Approximate evaluation and voltage
assignment for order/degree problem

Ibuki Kawamata
CANDAR2017, Graph Golf workshop
22 Nov. 2017

kawamata@molbot.mech.tohoku.ac.jp

mailto:kawamata@molbot.mech.tohoku.ac.jp

Graph Golf

e Last year, | attended CANDAR 2016 in another
workshop, and noticed the Graph Golf competition

* Graph Golf (general)

— “The order/degree problem with parameters n and d : Find a graph with
minimum diameter over all undirected graphs with the number of vertices =
n and degree < d”

* Graph Golf (grid)

— “The order/degree problem on a grid graph with a limited edge length r: Do
the same as above, but on a \/n X 4/n square grid in a two-dimensional
Euclidean space, keeping the lengths of the edges < r in Manhattan distance.”

http://research.nii.ac.jp/graphgolf/problem.html

Undirected unweighted graph

General graph @ 'vertex Graph: G = (V,E)

® O Q. Order: n
® o O 000
‘ 1 2 3 n
P O n—12d-3 Degree : d .
® o

k=4,ASPL = 2.06 | Shortest path length : s(v,v,)
Diameter : k = max{s(vy,v,)|vy, v, € V,v; # vy}
Average shortest path length :

ASPL = average{s(vy, vy)|v{,v5 €V, v # 1y}

Grid graph
=16,d =3,r =3

S

® D
Edge length : r(v,,v,) = Ax + Ay O .IAy

® 0
<>

Ax

k=5,ASPL = 2.67

x \

Strategy

* How do we search for a good graph?

— Largest n is 100,000 in general graph and 10,000 in
grid graph, which results in a huge search space

— Want to avoid algorithms that require O(n?) time and
memory

* | used simulated annealing algorithm

— For grid graph, accelerate the evaluation by
introducing approximation

— For general graph, limit to voltage graph

Simulated annealing algorithm

Random graph

Evaluate fitness

Mutate

Evaluate fitness

) 4

Lyes

Update graph

no)
Terminate?

L Yes

Output

2-opt mutation, accept probability

Mutate

2-opt

mutation

Accept?
1 if f,—f1 <0
f2—/1

Accept probability :
PLp y exp(— .) otherwise

f1 and f, are the fitness values before and after the mutation
t is a temperature parameter
Computing Af = f,—f; is enough to make the decision

Evaluating fitness

Evaluate fitness (exact version)

Fitnessvalue: f =w X k + ASPL
10 general graph
w = .
100 grid graph
k and ASPL are diameter and average shortest path length

* Naive way to compute k and ASPL is by running breadth first
search (BFS) from each vertex
— Thisis O(n? X e) time algorithm
* Is there any better way to compute f (or Af of 2-opt mutation)?

* Since most of the graph are preserved, it is not necessary to
compute all-to-all shortest path length

e |first tried to find a set of critical vertex that would update the
shortest path length by 2-opt mutation

BFS

BFS(v)
depth[v] :=0
Queue. enqueue(v)
while Queue.size() > 0
v, = Queue. head()
for each v, := v,.neighbor()
if depth[v,] = undefined
depth[v,] := depth[v;] + 1
Queue. enqueue(v,)
Queue. dequeue()

(simple) critical 4~

vertex set
CRITICAL'(v, e)
depth[v] :=0

Queue. enqueue(v)
v’ := e.opposite(v) @/0
critical := {v'} o

while Queue. size() > 0 o
v1 = Queue. head()

for each v, == v;.neighbor()
if depth[v,] = undefined ({@
depth[v,] := depth[v;] + 1 o é 2
-0

Queue. enqueue(v,)
if v, € critical then critical := critical U {v,}
else if depth[v,] = depth[v,] + 1 and v, € critical and v, & critical

critical := critical \ {v,}
Queue. dequeue() @/(@@?
return critical o \O
o o A
-0

10

Critical

\
Ny

v
vertex set
CRITICAL(v, e, e,)
depth[v] =0
Queue. enqueue(v) .
v’ = ey.opposite(v) (00
critical == {v'}
while Queue.size() > 0 Q

v1 = Queue. head()

for each v, := v;.neighbor()
if (v, v,) #e,
if depth[v,] = undefined @L o

depth[v,] = depth[v;] + 1
Queue. enqueue(v,)
if v, € critical then critical := critical U {v,} %-0

else if depth[v,] = depth[v;] + 1 and v, € critical and v, € critical

critical := critical \ {v,}
Queue. dequeue()
return critical o & \O
©
-0

11

Potential pairs of vertex that affect Af

Graph G o Graph G’
Cg
O l
ey @ O
2-opt Q es @ O |
mutation €4
O
D/ ¥
€2
O
Cg
C3

¢; = G.CRITICAL(vq, €4, €5) cs = G'.CRITICAL(v4, e3,€4)

