## A Heuristic Method of Generating Diameter 3 Graphs for Order/Degree Problem

Teruaki Kitasuka and Masahiro Iida
Graduate School of Science and Technology
Kumamoto University







### Graph Golf: Order/Degree (OD) Problem

- Find a graph that has smallest diameter & average shortest path length (ASPL) for a given order and degree
  - ✓ Find a better topology for various applications
  - ✓ Other problem: diameter/degree (DD) problem



#### Graph Golf

The Order/degree Problem Competition

Find a graph that has smallest diameter & average shortest path length given an order and a degree.

- Our results, inc. graphs found after competition
- Observation of Small Order Graphs
- Heuristic Algorithm for Large Diameter 3 Graphs
  - ✓ Policy, Create a Base Graph G₀, Greedily Add Edges One by One to G₀
- A Technique of 2-Opt Local Search
  - ✓ Edge Importance Function, Order of Local Search
- Conclusion

#### **Best solutions**

Update 2015-10-06

| Degree  | Order n                                                                             |                                  |                                  |                                   |                       |  |  |
|---------|-------------------------------------------------------------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------|--|--|
| d       | 16                                                                                  | 64                               | 256                              | 4096                              | 10000                 |  |  |
| 3       | 3 / 2.200<br>0.000%                                                                 | 5 / 3.770<br>0.211%              | 8 / 5.636<br>0.861%              | 13 / 9.787<br>2.928%              | 15 / 11.122<br>3.225% |  |  |
| 4       | 3 / 1.750<br>0.962% <sup>2</sup>                                                    | 4 / 2.869<br>0.417%              | 6 / 4.134<br>1.065%              | 9 / 6.756<br>4.423%               | 10 / 7.601<br>3.480%  |  |  |
| 16      | N/A                                                                                 | 2 / 1.746<br>0.000%              | 3 / 2.093<br>8.026% <sup>2</sup> | 4 / 3.254<br>8.768%               | 5 / 3.626<br>1.072%   |  |  |
| 23      | N/A                                                                                 | 2 / 1.635<br>0.000% <sup>1</sup> | 2 / 1.910<br>0.000%              | 4 / 2.887<br>0.752%               | 4 / 3.201<br>8.697%   |  |  |
| 60      | N/A                                                                                 | 2 / 1.048<br>0.000% <sup>1</sup> | 2 / 1.765<br>0.000% <sup>1</sup> | 3 / 2.295<br>8.976%               | 3 / 2.650<br>0.624%   |  |  |
| 64      | N/A                                                                                 | N/A                              | 2 / 1.749<br>0.000% <sup>1</sup> | 3 / 2.242<br>12.994% <sup>2</sup> | 3 / 2.610<br>1.012%   |  |  |
| Legend: | Diameter / Average shortest path length (ASPL) Gap from the lower bound of ASPL (%) |                                  |                                  |                                   |                       |  |  |
|         |                                                                                     |                                  |                                  |                                   |                       |  |  |

1. A random graph is optimal. Submissions with this size will not be awarded.

2. There are no graphs with this size that satisfy the lower bound of diameter and ASPL [Erdös 1980].

Show complete list

Notes:

# Our results, including graphs found after competition Average shortest path length (I)

| degree | Order                                                    | Order n                         |                      |                      |                        |                        |                         |                                          |                                                 |
|--------|----------------------------------------------------------|---------------------------------|----------------------|----------------------|------------------------|------------------------|-------------------------|------------------------------------------|-------------------------------------------------|
| d      | 16                                                       |                                 | 64                   | 256                  |                        |                        | 4096                    | 10000                                    |                                                 |
| 3      | 2.200 (<br>( = best kn                                   |                                 |                      |                      |                        |                        |                         |                                          |                                                 |
| 4      | ,                                                        | 750 (July, *2)<br>= best known) |                      |                      |                        |                        |                         |                                          |                                                 |
| 16     | 2.09069 (After c, * ( < 2.09274 best known)              |                                 |                      |                      | •                      | •                      | (3.25426873 best known) | (3.62562128 best known)                  |                                                 |
| 23     |                                                          |                                 |                      |                      | ,                      |                        |                         |                                          |                                                 |
| 60     | Diameter $k$ (lower bound; best known)  degree order $n$ |                                 |                      |                      | 1)                     |                        | 2.295216 (After c., *1) | 2.648977 (After c., *3)                  |                                                 |
|        | d                                                        | 16                              | 64                   | 256                  | 4096                   | 10000                  |                         | 2.295275 (Aug.)                          | 2.648980 (After c.) (2.650399 best known)       |
| 64     | 3<br>4<br>16                                             | 3; 3<br>2; 3<br>N/A             | 5; 5<br>4; 4<br>2; 2 | 7; 8<br>5; 6<br>2; 3 | 11; 13<br>7; 9<br>4; 4 | 12;15<br>8; 10<br>4; 5 | _                       | 2.242170 (Oct.,, *1)<br>2.242228 (Sep.,) | 2.611310 (After c.)<br>( > 2.610117 best known) |
|        | <u> </u>                                                 | 111/7                           | 4, 4                 | 2, 3                 | <del>- , -  </del>     | 7, 3                   | _                       |                                          | _                                               |

