment	and	the	system	itself,
and	their	requirements
R.Lemos,	et	al.,	Software	Engineering for	Self-Adaptive Systems:	A	Second Research Roadmap,	SEAMS2011.

2

Why	self-adaptation	is	needed?

How	is	its	correctness	guaranteed?

Requirement	Engineering	Perspective
Zave/Jackson Model

World Machine
shared

phenomena

Requirement

Requirement	Engineering	Perspective

interface

Environment Controller

Crash	among	robots	never	happened	
Item	should	be	eventually	delivered	to	transfer	area
・・・

Goals

monitor

control

Zave/Jackson Model

Requirement	Engineering	Perspective
Zave/Jackson Model

World
(Environment)

Machine
(Controller)

Req.
(Goal)

EC |=G,
Specification of the machine (controller) C
satisfies requirements (goals) G
under the assumed domain properties (Environment) E

E	fills	gap	btw.	C and	R

environment

controller
(software)

goal

control

monitor

Assurance	at	Development	Time

, |=EC G

Kind	of	requirements	guaranteed	depends	on	model	and	method	adopted

environment

controller
(software)

|| |=

goal

control

monitor

Assurance	at	Development	Time

c1 u1

u2

u4

c3
c2

u3
c4

c1

u2

c2

u4

u3
c4

u3

EC

[]	p1
<>	p2

．
．
．

G

3

environment

controller
(software)

|| |=

goal

control

monitor

Assurance	at	Development	Time
-1.	Modeling	Environment-

c1 u1

u2

u4

c3
c2

u3
c4

c1

u2

c2

u4

u3
c4

u3

EC

[]	p1
<>	p2

．
．
．

G

Example	:	Automated	Warehouse

environment

moveToW
moveToE
pickup
putdown

arriveAtW
arriveAtM

pickupSuccess
putSuccess

arriveAtE

pickupFail
putdFail

controllable
actions

monitorable
actions

||E	=	(MAP||W_ROBOT).	

Environment	Modeling

MAP=(arrive[’w] ->	MAP[’w]),
MAP[’w]=(move[’e] ->	arrive[’m] ->	MAP[’m]
|	move[’w] ->	arrive[’w] ->	MAP[’w]
|	putdown ->	putsuccess ->	MAP[’w]
|	pickup ->	pickupfail ->	MAP[’w]),
MAP[’m]=(move[’e] ->	arrive[’e] ->	MAP[’e]
|	move[’w] ->	arrive[’w] ->	MAP[’w]
|	putdown ->	putfail ->	MAP[’m]
|	pickup ->	pickupfail ->	MAP[’m]),
MAP[’e]=(move[’e] ->	arrive[’e] ->	MAP[’e]
|	move[’w] ->	arrive[’m] ->	MAP[’m]
|	putdown ->	putfail ->	MAP[’e]
|	pickup ->	pickupsuccess ->	MAP[’e]).	

W_ROBOT=(arrive[’w] ->	ROBOT),
ROBOT=	(move[Direction] ->	arrive[Locations] ->	ROBOT
|	pickup ->	(pickupsuccess ->	ROBOT	|	pickupfail ->	ROBOT)
|	putdown ->	(putsuccess ->	ROBOT	|	putfail ->	ROBOT)	
|	ended ->	reset ->	ROBOT).	

moveToE
arriveM
moveToE
arriveE

pickupSuccess
pickup

models

environment

controller
(software)

|| |=

goal

control

monitor

Assurance	at	Development	Time
- Construct	Correct	Specification	-

c1 u1

u2

u4

c3
c2

u3
c4

c1

u2

c2

u4

u3
c4

u3

EC

[]	p1
<>	p2

．
．
．

G

Construct	Correct	Controller	Specification

• by	hand
– Developer	specifies	controller,
– checks	correctness	of	it	by	model	checking

• by	automatic	generation
– Tool	generates	correct	specification
for	the	formally	modeled	environment	and	goals

