

Approximate evaluation and voltage assignment for order/degree problem

Ibuki Kawamata CANDAR2017, Graph Golf workshop 22 Nov. 2017 kawamata@molbot.mech.tohoku.ac.jp

Graph Golf

• Last year, I attended CANDAR 2016 in another workshop, and noticed the Graph Golf competition

- Graph Golf (general)
 - "The order/degree problem with parameters n and d: Find a graph with minimum diameter over all undirected graphs with the number of vertices = n and degree $\leq d$ "
- Graph Golf (grid)
 - "The order/degree problem on a grid graph with a limited edge length r: Do the same as above, but on a $\sqrt{n} \times \sqrt{n}$ square grid in a two-dimensional Euclidean space, keeping the lengths of the edges $\leq r$ in Manhattan distance."

Undirected unweighted graph **General graph Graph** : G = (V, E)vertex edge **Order**: *n* v_1 v_2 1 **Degree** : d n = 12, d = 33 k = 4, ASPL = 2.06**Shortest path length** : $s(v_1, v_2)$ **Diameter** : $k = \max\{s(v_1, v_2) | v_1, v_2 \in V, v_1 \neq v_2\}$ Grid graph Average shortest path length : n = 16, d = 3, r = 3 $ASPL = average\{s(v_1, v_2) | v_1, v_2 \in V, v_1 \neq v_2\}$ **Edge length** : $r(v_1, v_2) = \Delta x + \Delta y$ k = 5 , ASPL = 2.67

3

Strategy

- How do we search for a good graph?
 - Largest n is 100,000 in general graph and 10,000 in grid graph, which results in a huge search space
 - Want to avoid algorithms that require $O(n^2)$ time and memory
- I used simulated annealing algorithm
 - For grid graph, accelerate the evaluation by introducing approximation
 - For general graph, limit to voltage graph

2-opt mutation, accept probability

Accept?

Accept probability :
$$\begin{cases} 1 & \text{if } f_2 - f_1 < 0 \\ \exp(-\frac{f_2 - f_1}{t}) & \text{otherwise} \end{cases}$$

 f_1 and f_2 are the fitness values before and after the mutation t is a temperature parameter Computing $\Delta f = f_2 - f_1$ is enough to make the decision

Evaluating fitness

- Naïve way to compute k and ASPL is by running breadth first search (BFS) from each vertex
 - This is $O(n^2 \times e)$ time algorithm
- Is there any better way to compute f (or Δf of 2-opt mutation)?
- Since most of the graph are preserved, it is not necessary to compute all-to-all shortest path length
- I first tried to find a **set of critical vertex** that would update the shortest path length by 2-opt mutation

BFS

BFS(v)depth[v] := 0 Queue. enqueue(v) while Queue.size() > 0 $v_1 \coloneqq \text{Queue.head}()$ **for each** $v_2 \coloneqq v_1$. neighbor() if depth $[v_2]$ = undefined $depth[v_2] \coloneqq depth[v_1] + 1$ Queue. enqueue (v_2) Queue. dequeue()

(simple) critical 0 12 vertex set CRITICAL'(v, e)depth[v] := 0 Queue. enqueue(v) $v' \coloneqq e.\operatorname{opposite}(v)$ <u>critical := {v'}</u> while Queue.size() > 0 $v_1 \coloneqq \text{Queue head}()$ for each $v_2 \coloneqq v_1$.neighbor() if depth[v_2] = undefined $depth[v_2] \coloneqq depth[v_1] + 1$ Queue. enqueue(v_2) **if** $v_1 \in$ critical **then** critical := critical $\cup \{v_2\}$ else if depth $[v_2]$ = depth $[v_1]$ + 1 and $v_2 \in$ critical and $v_1 \notin$ critical <u>critical := critical \ { v_2 }</u> Queue. dequeue() return critical

9

Critical vertex set

 $CRITICAL(v, e_1, e_2)$

pairs = $c_1 \otimes c_2 \cup c_3 \otimes c_4 \cup c_5 \otimes c_6 \cup c_7 \otimes c_8$

