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• Last year, I attended CANDAR 2016 in another 
workshop, and noticed the Graph Golf competition

• Graph Golf (general)
– “The order/degree problem with parameters 𝑛 and 𝑑 : Find a graph with 

minimum diameter over all undirected graphs with the number of vertices =
𝑛 and degree ≤ 𝑑” 

• Graph Golf (grid)
– “The order/degree problem on a grid graph with a limited edge length 𝑟: Do 

the same as above, but on a 𝑛 × 𝑛 square grid in a two-dimensional 
Euclidean space, keeping the lengths of the edges ≤ 𝑟 in Manhattan distance.”
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Graph Golf

http://research.nii.ac.jp/graphgolf/problem.html
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Undirected unweighted graph
vertex

edge Order: 𝑛

Degree : 𝑑

・・・

𝑣1

2 3

・
・

・

d

General graph

Shortest path length :  s(𝑣1, 𝑣2)

1

2 3

Diameter : 𝑘 = max s(𝑣1, 𝑣2) 𝑣1, 𝑣2 ∈ 𝑉, 𝑣1 ≠ 𝑣2
Average shortest path length : 
𝐴𝑆𝑃𝐿 = average s(𝑣1, 𝑣2) 𝑣1, 𝑣2 ∈ 𝑉, 𝑣1 ≠ 𝑣2

𝑣1 𝑣2
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𝑘 = 4 , 𝐴𝑆𝑃𝐿 = 2.06

𝑛 = 12, 𝑑 = 3

Edge length : 𝑟 𝑣1, 𝑣2 = ∆𝑥 + ∆𝑦

𝑛 = 16, 𝑑 = 3, 𝑟 = 3

𝑘 = 5 , 𝐴𝑆𝑃𝐿 = 2.67

Grid graph

∆𝑥

∆𝑦

Graph : 𝐺 = (𝑉, 𝐸)

𝑣2

𝑣1

1 2 3 n



• How do we search for a good graph?
– Largest 𝑛 is 100,000 in general graph and 10,000 in 

grid graph, which results in a huge search space

– Want to avoid algorithms that require O 𝑛2 time and 
memory

• I used simulated annealing algorithm
– For grid graph, accelerate the evaluation by 

introducing approximation

– For general graph, limit to voltage graph
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Strategy
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Simulated annealing algorithm
Random graph

Evaluate fitness

Update graph

yes

no
Terminate?

no

yes

Output

3 , 2.03

4 , 2.06

4 , 2.11

3 , 1.99

Mutate

Evaluate fitness

Accept?
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2-opt mutation, accept probability

2-opt
mutation

Mutate

Accept probability : ൝
1

exp(−
𝑓2−𝑓1

𝑡
)
if 𝑓2 − 𝑓1 < 0
otherwise

Computing ∆𝑓 = 𝑓2−𝑓1 is enough to make the decision

Accept?

𝑓1 and 𝑓2 are the fitness values before and after the mutation
𝑡 is a temperature parameter
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Evaluating fitness
Evaluate fitness (exact version)

Fitness value : 𝑓 = 𝑤 × 𝑘 + 𝐴𝑆𝑃𝐿

𝑤 = ቊ
10
100

general graph
grid graph

𝑘 and 𝐴𝑆𝑃𝐿 are diameter and average shortest path length

• Naïve way to compute 𝑘 and 𝐴𝑆𝑃𝐿 is by running breadth first 
search (BFS) from each vertex

– This is O(𝑛2 × 𝑒) time algorithm

• Is there any better way to compute 𝑓 (or ∆𝑓 of 2-opt mutation)?

• Since most of the graph are preserved, it is not necessary to 
compute all-to-all shortest path length

• I first tried to find a set of critical vertex that would update the 
shortest path length by 2-opt mutation



8

BFS 0
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BFS 𝑣
depth 𝑣 ≔ 0
Queue. enqueue(𝑣)
𝐰𝐡𝐢𝐥𝐞 Queue. size() > 0
𝑣1 ≔ Queue. head()
𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑣2 ≔ 𝑣1. neighbor()
𝐢𝐟 depth 𝑣2 = 𝐮𝐧𝐝𝐞𝐟𝐢𝐧𝐞𝐝
depth[𝑣2] ≔ depth[𝑣1] + 1
Queue. enqueue(𝑣2)

Queue. dequeue()