Aug. 31-Sep. 2,

23

60

N/A

N/A

N/A

2; 2

N/A

2; 2

2; 2

2; 2

3; 4

3; 3

2; 3

3; 4

3; 3

3; 3

Note: \*1: best solution in comp.

\*2: best but late submission

\*3: best after competition

# Table of the Orders of the Largest Known Graphs for the Degree Diameter Problem

| d / k | 2  | 3   | 4    | 5    | 6     | 7      | 8      | 9       | 10       |
|-------|----|-----|------|------|-------|--------|--------|---------|----------|
| 3     | 10 | 20  | 38   | 70   | 132   | 196    | 336    | 600     | 1250     |
| 4     | 15 | 41  | 98   | 364  | 740   | 1320   | 3243   | 7575    | 17703    |
| 5     | 24 | 72  | 212  | 624  | 2772  | 5516   | 17030  | 57840   | 187056   |
| 6     | 32 | 111 | 390  | 1404 | 7917  | 19383  | 76461  | 331387  | 1253615  |
| 7     | 50 | 168 | 672  | 2756 | 11988 | 52768  | 249660 | 1223050 | 6007230  |
| 8     | 57 | 253 | 1100 | 5060 | 39672 | 131137 | 734820 | 4243100 | 24897161 |

d: degree, k: diameter

The Petersen and Hoffman–Singleton graphs. Moore bound (Optimal)
Other non Moore but optimal graphs

from Combinatorics Wiki

http://moorebound.indstate.edu/wiki/

The\_Degree\_Diameter\_Problem\_for\_General\_Graphs

### General Issue of Diameter and Cycles

Diameter k = 2 graphs with degree d

- *d* = 2: a 5-node cycle
- d = 3: Petersen graph (n = 10)
- d = 7: Hoffman-Singleton graph (n = 50)
- *d* > 3: (4 or less)-node cycles are probably redundant

Diameter k = 3 graphs with degree d

- d = 2: 7-node cycle is the best
- d > 2: (6 or less)-node cycles are probably redundant

So, try to make 7-node cycles. However, ...





$$n = 16$$
,  $d = 3$  graph has  $k = 3$ ,  $l = 2.200$ 



- Many 5-node cycles and no 4-node cycles.
- We will try to increase # of 5-node cycles (pentagons).

$$n = 16$$
,  $d = 4$  graph has  $k = 3$ ,  $l = 1.750$ 



- Many 5-node cycles.
- # of 4-node cycles is 5 (5-6-10-9, 10-11-12-13, 0-4-5-14, 0-1-12-7, 2-3-8-15)

### Targeted Graphs of Diameter k = 3

- n = 256, d = 16: k = 3 (Moore bound = 2)
- n = 4096,  $d = \underline{60}$  and  $\underline{64}$ : k = 3 (Moore bound = 3 and 2)
- n = 10000,  $d = \underline{60}$  and 64: k = 3 (Moore bound = 3)

| degree | Order n                                                     |                                            |                                                                         |  |  |  |  |
|--------|-------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| d      | 256                                                         | 4096                                       | 10000                                                                   |  |  |  |  |
| 16     | 2.09069 (After c, *3)<br>2.12757<br>( < 2.09274 best known) |                                            |                                                                         |  |  |  |  |
| 60     |                                                             | 2.295216 (After c., *1)<br>2.295275 (Aug.) | 2.648977 (After c., *3)<br>2.648980 (After c.)<br>(2.650399 best known) |  |  |  |  |
| 64     |                                                             | 2.242170 (Oct.,, *1)<br>2.242228 (Sep.,)   | 2.611310 (After c.) ( > 2.610117 best known)                            |  |  |  |  |