Computing exact Δf

- To compute Δf using the potential pair, it is necessary to prepare the occurrence of each shortest path length
 - occurrence[0] = n
 - occurrence[1] = $\frac{d \times n}{2}$ (if regular)

```
_ · ·
```

- occurrence[i] = $|\{(v_1, v_2) | v_1, v_2 \in V, s(v_1, v_2) = i\}|/2$
- *k* and *ASPL* are computed from the occurrence list
- By 2-opt mutation, the occurrence is updated by using BFS

- Can be efficiently updated by just considering the potential pairs

UPDATE(occurence, pairs,
$$G, G'$$
)
for each $(v_x, v_y) \in$ pairs
 $bfs_1 := G.BFS(v_x)$
 $occurence[bfs_1.depth[v_y]] \coloneqq occurence[bfs_1.depth[v_y]] - 1$
 $bfs_2 := G'.BFS(v_x)$
 $occurence[bfs_2.depth[v_y]] \coloneqq occurence[bfs_2.depth[v_y]] + 1$

occurrence[0] = 12

occurrence[1] = 18

occurrence[2] = 26

occurrence[3] = 19

occurrence[4] = 3

From exact to approximate Δf

- Some optimization was possible in BFS during the UPDATE
 - Halting the search if there are no more critical vertex
 - Ignoring a pair of vertex that has a path length longer than the diameter when e_1 or e_2 is used
 - However, the algorithm to compute exact Δf still requires $O(n^2 \times e)$ time
 - Could not get graphs better than those in the ranking page
- I decide to use another approximate Δf that requires $O(n \times e)$ time algorithm

Can we use the number of vertex in c_1 and c_2 to estimate how e_1 is important? (the bigger, the better)

 $\Delta f_{\text{approximate}} = |c_1| + |c_2| + |c_3| + |c_4| - |c_5| - |c_6| - |c_7| - |c_8|$

Approximate and exact Δf

Correlation coefficient are from the distribution of 500 random 2-opt mutation

Approximate Δf was highly related to exact Δf

Computation time for evaluation

Accelerate the evaluation (scaling change from n^2 to n)

Result (grid graph)

- Run the simulated annealing algorithm using the approximate Δf for about 24 hours each
 - Submit the best graphs below in Graph Golf 2017

Order n	Degree d	Length r	Diameter k	ASPL	(second best)
10,000	3	18	17	11.4	11.5
10,000	3	33	16	11.2	11.3
10,000	9	6	33	11.59	11.61
10,000	9	18	11	5.15	5.25
10,000	9	33	7	4.56	4.61
10,000	28	6	33	11.5	11.6
10,000	28	18	11	4.39	4.49
10,000	28	33	6	3.26	3.32

For n = 256, my results were not so good (after 2 hours search)

Applying to general graph?

- Using the same approach to the general graph was not good
- I employ another mathematical approach invented in degree/diameter problem
 - Most of the known solutionsí (orange) are constructed using the voltage graph
 - The approach is also suitable to the order/degree problem

d∖k	2	3	4	5	6	7	8	9	10
3	10	20	38	70	132	196	336	600	1 250
4	15	41	98	364	740	1 320	3 243	7 575	17 703
5	24	72	212	624	2 772	5 516	17 030	57 840	187 056
6	32	111	390	1 404	7 917	19 383	76 461	331 387	1 253 615
7	50	168	672	2 756	11 988	52 768	249 660	1 223 050	6 007 230
8	57	253	1 100	5 060	39 672	131 137	734 820	4 243 100	24 897 161
9	74	585	1 550	8 268	75 893	279 616	1 697 688	12 123 288	65 866 350
10	91	650	2 286	13 140	134 690	583 083	4 293 452	27 997 191	201 038 922
11	104	715	3 200	19 500	156 864	1 001 268	7 442 328	72 933 102	600 380 000
12	133	786	4 680	29 470	359 772	1 999 500	15 924 326	158 158 875	1 506 252 500
13	162	851	6 560	40 260	531 440	3 322 080	29 927 790	249 155 760	3 077 200 700
14	183	916	8 200	57 837	816 294	6 200 460	55 913 932	600 123 780	7 041 746 081
15	187	1 215	11 712	76 518	1 417 248	8 599 986	90 001 236	1 171 998 164	10 012 349 898
16	200	1 600	14 640	132 496	1 771 560	14 882 658	140 559 416	2 025 125 476	12 951 451 931
17	274	1 610	19 040	133 144	3 217 872	18 495 162	220 990 700	3 372 648 954	15 317 070 720
18	307	1 620	23 800	171 828	4 022 340	26 515 120	323 037 476	5 768 971 167	16 659 077 632
19	338	1 638	23 970	221 676	4 024 707	39 123 116	501 001 000	8 855 580 344	18 155 097 232
20	381	1 958	34 952	281 820	8 947 848	55 625 185	762 374 779	12 951 451 931	78 186 295 824