Synthesize	Controller

Generate C from a control problem <E,G>
Discrete	Controller	Synthesis

(C	||	E		|=	G)

Nicolas	D'Ippolito,	et	al.,	Synthesis	of	Live	Behaviour Models,	FSE2010
Nicolas	D‘Ippolito,	et	al.,	Synthesis	of	live	behaviour models	for	fallible	domains,	ICSE2011

4

Synthesis	as	2	Player	Game
- Discrete	Controller	Synthesis-

controller
(software)

control

monitor

Player Enemy

tries	to	satisfy G tries	to	violate G

Is	there	a	winning	strategy	for	the	player?

Synthesis	as	2	Player	Game

• backward	propagation	error	states	for	input

• … for	control

Compute	winning	states

- Discrete	Controller	Synthesis-

Synthesis	as	2	Player	Game
- Discrete	Controller	Synthesis-

Reactive plan computed from set of control state
Extract	winning	strategy

Tool	Support
• MTSA	(Modal	Transition	System	Analyzer)

- Discrete	Controller	Synthesis-

http://mtsa.dc.uba.ar

Theoretical	Complexity

Reachability Safety

Obligation

Persistence Response

Generalized	Reactivity	(1)

Generalized	Reactivity	(k)

Linear	Temporal	Logic

Linear

Linear

Polynomial

Polynomial

EXPTIME

2-EXPTIME

- Discrete	Controller	Synthesis-

environment

controller
(software)

|| |=

goal

control

monitor

Assurance	at	Development	Time
-3.Develop	Software-

c1 u1

u2

u4

c3
c2

u3
c4

c1

u2

c2

u4

u3
c4

u3

EC

[]	p1
<>	p2

．
．
．

G

5

Enact	Model

• Interpret	controller
model

• Map	actions	in	model
to	concrete	implementation

Enactment framework

V.Braberman et al., Controller synthesis: From modelling to enactment, ICSE 2013

environment

controller
(software)

|| |=

goal

control

monitor

Assurance	at	development	time

c1 u1

u2

u4

c3
c2

u3
c4

c1

u2

c2

u4

u3
c4

u3

EC

[]	p1
<>	p2

．
．
．

G

6

environment

EC || |=

goal

G

control

monitor

controller
(software)

Emay	become	invalid	at	runtime

System	may	no	longer	work,
or	may	continue,	but	without	any	assurances

…	->	arriveAtW->	moveToE ->	arriveAtW ->	…
unforseened!!

Environment	is	Uncertain

Sudden	
increase	of		
user	traffic

Unstable	
performance

Mulfunction

Location	
change

Disconnection

Security	
attack

Machine

Obstacles

Slippy
floor

Sensor/Actuator

Cloud / External Service

Physical entity

User

Service	down

Challenge	to	Uncertainty

Software Engineering is founded on a computational
myth that no longer fully serves its purpose: that the
computational environment is predictable and in
principle fully specifiable, and that the systems
that compute in those environments can in principle
be engineered so that they are trouble-free

by David Garlan

D.Garlan, Software Engineering in an Uncertain World, 2010

How	to	Address	Uncertainty

• Do	nothing
• Acknowledge	it
• Delay	key	decisions	
until	more	information	is	available

B.Cheng, A Search-based Approach to Exploring Uncertainty for
Self-Adaptive Systems, 2016

Assuming	More	Realistic	Environment	

...
MAP[’w]=(move[’e] ->	arrive[’m] ->	MAP[’m]
|	move[’w] ->	arrive[’w] ->	MAP[’w]
|	putdown ->	putsuccess ->	MAP[’w]
|	pickup ->	pickupfail ->	MAP[’w]),
...

...
MAP[’w]=(move[’e] ->	(arrive[’m] ->	MAP[’m]

|	arrive[’w] ->	MAP[’w])
|	move[’w] ->	arrive[’w] ->	MAP[’w]
|	putdown ->	putsuccess ->	MAP[’w]
|	pickup ->	pickupfail ->	MAP[’w]),
...