C, = G. CRITICAL(vz, €4, 62) Ce = G’. CRITICAL(U3, es, 34)
C3 = GCRITICAL(U3, ey, el) Cy; = G’. CRITICAL(Uz, €y, 33)
Cy = GCRITICAL(U4_, €y, el) Cg = G’. CRITICAL(U4, €y, 33)

pairs =c; Q c, U3 Q caUcs Q cg Uy Q cg

Computing exact Af

@

To compute Af using the potential pair, it is necessary to O ® @
prepare the occurrence of each shortest path length O @ ~ ®

— occurrence[0] = n

— occurrence[1] = d—;m (if regular) @ O

.. e @

. . occurrence(0f = 12

- Occurrence[l] — |{(v1, v2)|v1; U € V,S(vl, vZ) = l}l/z Occurrence{].} = 18
k and ASPL are computed from the occurrence list occurrence[2] = 26
By 2-opt mutation, the occurrence is updated by using occurrence[3] = 19
BFS occurrence[4] = 3

— Can be efficiently updated by just considering the potential pairs

UPDATE(occurence, pairs, G, G')
for each (v, vy) € pairs
bfs;: = G.BFS(v,)
occurence :bfsl. depth[vy]] = occurence[bfsl. depth[vy]] -1
bfs,: = G'.BFS(v,)

occurence :bfsz. depth[vy]] = occurence [bfsz. depth[vy]] +1

From exact to approximate Af

 Some optimization was possible in BFS during the
UPDATE

— Halting the search if there are no more critical vertex

— lgnoring a pair of vertex that has a path length longer than
the diameter when e or e, is used

— However, the algorithm to compute exact Af still requires
0(n? X e) time

— Could not get graphs better than those in the ranking page

* | decide to use another approximate Af that requires
O(n X e) time algorithm

14

Importance of an edge?
Graph G o Graph G’
@ 3 O ch
/(" ®
Q O 2-opt
Q mutation

Can we use the number of vertex in ¢; and ¢, to estimate how e is
important? (the bigger, the better)

Afapproximate = |cy| + leal + lesl + leal = les| = legl = ez | = |cgl

15

Approximate and exact Af

n=32, d=5

5.00E-02

1.00E- O!'llli'.
15 .o!'“lil' e 5 15
Hwe 120,923

3.00E-02

Exact Af

-5.00E-02

Approximate Af

n=1344, d=30
6.00E-05
4.00E-05 °

2.00E-05

0.00E+

o -4.00E-05

r=0.996

6.00E-05

Abproximate Af

n=256, d=18 n=576, d=30
8.00E-04 1.50E-04
60004 1.00E-04 L
qé]“ ::ggg:g: \2]-\ 5.00E-05
- -
Q 0.0 O 0.00£+
L%’-zo o 20 L%‘-zo 0 10 20
[] -6.00E-04 r=0.991 -1.00E-04 r=0.993
-8.00E-04 -1.50E-04
Approximate Af Approximate Af
n=4896, d=24 n=9344, d=10
1.00E-05 2.00E-05
N o 1.50E-05
I 3 < ovelog
O 8]
< o @250 150 250
Soesees 0930 MU0 o r=0.954
-2.00E-05

-1.50E-05

Approximate Af

Approximate Af

Correlation coefficient are from the distribution of 500 random 2-opt mutation

Approximate Af was highly related to exact Af

16

Computation time for evaluation

1.E+04
1.E+03
1.E+02
1.E+01
1.E+00
1.E-01
1.E-02

1.E-03

Computation time [sec]

1.E-04

1.E-05

<<,X

l\’.

O All-to-all

Af (exact)
Af (approximate)

n = 88128,d = 12

©
Average = S.D. (n25) ¢

®
®
@ T
:
0 ¢ ¢
_ 7
A~
g
7
a %
XQ ><Q
‘\% ’\/('0
Order n

X 35 faster
(by exact Af)

X 330 faster
(by approximate Af)

More than X 10,000
faster in total

Accelerate the evaluation (scaling change from n? to n)

Result (grid graph)

* Run the simulated annealing algorithm using the
approximate Af for about 24 hours each