𝑣
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(simple) critical
vertex set

CRITICAL′ 𝑣, 𝑒
depth 𝑣 ≔ 0
Queue. enqueue 𝑣
𝑣′ ≔ 𝑒. opposite 𝑣
critical ≔ {𝑣′}
𝐰𝐡𝐢𝐥𝐞 Queue. size() > 0
𝑣1 ≔ Queue. head()
𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑣2 ≔ 𝑣1. neighbor()
𝐢𝐟 depth[𝑣2] = 𝐮𝐧𝐝𝐞𝐟𝐢𝐧𝐞𝐝
depth 𝑣2 ≔ depth[𝑣1] + 1
Queue. enqueue(𝑣2)
𝐢𝐟 𝑣1 ∈ critical 𝐭𝐡𝐞𝐧 critical ≔ critical ∪ {𝑣2}

𝐞𝐥𝐬𝐞 𝐢𝐟 depth 𝑣2 = depth 𝑣1 + 1 𝐚𝐧𝐝 𝑣2 ∈ critical 𝐚𝐧𝐝 𝑣1 ∉ critical
critical ≔ critical ∖ {𝑣2}

Queue. dequeue()
𝐫𝐞𝐭𝐮𝐫𝐧 critical
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𝑣
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Critical
vertex set

CRITICAL 𝑣, 𝑒1, 𝑒2
depth 𝑣 ≔ 0
Queue. enqueue 𝑣
𝑣′ ≔ 𝑒1. opposite 𝑣
critical ≔ {𝑣′}
𝐰𝐡𝐢𝐥𝐞 Queue. size() > 0
𝑣1 ≔ Queue. head()
𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑣2 ≔ 𝑣1. neighbor()
𝐢𝐟 (𝑣1, 𝑣2) ≠ 𝑒2
𝐢𝐟 depth 𝑣2 = 𝐮𝐧𝐝𝐞𝐟𝐢𝐧𝐞𝐝
depth 𝑣2 ≔ depth[𝑣1] + 1
Queue. enqueue(𝑣2)
𝐢𝐟 𝑣1 ∈ critical 𝐭𝐡𝐞𝐧 critical ≔ critical ∪ {𝑣2}

𝐞𝐥𝐬𝐞 𝐢𝐟 depth 𝑣2 = depth 𝑣1 + 1 𝐚𝐧𝐝 𝑣2 ∈ critical 𝐚𝐧𝐝 𝑣1 ∉ critical
critical ≔ critical ∖ {𝑣2}

Queue. dequeue()
𝐫𝐞𝐭𝐮𝐫𝐧 critical
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Potential pairs of vertex that affect ∆𝑓

𝑣1
𝑣2

𝑣3
𝑣4

2-opt
mutation

𝑒2

𝑒1

𝑐1

𝑐2

𝑐3

𝑐4

𝑣1
𝑣2

𝑣3
𝑣4

𝑒4
𝑒3

𝑐8

𝑐6

𝑐7

𝑐5

𝑐1 = 𝐺. CRITICAL 𝑣1, 𝑒1, 𝑒2
𝑐2 = 𝐺. CRITICAL 𝑣2, 𝑒1, 𝑒2
𝑐3 = 𝐺.CRITICAL 𝑣3, 𝑒2, 𝑒1
𝑐4 = 𝐺.CRITICAL 𝑣4, 𝑒2, 𝑒1

𝑐5 = 𝐺′. CRITICAL 𝑣1, 𝑒3, 𝑒4
𝑐6 = 𝐺′. CRITICAL 𝑣3, 𝑒3, 𝑒4
𝑐7 = 𝐺′. CRITICAL 𝑣2, 𝑒4, 𝑒3
𝑐8 = 𝐺′. CRITICAL 𝑣4, 𝑒4, 𝑒3

Graph 𝐺 Graph 𝐺′

pairs = 𝑐1 ⊗ 𝑐2 ∪ 𝑐3 ⊗ 𝑐4 ∪ 𝑐5 ⊗ 𝑐6 ∪ 𝑐7 ⊗ 𝑐8



• To compute ∆𝑓 using the potential pair, it is necessary to 
prepare the occurrence of each shortest path length
– occurrence 0 = 𝑛

– occurrence 1 =
𝑑×𝑛

2
(if regular)