### Outline of Heuristic Algorithm

- 1. Create a Base graph  $G_0$ : for targeted diameter k, connect small order graphs of diameter is k-1. For k=3, Petersen graph (diameter = 2) is the small graph.
- 2. Greedily Add Edges One by One to  $G_0$ : to increase the number of (2k-1)-node cycles (pentagons for k = 3).





### Step 1: Create a Base graph $G_0$ (1/2)

- For targeted diameter k = 3, connect Petersen graphs (diameter is 2).
- *n* = 10000: 1000 Petersen graphs (diameter = 2) are connected.
- n= 4096: (409 6) Petersen graphs and six 11-node graphs are connected.





### Step 1: Create a Base graph $G_0$ (2/2)

- Each small (Petersen) graph is connected with two adjacent graphs.
- When the small graphs are numbered 1, 2, 3, ..., m  $(m = \lfloor n/10 \rfloor)$ , i-th and (i+1)-th graphs are connected, for i = 1, ..., m 1.
- A node in *i*-th graph is connected with a node in (*i*+1)-th graph.
- Finally, each node has five edges at most.



### Step 2: Greedily Add Edges to $G_0$ (1/2)

#### Our policies to add an edge:

- Select a node (i) which has the smallest degree for one side of new edge.
- Select a node (j) for another side of new edge, to increase the number of pentagons.
- No track back.

```
Algorithm 3 Greedily add edges, one by one to G_0
 1: procedure ADDEDGES(n, d, G_0)
       G \leftarrow G_0
       while edge can be added do
 3:
           Select a node i from the smallest degree nodes
           Compute node set J such that d(i, j) > 2
           for each node j \in J do
               p_1(j) = \text{COUNTPATHS}(i, j)
              p_2(i) = 0
               for each k \in j's neighbors do
                  if COUNTPATHS(i, k) > p_2(j) then
10:
                      p_2(j) = \text{COUNTPATHS}(i, k)
11:
                  end if
12:
               end for
13:
           end for
14:
           Select j \in J that satisfies conditions (1) and (2)
15:
           Add an edge i-j to graph G
16:
       end while
17:
       If degree of several nodes are less than d, add several
18:
    edges between them
19: end procedure
20: function COUNTPATHS(i, j)
       p = |D_1(i) \cap D_2(j)| + |D_2(i) \cap D_1(j)|
                                                   ▶ Roughly
    count the number of paths with distance 3 between node
    i and j, for graph G
22: end function
```

### Step 2: Greedily Add Edges to $G_0$ (2/2)

To increase the number of pentagons.

- CountPaths function roughly counts the number of path of length 3 for a given pair of nodes.
- For each candidate of j
   and each neighbor k of j,
   compute CountPaths(i, k)
   and select j with a k which
   has the largest value of
   CountPaths.

```
Algorithm 3 Greedily add edges, one by one to G_0
 1: procedure ADDEDGES(n, d, G_0)
       G \leftarrow G_0
       while edge can be added do
           Select a node i from the smallest degree nodes
           Compute node set J such that d(i, j) > 2
           for each node j \in J do
              p_1(j) = \text{COUNTPATHS}(i, j)
              p_2(i) = 0
               for each k \in j's neighbors do
                  if COUNTPATHS(i, k) > p_2(j) then
10:
                      p_2(j) = \text{COUNTPATHS}(i, k)
11:
                  end if
12:
               end for
13:
           end for
14:
           Select j \in J that satisfies conditions (1) and (2)
15:
           Add an edge i-j to graph G
16:
       end while
17:
       If degree of several nodes are less than d, add several
    edges between them
19: end procedure
20: function COUNTPATHS(i, j)
       p = |D_1(i) \cap D_2(j)| + |D_2(i) \cap D_1(j)|
                                                  ▶ Roughly
    count the number of paths with distance 3 between node
    i and j, for graph G
22: end function
```