[]!(<pickupsuccess,putsuccess>0&&0pickup)0

[]!(!<pickupsuccess,putsuccess>0&&0putdown)0

[](pickup7>AT[’e])0

[](putdown7>AT[’w])0

[](<ended,reset>07>0(<pickupsuccess,{reset}>0&&0<putsuccess,{reset}>))0

[]((AT[’e]0&&0X(move[’w]))07>0X(!arrive[’e]0W0putsuccess))0

[]((AT[’w]0&&0X(move[’e]))07>0X(!arrive[’w]0W0pickupsuccess))0

[]!(<pickupsuccess,putsuccess>0&&0pickup)0

[]!(!<pickupsuccess,putsuccess>0&&0putdown)0

[](pickup7>AT[’e])0

[](putdown7>AT[’w])0

[](<ended,reset>07>0(<pickupsuccess,{reset}>0&&0<putsuccess,{reset}>))0

[]((AT[’e]0&&0X(move[’w]))07>0X(!arrive[’e]0W0putsuccess))0

[]((AT[’w]0&&0X(move[’e]))07>0X(!arrive[’w]0W0pickupsuccess))0

How	Much	Should	We	Assume?

Eoptimistic Grich

GpoorEpessimistic

・
・

・

high

low

functionality

rich

poor

ris
k

Everything
can	go	wrong

Everything
works	ideally ・

・

・

7

Use models at runtime!

Graceful	Degradation
by	Self-adaptation	with	Models

environment

goal
control

monitor

controller
(software)

adaptation
engine

EC G

E’ G’C’

relaxed
goal

Self-adaptation	by	Models@run.time

System

Monitor

Analyzer Planner

Executer

execution
traces

E

Gi

C
1.	update
env.	model

enactment

C

2.	determine	func.	level

4.	hot-swap
controller

3.	generate
controller

control

Adaptation	Engine

knowledge

cached
controllers

Env.	model
learning

discrete	
controller	
synthesis

enactor

Requirement
relaxing

GN�G1� ����

Key	Techniques

1.	Environment	model	learning	

3.	Controller	synthesis

c1

u2

u4

c3
c2

u3
c4

c1

u2

u4

c3
c2

u3
c4

u3

execution	trace

Model
Learner

Et
Et+1

… ->u2->c2->u3->…

c1

u2

u4

c3
c2

u3
c4

u3

Controller
Synthesizer

Et+1
Mt+1

c1

u2

c2

u4

u3
c4

u3

� p1	�
� p2	�Gt+1

2.	Goal	relaxation
c1

u2

u4

c3
c2

u3
c4

u3

Relaxer

GNG1 ���

Gj

Gi
current
level

Et+1

make	E	neither	optimistic	nor	pessimistic

avoid	unnecessary	degradation

generate	an	assured	controller

4.	Controller	update
swap	controller	to	new	one

�������

����
��

�
��

�

�
��
�

�	���
�

�	����

c1�

u1�

u2�

c2�

u4�

u3�
c4�

u3�

Ct+1

Ct+1

How do we ensure correct
update of controller?

Assured and Correct
Dynamic Update of Controllers

Kenji	Tei
Associate	Professor

National	Institute	of	Informatics,	Japan
tei@nii.ac.jp

http://researchmap.jp/teikenji/?lang=english

In	collaboration	with	Leandro	Nahabedian,	Victor	Braberman,	Nicolas	D’Ippolito,	
Shinichi	Honiden,	Jeff	Kramer,	and	Sebastian	Uchitel.