Voltage graph lift, quotient, assignment

 Voltage graph (large graph) can be obtained by lifting a quotient (= q, small graph) according to voltage assignment (= A) [Loz and Širáň, 2008]

Concrete example

- Use a map from E to the power set of $Z_x \otimes Z_y$ as voltage assignment A
- Use multiplication of semidirect product $Z_x \rtimes_z Z_y$ defined as

$$(e,g) \times (f,h) = (e + z^g f, g + h)$$

Searching for a good voltage graph

Random voltage graph

From given *n* and *d*, randomly choose q, A, w, x, y, z such that $q \in \{B, D, T, X\}$ $w \coloneqq \begin{cases} 1 & \text{if } q = B \\ 2 & \text{if } q = D \\ 3 & \text{if } q = T \\ 4 & \text{if } q = X \end{cases}$ $x \times y \times w = n$ $1 \leq z \leq y$ $z^{\gamma} \equiv 1 \pmod{x}$ A is random voltage assignment

Evaluation, mutation

Evaluate fitness

Because of the symmetricity, w times of BFS is enough to compute k and ASPLit becomes an $O(n \times e \times w)$ time algorithm

Local search of voltage graph

2 minutes of simulated annealing (4 times each)

n=4896, d=24

Relative improvement [%]Exact Δf Voltage graph 0.0033 ± 0.0002 0.073 ± 0.003 22 times better

Number of evaluationxact Δf Voltage graph880±8069600±700037 times larger

Result (general graph)

- Run 1~4 hours of simulated annealing algorithm using the voltage graph
 - Launch multiples times to change q, w, x, y, z
 - Submit the best graphs for n = 100,000 in Graph Golf 2017, and updated some of the records in Graph Golf 2016

		Order n	Degree d	Diameter <i>k</i>	ASPL	ASPL (second best, last year best)
2017 2017		100,000	32	4	3.706	3.709
		100,000	64	4	3.015	3.016
	[]]	1,024	8	5	3.500	3.505
		1,024	11	4	3.05	3.06
Graph Golf 2016		1800	7	5	4.077	4.078
	\rightarrow	10,000	7	6	5.411	7 (diameter)
		10,000	11	5	4.1064	4.1066
		10,000	20	4	3.375	3.376
		100,000	7	8	6.388	6.392
		100,000	11	6	5.14	5.15
		100,000	20	5	4.1326	4.1334

Open questions, conclusion

- Why does the approximation usually work well?
- When does the approximation does not work well?
- How is the approximation related to other network analysis index such as edge betweenness?
- Is there any group other than semi-direct product to get good voltage graph?
- Is there other mathematical way to obtain a graph with good structure?
- Is there any better metaheuristic algorithm for the optimization by local search?
- Propose an algorithm to compute fitness value
 - 0($n^2 imes d$) time for exact Δf and 0(n imes d) time for approximate Δf
 - $0(n \times d)$ memory
 - Use it for grid graph
- Employ a voltage graph
 - 0($n \times d$) time for exact evaluation
 - $0(n \times d)$ memory
 - Use it for general graph
- Thank you! and question?