### Targeted Graphs of Diameter k = 3

- n = 256, d = 16: k = 3 (Moore bound = 2)
- n = 4096,  $d = \underline{60}$  and  $\underline{64}$ : k = 3 (Moore bound = 3 and 2)
- n = 10000,  $d = \underline{60}$  and 64: k = 3 (Moore bound = 3)

| degree | Order n                                                     |                                            |                                                                         |  |  |  |  |
|--------|-------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| d      | 256                                                         | 4096                                       | 10000                                                                   |  |  |  |  |
| 16     | 2.09069 (After c, *3)<br>2.12757<br>( < 2.09274 best known) |                                            |                                                                         |  |  |  |  |
| 60     |                                                             | 2.295216 (After c., *1)<br>2.295275 (Aug.) | 2.648977 (After c., *3)<br>2.648980 (After c.)<br>(2.650399 best known) |  |  |  |  |
| 64     |                                                             | 2.242170 (Oct.,, *1)<br>2.242228 (Sep.,)   | 2.611310 (After c.) ( > 2.610117 best known)                            |  |  |  |  |

### 2-Opt Local Search (flip two edges)



Cube; k=3, l=1.71 (Gap 9.1%)



Möbius loop; k=2, l=1.57 (Gap 0.0%)

- 2-Opt: keeping flipped graph, if flipped graph has better diameter / ASPL.
- There are so many pairs of edges. # of edges m = nd/2. # of pairs of edges = m(m-1)/2.
- For a graph with n = 10,000 and d = 60,  $m = 6 \times 10^5$  and  $m(m-1)/2 = 179,999,700,000 <math>= 1.8 \times 10^{11}$

### 2-Opt Local Search (flip two edges)



- Search space of 2-opt local search is very large.
- Question: which pair of edges is a better pair to shorten ASPL?
- An answer: lower important edges are given higher priority

### Edge Importance for fast 2-OPT

• Rough definition: an edge (j, k) has a positive value for node i, if j and k is not the same distance from i. Importance of edge (j, k) is the sum of such values for all node i ( $i \neq j$  and k).



 Calculate importance for all edges, sort them by importance.

### Application Results of Edge Importance

- In a graph of n = 256 and d = 16, there are 2048 edges and  $2.1 \times 10^6$  edge pairs
- 1000 graphs are searched from l = 2.09258 to 2.09069. In the sequence, we selected edge pair (i, j) from the range of  $0 \le i \le 153$  and  $1 \le j \le 620$ .

The range contains only 4.6% of all edge pairs (=154 \* 621 / 2.1×10<sup>6</sup>)

• Edge importance seems to be a valuable metric.



### Targeted Graphs of Diameter k = 3

- n = 256, d = 16: k = 3 (Moore bound = 2)
- n = 4096,  $d = \underline{60}$  and  $\underline{64}$ : k = 3 (Moore bound = 3 and 2)
- n = 10000,  $d = \underline{60}$  and 64: k = 3 (Moore bound = 3)

| degree | Order n                                                     |                                            |                                                                         |  |  |  |  |
|--------|-------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| d      | 256                                                         | 4096                                       | 10000                                                                   |  |  |  |  |
| 16     | 2.09069 (After c, *3)<br>2.12757<br>( < 2.09274 best known) |                                            |                                                                         |  |  |  |  |
| 60     |                                                             | 2.295216 (After c., *1)<br>2.295275 (Aug.) | 2.648977 (After c., *3)<br>2.648980 (After c.)<br>(2.650399 best known) |  |  |  |  |
| 64     |                                                             | 2.242170 (Oct.,, *1)<br>2.242228 (Sep.,)   | 2.611310 (After c.)<br>( > 2.610117 best known)                         |  |  |  |  |

#### Conclusion

- Explain our results, including graphs found after competition.
- Observing small order graphs, # of pentagon (5-node cycles) is a key property of diameter 3 graphs.
- Explain a heuristic algorithm for large diameter 3 graphs  $\checkmark$  Create a Base Graph  $G_0$ , Greedily Add Edges One by One to  $G_0$
- Explain a technique of 2-opt local search

  ✓ Edge Importance Function, Order of Local Search
- Physical handmade graphs (toys)



### Appendix: Physical Handmade Graphs



Cube

$$(k = 3, l = 1.71)$$

Möbius loop

$$(k = 2, l = 1.57)$$

Aug. 31-Sep. 2, 2016, NOCS 2016, Nara, Japan