This	work	was	presented	at	SEAMS	2016	and	selected	as	best	paper

8

Control Theory

Continuous Variable
Dynamic System

Discrete Event
Dynamic System

Control Theory

Control Theory

Continuous Variable
Dynamic System

Discrete Event
Dynamic System

Control Theory

Continuous Variable
Dynamic System

Discrete Event
Dynamic System

events

Component Architecture

commands

Enactor

Ta
rg
et

Sy
st
em

Controller Synthesis
Problem

LTS LTL
Events and
Commands

Discrete	Event	Controller	Synthesis
World MachineInterface

Specification
Environment	assumptions

Goals	(Requirements)

9

Discrete	Event	Controller	Synthesis
World MachineInterface

Specification
Environment	assumptions

Goals	(Requirements)

moveToW
moveToE
pickup
putdown

arriveAtW
arriveAtM

pickupSuccess
putSuccess

arriveAtE

pickupFail
putdFail

Discrete	Event	Controller	Synthesis
World MachineInterface

Specification
Environment	assumptions

Goals	(Requirements)

[]!(<pickupsuccess,putsuccess>0&&0pickup)0

[]!(!<pickupsuccess,putsuccess>0&&0putdown)0

[](pickup7>AT[’e])0

[](putdown7>AT[’w])0

[](<ended,reset>07>0(<pickupsuccess,{reset}>0&&0<putsuccess,{reset}>))0

[]((AT[’e]0&&0X(move[’w]))07>0X(!arrive[’e]0W0putsuccess))0

[]((AT[’w]0&&0X(move[’e]))07>0X(!arrive[’w]0W0pickupsuccess))0

Discrete	Event	Controller	Synthesis
World MachineInterface

Specification
Environment	assumptions

Goals	(Requirements)

Discrete	Event	Controller	Synthesis
World MachineInterface

Specification
Environment	assumptions

Goals	(Requirements)

Environment
Interface
Goals

Algorithm
Specification
(of	controller)
with	interface	I

Build	a	strategy	for	the	controller	that	always	beats	its	adversary

xI

Controller Synthesis
Problem

Control Theory

Continuous Variable
Dynamic System

Discrete Event
Dynamic System

events

Component Architecture

commands

Enactor

Ta
rg
et

Sy
st
em

10

events

Component Architecture

commands

Enactor

Ta
rg
et

Sy
st
em

Control Theory

Continuous Variable
Dynamic System

Discrete Event
Dynamic System

What if I need to change my controller at runtime?

events

Component Architecture

commands

Enactor

Ta
rg
et

Sy
st
em

Control
Problem
Solver

Goal Model
Manager

exception
controller
(C')

controller
(C')

problem
(G',I',E')

Control Theory

Continuous Variable
Dynamic System

Discrete Event
Dynamic System

Monitor

Goal Model
(System state +
System Goals +
Environment
Assumptions)

events

Component Architecture

commands

Enactor

Ta
rg
et

Sy
st
em

Control
Problem
Solver

Goal Model
Manager

exception
controller
(C')

controller
(C')

problem
(G',I',E')

Control Theory

Continuous Variable
Dynamic System

Discrete Event
Dynamic System

Monitor

Goal Model
(System state +
System Goals +
Environment
Assumptions)

events

Component Architecture

commands

Enactor

Ta
rg
et

Sy
st
em

Control
Problem
Solver

Goal Model
Manager

exception
controller
(C')

controller
(C')

problem
(G',I',E')

Control Theory

Continuous Variable
Dynamic System

Discrete Event
Dynamic System

Monitor

Goal Model
(System state +
System Goals +
Environment
Assumptions)

Monitor

AnalyzePlan

Execute

Knowledge

events

Component Architecture

commands

Enactor

Ta
rg
et

Sy
st
em

Control
Problem
Solver

Goal Model
Manager

exception
controller
(C')

controller
(C')

problem
(G',I',E')

Control Theory

Continuous Variable
Dynamic System

Discrete Event
Dynamic System

Monitor

Goal Model
(System state +
System Goals +
Environment
Assumptions)

What kind of transition
properties can we

ensure?

What happens when you
change (a discrete event)

controller at runtime?

