
Our Experience of Graph Golf Competition

Teruaki Kitasuka, Masahiro Iida
Graduate School of Science and Technology
Kumamoto University

Cube; k=3, l=1.71 (Gap 9.1%)

Möbius loop; k=2, l=1.57 (Gap 0.0%)

Graph Golf

The Order/degree Problem Competition

Find a graph that has smallest diameter & average shortest path length given an order and a degree.

News Best solutions Update 2015-10-06 2015-10-16: Submission Order n Degree closed! Finalists will be 16 64 256 4096 10000 notified by 2015-10-20 8 / 5.636 13 / 9.787 2015-10-06: Added 2 new 3 / 2.200 5/3.770 15 / 11.122 3 solutions! This is the final 0.000% 0.211% 0.861% 2.928% 3.225% update before the 3 / 1.750 6 / 4.134 9 / 6.756 4 / 2.869 10 / 7.601 deadline 4 $0.962\%^{2}$ 0.417% 1.065% 4.423% 3.480% 2015-09-28: Added 3 new • Our submission\$15-09-21: Added 5 new 16 N/A 0.000% 8.768% 1.072% 8.026% • 1st step: Writing small graphs by hands 0.000% 8.697% 8.976% 0.624% • 2nd step: Constructing better graph for large

- 3rd step: Local optimization by 2-OPT ASPLES
- After deadline of the competition

Motivation

solutions!

Show complete list

Our submissions

Average shortest path length (1)

degree	Ord	der <i>n</i>									
d	16				64	25	6			409	6
3		00 (July est know		2)							
4		50 (July est know		2)							
16	(N/A	.)						Oct. 15 best kno		(3.254	26873 best known)
23		Diamet	er k (lo	wer	boun	d; bes	t knowr	1)]		2032 (Oct. 15, *3) 8676 best known)
60		degree	order	n			_			2.29	0 5265 (Oct. 15, *1)
		d	16	64	2	256	4096	10000			05275 (Aug. 28)
64		3	3; 3	5;	5 7	7; 8	11; 13	12;15			
64		4	2; 3	4;	4 5	5; 6	7; 9	8; 10			2214 (Oct. 15, *1)
		16	N/A	2;	2 2	2; 3	4; 4	4; 5		2.24	2228 (Sep. 4)
		23	N/A	2;	2 2	2; 2	3; 4	3; 4		Note:	*1: best solution

N/A

N/A

64

2; 2

N/A

2; 2

2; 2

3; 3

2; 3

3; 3

3;3

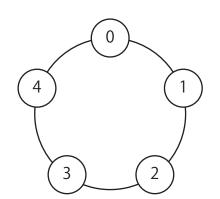
2.902032 (Oct. 15, *3) (> 2.88676 best known)	3.201133 (Oct. 15, *3) (>3.200897 best known)
2.295265 (Oct. 15, *1) 2.295275 (Aug. 28)	(2.650399 best known)
2.242214 (Oct. 15, *1) 2.242228 (Sep. 4)	(2.610117 best known)

10000

(3.62562128 best known)

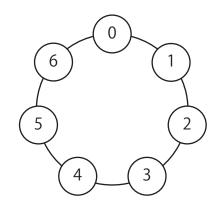
*1: best solution?

*2: best but late submission


*3: our best but worse

Dec. 8-11, 2015,

1st step: Writing small graphs by hands (1/3) Diameter and Cycles

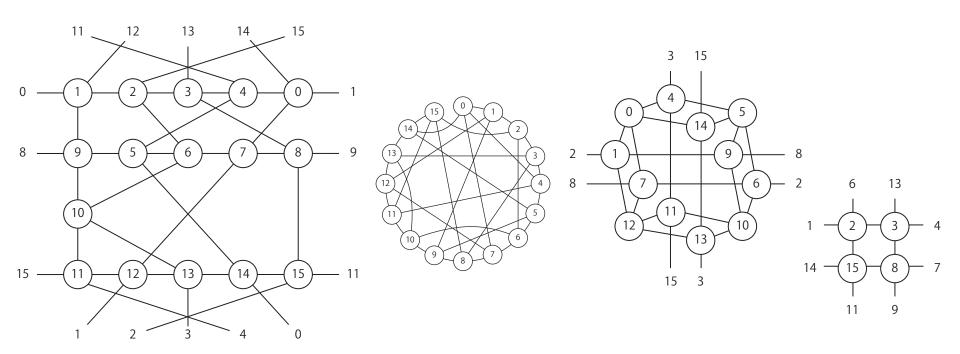

Diameter k = 3

- 5 cycle is the best, when degree d = 2
- 4 or less cycles are probably redundant, when degree d > 2

Diameter k = 4


- 7 cycle is the best, when degree d = 2
- 6 or less cycles are probably redundant, when degree d > 2

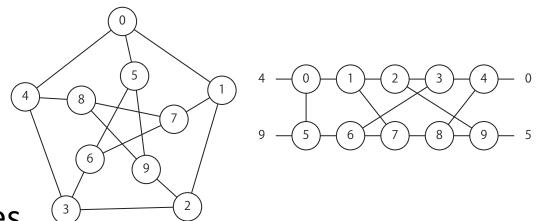
Note:

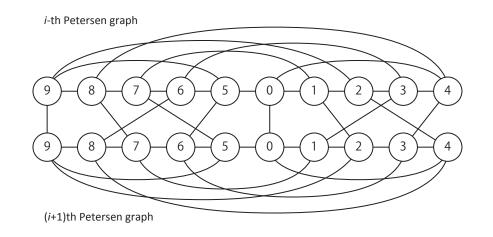

- Petersen graph: n=10, d=3; (3, 5)-cage. McGee graph: n=24, d=3; (3, 7)-cage
- After competition, we were found out the names of Petersen graph and McGee graph.