— Submit the best graphs below in Graph Golf 2017

Ordern Degree d Length r Diameter k ASPL (ASd}ZL)
10,000 3 18 17 11.4 11.5
10,000 3 33 16 11.2 11.3
10,000 9 6 33 11.59 11.61
10,000 9 18 11 5.15 5.25
10,000 9 33 7 4.56 4.61
10,000 28 6 33 11.5 11.6
10,000 28 18 11 4.39 4.49
10,000 28 33 6 3.26 3.32

Forn = 256, my results were not so good (after 2 hours search)

18

Applying to general graph?

e Using the same approach to the general graph
was hot good

* | employ another mathematical approach
invented in degree/diameter problem

Table of the orders of the largest known graphs for the undirected degree diameter problem

— Most of the known solutions
(orange) are constructed
using the voltage graph

— The approach is also suitable
to the order/degree problem

19

Voltage graph
lift, quotient, assighment
e Voltage graph (large graph) can be obtained

by lifting a quotient (= g, small graph)

according to voltage assignment (= A)
[Loz and Siran, 2008]

B D T X
O ® O @

Four types of quotients ® ®

Concrete example

* Use a map from E to the power set of Z, & Z,, as
voltage assighment A

* Use multiplication of semidirect product Z, <, Z,,

defined as
()X (f) =(e+29f,.g+h) g

s

(L0} {(20))
D = (V,E)

! — (V’, EI)

V' :V®(Zx®zy)
E'={(n,9),(q,M)|(v,q) €E,g,h € (2, ®Zy),h = g X a,a € A((p, 7))}

20

Searching for a good voltage graph

Random graph

Evaluate fitness

Mutate

Evaluate fitness

e

Update graph

no

yes

Output

21

Random voltage graph
From given n and d, randomly
choose g, A, w, x, vy, z such that

qg € {B,D, T, X}
(1 if g=R8B
_J2 itg=D
W= 3 if g=T
4 ifg=X
XXYyXW=n
1<z<y

z¥ =1 (mod x)
A is random voltage assighment

Evaluation, mutation

Evaluate fithess

Because of the symmetricity, w times of BFS is enough
to compute k and ASPL
it becomes an O(n X e X w) time algorithm

Mutation
Randomly changing voltage assignment

‘{(O,O)b H .{(3,0)b

22

Fithess

Fithess

23

Local search of voltage graph

2 minutes of simulated annealing (4 times each)
n=4896, d=24

42.955
42.95

oos | T TTTSss=s-—- } BactAf Relative improvement [%]

42.94
e N Exact Af Voltage graph
42.925

2.9 0.0033+0.0002 0.073%0.003

42915 Voltage
42.91

42.905 Graph 22 times better

42.9
0 20 40 60 80 100 120 140

Time [sec]

n=4896, d=24
42.955 42.95 on e - -——— - } ExaCt Af

42.95

42.945 42.94
42.94 42.93 q_‘_:—?_\ﬁ
e 0.9 — Exact Af Voltage graph

4293 0 1000 2000
42.925

12.9 1880480 69600+7000

42.915
42.91 . — VOItage

42.905 Graph 37 times Iarger

42.9
0 10000 20000 30000 40000 50000 60000 70000 80000

Number of evaluation

Evaluation

Graph Golf

Graph Golf 2016

Result (general graph)

* Run 1~4 hours of simulated annealing algorithm using the voltage graph

— Launch multiples times to change q,w, x,y, z

— Submit the best graphs forn = 100,000 in Graph Golf 2017, and updated
some of the records in Graph Golf 2016

Ordern Degree d Diameter k ASPL ASPL
(second best, last year best)
S { 100,000 32 4 3.706 3.709
8 100,000 64 4 3.015 3.016
1,024 8 5 3.500 3.505
1,024 11 4 3.05 3.06
1800 7 5 4.077 4.078
== 10,000 7 6 5.411 7 (diameter)
10,000 11 5 4.1064 4.1066
10,000 20 4 3.375 3.376
100,000 7 8 6.388 6.392
100,000 11 6 5.14 5.15
100,000 20 5 4.1326 4.1334

Open questions, conclusion

Why does the approximation usually work well?
When does the approximation does not work well?

How is the approximation related to other network analysis index such as edge
betweenness?

Is there any group other than semi-direct product to get good voltage graph?
Is there other mathematical way to obtain a graph with good structure?
Is there any better metaheuristic algorithm for the optimization by local search?

Propose an algorithm to compute fitness value
— 0(n? x d) time for exact Af and O(n x d) time for approximate Af
— 0(n X d) memory
— Use it for grid graph
Employ a voltage graph
— 0(n X d) time for exact evaluation
— 0(n xd) memory
— Use it for general graph
Thank you! and question?