11

Machine
Raw A elements

Raw B elements

Processed A elements

Processed B elements

Tool 1 Tool 2 Tool 3 Tool 4

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

Production Cell Controller
G

{glossy.paint, drill, dry, error…}I

E

¬Drilled ¬Drilled Drilled

drill ok

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

Production Cell Controller
G

{glossy.paint, drill, dry, error…}I

E

¬Drilled ¬Drilled Drilled

drill ok

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

Production Cell Controller

in[A] drillg.paint dry out[A]

G

{glossy.paint, drill, dry, error…}I

E

¬Drilled ¬Drilled Drilled

drill ok

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

Production Cell Controller

in[A] drillg.paint dry out[A]

G

{glossy.paint, drill, dry, error…}I

E

¬Drilled ¬Drilled Drilled

drill ok

….and then something unexpected at design time
happens at runtime…

12

Production Cell Controller Update
out(A) => (Drilled(A) ^ Painted(A)

^ Varnished(A))
dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}

G’

I’

in[A] g.paint dry out[A]drill out[A]

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

E'

Production Cell Controller Update
out(A) => (Drilled(A) ^ Painted(A)

^ Varnished(A))
dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}

G’

I’

in[A] g.paint dry out[A]drill out[A]

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

E'

Production Cell Controller Update
out(A) => (Drilled(A) ^ Painted(A)

^ Varnished(A))
dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}

G’

I’

in[A] g.paint dry out[A]drill out[A]

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

E'

in[A] drill dry out[A]m.paint varnish

Production Cell Controller Update
out(A) => (Drilled(A) ^ Painted(A)

^ Varnished(A))
dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}

G’

I’

in[A] g.paint dry out[A]drill out[A]

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

E'

in[A] drill dry out[A]m.paint varnish

in[A] drillg.paint

Production Cell Controller Update
out(A) => (Drilled(A) ^ Painted(A)

^ Varnished(A))
dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}

G’

I’

in[A] g.paint dry out[A]drill out[A]

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

E'

in[A] drill dry out[A]m.paint varnish

in[A] drillg.paint in[A] drill m.paint dryvarnish out[A]

Production Cell Controller Update
out(A) => (Drilled(A) ^ Painted(A)

^ Varnished(A))
dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}

G’

I’

in[A] g.paint dry out[A]drill out[A]

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

E'

in[A] drill dry out[A]m.paint varnish

in[A] drillg.paint in[A] drill m.paint dryvarnish out[A]
✘

✔

13

Production Cell Controller Update
out(A) => (Drilled(A) ^ Painted(A)

^ Varnished(A))
dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}

G’

I’

in[A] g.paint dry out[A]drill out[A]

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

E'

in[A] drill dry out[A]m.paint varnish

in[A] drillg.paint in[A] drill m.paint dryvarnish out[A]
✘

✔
- Production line must be empty on update

Transition
Requirement

Transition requirements
matter!

… and must be explicit.

Production Cell Controller Update
out(A) => (Drilled(A) ^ Painted(A)

^ Varnished(A))
dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}

G’

I’

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

E'

- Production line must be empty on update

Transition
Requirement

Production Cell Controller Update
out(A) => (Drilled(A) ^ Painted(A)

^ Varnished(A))
dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}

G’

I’

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

E'

- Production line must be empty on update

Transition
Requirement

Transitions must be controlled

in[A] drillg.paint

Hot swap

in[A] drill m.paint dryvarnish

Drop Old Specification
Start New Specification

out[A]

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

- Production line must be empty on update

Transition
Requirement

E'

out(A) => (Drilled(A) ^ Painted(A)
^ Varnished(A))

dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}
I’

G’

Systems must be guided to safe update states…

…reaching such state should be guaranteed.