– ・・・

– occurrence 𝑖 = (𝑣1, 𝑣2) 𝑣1, 𝑣2 ∈ 𝑉, s 𝑣1, 𝑣2 = 𝑖 /2

• 𝑘 and 𝐴𝑆𝑃𝐿 are computed from the occurrence list
• By 2-opt mutation, the occurrence is updated by using 

BFS
– Can be efficiently updated by just considering the potential pairs
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Computing exact ∆𝑓

occurrence 0 = 12
occurrence 1 = 18
occurrence 2 = 26
occurrence 3 = 19
occurrence 4 = 3

UPDATE occurence, pairs, 𝐺, 𝐺′
𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 (𝑣𝑥, 𝑣𝑦) ∈ pairs

bfs1: = 𝐺. BFS 𝑣𝑥
occurence bfs1. depth[𝑣𝑦] ≔ occurence bfs1. depth[𝑣𝑦] − 1

bfs2: = 𝐺′. BFS 𝑣𝑥

occurence bfs2. depth[𝑣𝑦] ≔ occurence bfs2. depth 𝑣𝑦 + 1



• Some optimization was possible in BFS during the 
UPDATE
– Halting the search if there are no more critical vertex

– Ignoring a pair of vertex that has a path length longer than 
the diameter when 𝑒1 or 𝑒2 is used

– However, the algorithm to compute exact ∆𝑓 still requires 
O 𝑛2 × 𝑒 time

– Could not get graphs better than those in the ranking page

• I decide to use another approximate ∆𝑓 that requires 
O 𝑛 × 𝑒 time algorithm
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From exact to approximate ∆𝑓
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Importance of an edge?

𝑣1
𝑣2

𝑣3
𝑣4

2-opt
mutation

𝑒2

𝑒1

𝑐1

𝑐2

𝑐3

𝑐4

𝑣1
𝑣2

𝑣3
𝑣4

𝑒4
𝑒3

𝑐8

𝑐6

𝑐7

𝑐5

Graph 𝐺 Graph 𝐺′

∆𝑓approximate = 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 − 𝑐5 − 𝑐6 − 𝑐7 − 𝑐8

Can we use the number of vertex in 𝑐1 and 𝑐2 to estimate how 𝑒1 is 
important? (the bigger, the better)



15

Approximate and exact ∆𝑓

Correlation coefficient are from the distribution of 500 random 2-opt mutation

r=0.996

Approximate ∆𝑓 was highly related to exact ∆𝑓

r=0.930 r=0.954

r=0.923 r=0.991 r=0.993
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Computation time for evaluation

𝑛2.5

𝑛2

𝑛1.5

𝑛

𝑛 = 88128, 𝑑 = 12

× 35 faster
(by exact ∆𝑓)

× 330 faster
(by approximate ∆𝑓)

Accelerate the evaluation (scaling change from 𝑛2 to 𝑛)

Average ± S.D. (n≥5)

More than × 10,000
faster in total
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Result (grid graph)

Order 𝑛 Degree 𝑑 Length 𝑟 Diameter 𝑘 𝐴𝑆𝑃𝐿 𝐴𝑆𝑃𝐿
(second best)

10,000 3 18 17 11.4 11.5

10,000 3 33 16 11.2 11.3

10,000 9 6 33 11.59 11.61

10,000 9 18 11 5.15 5.25

10,000 9 33 7 4.56 4.61

10,000 28 6 33 11.5 11.6

10,000 28 18 11 4.39 4.49

10,000 28 33 6 3.26 3.32

For 𝑛 = 256, my results were not so good (after 2 hours search) 

• Run the simulated annealing algorithm using the 
approximate ∆𝑓 for about 24 hours each
– Submit the best graphs below in Graph Golf 2017



• Using the same approach to the general graph 
was not good

• I employ another mathematical approach 
invented in degree/diameter problem
– Most of the known solutions

(orange) are constructed
using the voltage graph

– The approach is also suitable
to the order/degree problem
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Applying to general graph?

http://combinatoricswiki.org/wiki/The_Degree_Diameter_Problem_for_General_Graphs



• Voltage graph (large graph) can be obtained 
by lifting a quotient (= 𝑞, small graph) 
according to voltage assignment (= 𝐴)
[Loz and Širáň, 2008]
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Voltage graph
lift, quotient, assignment

B D T X

Four types of quotients
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Concrete example