1st step: Writing small graphs by hands (2/3) 16 nodes, degree 3, k=3, l=2.200

 No 4 cycles ... 4 cycles contains redundant path for k = 2 graph.

1st step: Writing small graphs by hands (3/3) 16 nodes, degree 4, k=3, l=1.750

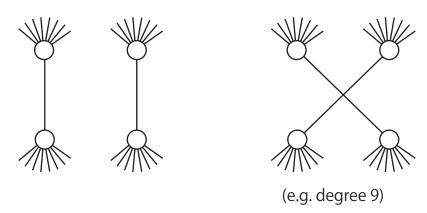



• # of 4 cycles: 5 (5-6-10-9, 10-11-12-13, 0-4-5-14, 0-1-12-7, 2-3-8-15)

2nd step: Constructing better graph for larger cases (1/2) Graphs of k=3

• Problems:

- \sqrt{n} =256, d=16
- \sqrt{n} =4096, d=60 and 64
- \sqrt{n} =10000, d=60 and 64
- Algorithm: adding edges greedily, to increase # of 5 cycles
- Base graph: (n / 10)
 Petersen graphs are connected

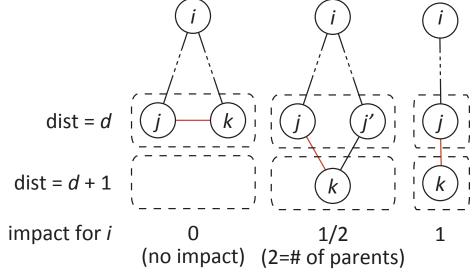


2nd step: Constructing better graph for larger cases (2/2) Graphs of k=4

• Problems:

- \sqrt{n} =4096, d=23
- \sqrt{n} =10000, d=23
- Algorithm: adding edges to increase # of 7 cycles greedily
- Base graph: McGee graphs or line graph

3rd step: Local optimization of graphs (1/2) 2-OPT (flip two edges)



- Keeping flipped graph, if flipped graph has better diameter / ASPL
- Question: which pair of edges is a better pair to shorten ASPL?
- An answer: edge impact or importance (see the next slide)

3rd step: Local optimization of graphs (2/2) Edge Importance for fast 2-OPT

• Rough def.: an edge (j, k) has a positive value for node i, if j and k is <u>not</u> the same distance from i. Importance of edge (j, k) is the sum of such values for all node i ($i \neq j$

and k).

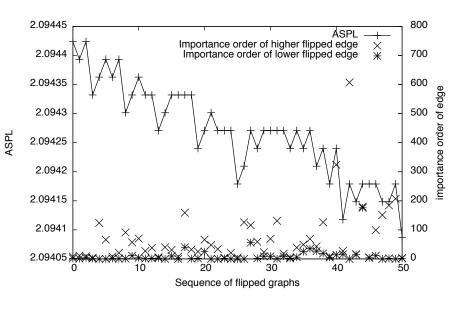
 Calculate importance for each edge (j, k), sort edges, and try flip of a pair of edges which has smaller importance.

After deadline of the competition Table of our updates (ASPL 1)

k(lower bound; best known)					
degree	order <i>n</i>				
d	256	4096	10000		
16	2; 3	4; 4	4; 5		
23	2; 2	3; 4	3; 4		
60	2; 2	3; 3	3; 3		
64	2; 2	2; 3	3; 3		

degree	Order n		64 2; 2 2; 3 3; 3
d	256	4096	10000
16	2.09274 (2-OPT, Dec. 9, *3) 2.09751 (2-OPT, Oct. 15) (< 2.09262 best known)	3.286563 (Const., Oct. 1, *3) (> 3.252718 best known)	(3.625174 best known)
23	(1.90980 best, no gap)	2.900162 (2-OPT, Dec. 9, *3) 2.902032 (2-OPT, Oct. 15) (> 2.886137 best known)	3.201116 (2-OPT, Dec. 8, *3) 3.201121 (Const., Nov. 12) (> 3.200257 best known)
60	(1.76470 random, no gap)	2.295241 (2-OPT, Dec. 7, *1) 2.295265 (2-OPT, Oct. 15) 2.295275 (Const., Aug. 28)	2.648979 (2-OPT, Nov. 8 , *1) 2.648980 (Const., Nov. 2) (< 2.650157 best known)
64	Note: *1: best solution?	2.242193 (2-OPT, Dec. 7, *1) 2.242214 (2-OPT, Oct. 15) 2.242228 (Const., Sep. 4)	2.611305 (2-OPT, Dec. 9, *3) 2.611310 (Const. Oct. 26, *3) (> 2.609927 best known)
	*3: our best but worse		

Dec. 8-11, 201!


Conclusion

- Fortunately, we found some smaller graphs than others.
- We fully <u>enjoyed</u> as same as our research, from the middle of July. (Some jobs might be suspended or delayed. It has been hard to stop thinking, even after deadline)
- Larger problems consumed <u>long time</u> of computers and ourselves.
- We used several PCs. (a small PC, Mac mini, and a department's lack-mount server)
- We are not so young, but tried, and tired.
- Latest graph at http://www.cs.kumamoto-u.ac.jp/ ~kitasuka/tmp/graphgolf-20151209.tgz

Appendix

Unit of ASPL (known experimentally)

Order n	unit of ASPL	degree
16	?	
64	?	
256	3.1*10^{-5} =0.00003063725490	<i>d</i> =16
4096	1.2*10^{-7} =0.00000011923840	<i>d</i> =23, 60, 64
10000	2.0*10^{-8} =0.00000002000200	<i>d</i> =23, 60, 64

An example 2-OPT sequence (n=256, d=16, l=2.09424–2.09409)