14

Transitions must be controlled

in[A] drillg.paint

Hot swap

in[A] drill m.paint dryvarnish

Drop Old Specification
Start New Specification

out[A]

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

- Production line must be empty on update

Transition
Requirement

E'

out(A) => (Drilled(A) ^ Painted(A)
^ Varnished(A))

dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}
I’

G’

Transitions must be controlled

in[A] drillg.paint in[A] drill m.paint dryvarnish out[A]

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

- Production line must be empty on update

Transition
Requirement

E'

out(A) => (Drilled(A) ^ Painted(A)
^ Varnished(A))

dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}
I’

G’

CC

Glossy
painter

DrillerDryer
Error Handler

I/O Handler

G’G
T

E E’

CC

Glossy
painter

DrillerDryer
Error Handler

I/O Handler

G’G
T

E E’

CC

Glossy
painter

DrillerDryer
Error Handler

I/O Handler

G’G
T

E E’

Hot swap

hotswap(Cu)

CCu

Glossy
painter

DrillerDryer
Error Handler

I/O Handler

G’G
T

E E’

Hot swap

15

CCu

Glossy
painter

DrillerDryer
Error Handler

I/O Handler

G’G

E E’

Hot swap

Production line empty

CCu

Glossy
painter

DrillerDryer
Error Handler

I/O Handler

G’G

E E’

Hot swap Stop Old Spec

Production line empty

stopOldSpec

CCu

Glossy
painter

DrillerDryer
Error Handler

I/O Handler

G’G

E E’

Hot swap Stop Old Spec

Production line empty

CCu

DrillerDryer
Error Handler

I/O Handler

G’G

E E’

Hot swap

Production line empty

ReconfigureStop Old SpecStop Old Spec

Matt
painter

Varnisher

CCu

DrillerDryer
Error Handler

I/O Handler

Matt
painter

Varnisher

G’G

E E’

Hot swap

Production line empty

ReconfigureStop Old Spec Start New Spec

startNewSpec

CCu

DrillerDryer
Error Handler

I/O Handler

Matt
painter

Varnisher

G’G

E E’

Hot swap ReconfigureStop Old Spec

Production line empty

Start New Spec

16

- Production line must be empty on update
(StartNewSpec => EmptyProductionLine)

Transition Requirements (1/3)

G’G

E E’

Hot
Swap

Start
New
Spec

Stop
Old
Spec

Reconfigure
c.f. quiescence

- Production line must not have A elements on update
(StoppedOldSpec && !StartedNewSpec => NoAElements)

Transition Requirements (2/3)

c.f. Requirements aware quiescence

G’G

E E’

Hot
Swap

Start
New
Spec

Stop
Old
Spec

Reconfigure

- Partially processed A elements must be discarded.
(InTransition && PartiallyProcessed => Discard before StartNewSpec)

Transition Requirements (3/3)

G’G ¬G ^ ¬G'

E E’

Stop
Old
Spec

Hot
Swap

Start
New
Spec

Reconfigure

G’G

Dynamic Controller Update
- The Full (Abstract) Picture -

E E’

Hot
Swap

Start
New
Spec

Stop
Old
Spec

Reconfigure

G’G

Dynamic Controller Update
- The Full (Abstract) Picture -

E E’

Hot
Swap

Start
New
Spec

Stop
Old
Spec

Reconfigure

G’G

Dynamic Controller Update
- The Full (Abstract) Picture -

E E’

Hot
Swap

Start
New
Spec

Stop
Old
Spec

Reconfigure

17

Dynamic Controller Update
- The Full (Abstract) Picture -

• T holds
• G holds until StopOldSpec
• G’ holds after StartNewSpec
• If HotSwap then StartOldSpec, StartNewSpec and Reconfigure

will occur

G’G T

E E’

Stop
Old
Spec

Hot
Swap

Start
New
Spec

Reconfigure

Dynamic Controller Update
- The Full (Abstract) Picture -

• T holds
• G holds until StopOldSpec
• G’ holds after StartNewSpec
• If HotSwap then StartOldSpec, StartNewSpec and Reconfigure

will occur

G’G T

E E’

Stop
Old
Spec

Hot
Swap

Start
New
Spec

Reconfigure

How do we build a controller
that can do this?