• Use a map from 𝐸 to the power set of Ζ𝑥 ⊗Ζ𝑦 as 
voltage assignment 𝐴

• Use multiplication of semidirect product Ζ𝑥 ⋊𝑧 Ζ𝑦
defined as

𝑒, 𝑔 × 𝑓, ℎ = (𝑒 + 𝑧𝑔𝑓, 𝑔 + ℎ)

Lift
𝑥 = 5, 𝑦 = 1, 𝑧 = 1

𝐺′ = (𝑉′, 𝐸′)
𝑉′ = 𝑉⊗ Ζ𝑥 ⊗Ζ𝑦

𝐸′ = 𝑝, 𝑔 , 𝑞, ℎ 𝑝, 𝑞 ∈ 𝐸, 𝑔, ℎ ∈ Ζ𝑥 ⊗Ζ𝑦 , ℎ = 𝑔 × 𝑎, 𝑎 ∈ 𝐴((𝑝, 𝑞))}

𝐷 = (𝑉, 𝐸)

{(0,0)}

{ 1,0 } {(2,0)}
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Searching for a good voltage graph
Random graph

Evaluate fitness

Update graph

yes

no
Terminate?

no

yes

Output

Mutate

Evaluate fitness

Accept?

Random voltage graph

From given 𝑛 and 𝑑, randomly 
choose 𝑞, 𝐴, 𝑤, 𝑥, 𝑦, 𝑧 such that 

𝑞 ∈ B, D, T, X

𝑤 ≔

1
2
3
4

if 𝑞 = 𝐵
if 𝑞 = 𝐷
if 𝑞 = 𝑇
if 𝑞 = 𝑋

𝑥 × 𝑦 × 𝑤 = 𝑛
1 ≤ 𝑧 ≤ 𝑦

𝑧𝑦 ≡ 1 (mod 𝑥)
𝐴 is random voltage assignment 
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Evaluation, mutation
Evaluate fitness

Because of the symmetricity, 𝑤 times of BFS is enough 
to compute 𝑘 and 𝐴𝑆𝑃𝐿
it becomes an O 𝑛 × 𝑒 × 𝑤 time algorithm

Mutation

Randomly changing voltage assignment

mutation

{(0,0)} {(3,0)}
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Local search of voltage graph

Exact ∆𝑓

Voltage 
Graph

Exact ∆𝑓

Voltage 
Graph

Exact ∆𝑓 Voltage graph

Relative improvement [%]

0.0033±0.0002 0.073±0.003

22 times better

Number of evaluation

Exact ∆𝑓 Voltage graph

1880±80 69600±7000

37 times larger

2 minutes of simulated annealing (4 times each)
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Result (general graph)

Order 𝑛 Degree 𝑑 Diameter 𝑘 𝐴𝑆𝑃𝐿 𝐴𝑆𝑃𝐿
(second best, last year best)

100,000 32 4 3.706 3.709

100,000 64 4 3.015 3.016

1,024 8 5 3.500 3.505

1,024 11 4 3.05 3.06

1800 7 5 4.077 4.078

10,000 7 6 5.411 7 (diameter)

10,000 11 5 4.1064 4.1066

10,000 20 4 3.375 3.376

100,000 7 8 6.388 6.392

100,000 11 6 5.14 5.15

100,000 20 5 4.1326 4.1334

• Run 1～4 hours of simulated annealing algorithm using the voltage graph
– Launch multiples times to change 𝑞, 𝑤, 𝑥, 𝑦, 𝑧
– Submit the best graphs for 𝑛 = 100,000 in Graph Golf 2017, and updated 

some of the records in Graph Golf 2016
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• Why does the approximation usually work well?
• When does the approximation does not work well?
• How is the approximation related to other network analysis index such as edge 

betweenness?
• Is there any group other than semi-direct product to get good voltage graph?
• Is there other mathematical way to obtain a graph with good structure?
• Is there any better metaheuristic algorithm for the optimization by local search?

• Propose an algorithm to compute fitness value
– O 𝑛2 × 𝑑 time for exact ∆𝑓 and O 𝑛 × 𝑑 time for approximate ∆𝑓
– O 𝑛 × 𝑑 memory
– Use it for grid graph

• Employ a voltage graph
– O 𝑛 × 𝑑 time for exact evaluation
– O 𝑛 × 𝑑 memory
– Use it for general graph

• Thank you! and question?
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Open questions, conclusion