Find with interface such that:

Controller Update Synthesis
Find with interface such that:

Goal for Controller Update
Synthesis

Gu =

Find with interface such that:

Goal for Controller Update
Synthesis

Iu= I ∪ I’ ∪ {hotSwap, startNewSpec, stopOldSpec, reconfig.}

Gu =

Find with interface such that:

Goal for Controller Update
Synthesis

Iu= I ∪ I’ ∪ {hotSwap, startNewSpec, stopOldSpec, reconfig.}

Gu =

18

Environment for Controller
Update Synthesis

G’G

E E’

Hot
Swap

Reconfigure

C Cu

Stop
Old
Spec

Start
New
Spec

T

Environment for Controller
Update Synthesis

G’G

E E’

Hot
Swap

Reconfigure

C Cu

Stop
Old
Spec

Start
New
Spec

T

Environment for Controller
Update Synthesis

G’G

E E’

Hot
Swap

Reconfigure

C Cu

Stop
Old
Spec

Start
New
Spec

T

Environment for Controller
Update Synthesis

G’G

E E’

Hot
Swap

Reconfigure

C Cu

Stop
Old
Spec

Start
New
Spec

Structurally
equivalent

T

Environment for Controller
Update Synthesis

G’G

E E’

Hot
Swap

Reconfigure

C Cu

Stop
Old
Spec

Start
New
Spec

T

Goal for Controller Update
Synthesis

Gu =

Iu= I ∪ I’ ∪ {hotSwap, startNewSpec, stopOldSpec, reconfig.}

19

Transitions must be controlled

in[A] drillg.paint in[A] drill m.paint dryvarnish out[A]

out(A) => (Drilled(A) ^ Painted(A))
dry(A) => Painted(A)

G

{glossy.paint, drill, dry, error…}I

E

- Production line must be empty on update

Transition
Requirement

E'

out(A) => (Drilled(A) ^ Painted(A)
^ Varnished(A))

dry(A) => Painted(A)
matt.paint(A) => Drilled(A)
varnish(A) => Painted(A)

{matt.paint, drill, dry, error, …}
I’

G’

Dynamic Controller
Update

•Model-based development of
dynamically adaptive software. Zhang
and Cheng. ICSE'16
•Specifying adaptation semantics.

Zhang and Cheng WADS'05

Dynamic Controller
Update

•Model-based development of dynamically adaptive
software. Zhang and Cheng. ICSE'16• Specifying adaptation semantics. Zhang and Cheng
WADS'05• Formalizing Correctness Criteria of Dynamic
Updates Derived from Specification Changes.
Panzica La Manna, Greenyer, Ghezzi, Brenner.
SEAMS'13• Synthesizing Dynamically Updating Controllers from
Changes in Scenario-Based Specifications. Ghezzi,
Greenyer, Panzica La Manna. SEAMS'12

Dynamic Controller
Update

•General: Supports explicit transition
requirements and reconfiguration

•Assured: System is guaranteed to reach an
updatable state

•Correct: Transition requirements and new
specification are guaranteed by construction

• Fully automated: We use controller synthesis

Acknowledgements

Leandro Nahabedian Victor Braberman Nicolas D’Ippolito

Sebastian UchitelJeff KramerShinichi Honiden

Summary
• Context

– Environment	will	change	at	runtime
– How	do	we	ensure	correctness	of	software?

• Tech.	Topic:	Update	of	controller
– Software	(controller)	will	be	changed	at	runtime
in	response	to	changes	in	the	environment

– How	do	we	ensure	that	update	of	controller	is	correct?

=>	Models@run.time approach	enables
decision	making	when	more	information
is	available

=>	Synthesize	updating	controller!

20

Thank you

