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1Graph Golf 2017

• Order/Degree problem

– Find a graph with minimum diameter and 

average shortest path length (ASPL)

– Given order/degree pairs

• Our results

– We submitted five best solutions

– We won General graph widest improvement 

and Grid graph deepest improvement
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2Results
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Rank Author Diam. ASPL

1 Our team 3 2.34582

3 Ibuki Kawamata 3 2.36352

1 344 nodes, degree 30

Rank Author Diam. ASPL

1 Our team 4 2.89823

5 Ibuki Kawamata 4 2.90153

4 896 nodes, degree 24

Rank Author Diam. ASPL

1 Our team 5 4.24654

3 Ibuki Kawamata 5 4.25334

9 344 nodes, degree 10



3Results
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Rank Author Diam. ASPL

1 Our team 6 4.88278

2 Ibuki Kawamata 6 4.88482

88 128 nodes, degree 12

Rank Author Diam. ASPL

1 Our team 7 5.35521

2 Ibuki Kawamata 7 5.35876

98 304 nodes, degree 10

16 nodes, degree 3, length 2
Rank Author Diam. ASPL ASPL gap

1 Our team 3 2.2 0

1 Nakano 3 2.2 0



Approach
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5Background

• Degree/diameter problem (DDP)

– Given degree/diameter

– Find a graph with largest order

• Brown’s construction & Cayley graphs

– Some DDP solutions are based on them
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6Approach

1. Brown’s construction

2. Cayley graph as a base

• We used these approach in Graph Golf 2016

– 2-opt requires a lot of time
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7Problem

• Brown and Cayley graphs

– Not always be applied for ODP

– Use them as a base graph

• To get ASPL optimized graphs

– Some alternation needed

1. Unite graphs

2. Node removing method

3. Node bisection method
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Why we use DDP
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9Heuristics for diameter 3 graphs

• Create a base graph

– Targeted diameter only 𝑘 = 3

– Multiple Petersen graphs are connected

• Greedily add edges

– To increase the # of pentagons

We described detail in Graph Golf 2015
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10What we did in Graph Golf 2016

• Problems on heuristics and 2-opt search

– Make graphs and do 2-opt search

– Execution time grows very rapidly

• Use Brown and Cayley graphs

– Won widest improvement award

– It will be useful if some alternation were 

applied

– By adding (or removing) nodes/edges
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1. Brown’s construction
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12Brown’s construction

• Described in [1] at Graph Golf 2015

– It can make a graph 𝐵(𝑞)
Order = 𝑞2 + 𝑞 + 1

Degree = 𝑞 + 1

Diameter = 2
𝑞: a prime
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[1] R. Mizuno and Y. Ishida, "The construction of a regular graph," 

http://research.nii.ac.jp/graphgolf/2015/candar15/graphgolf2015-mizuno.pdf



13Using Brown’s construction

• 1344 nodes, degree 30

– We use 𝐵(25) as a base

• 𝑛 = 651, 𝑑 = 26, 𝑘 = 2

– Uniting two 𝐵 25 and add nodes

• 2 × 651 nodes + 42 nodes 

– Add edges randomly

• Using approach described in [2]

– Result:  𝑘 = 3, 𝑙 = 2.3466
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[2] T. Matsuzaki et al., “Making smallest-diameter graphs at “Graph Golf“, 

http://research.nii.ac.jp/graphgolf/2016/candar16/graphgolf2016-matsuzaki.pdf



14Disadvantage of Brown’s construction

• It may be useful for graphs only 𝑘 = 3

• In Graph Golf 2017

– 𝑛 = 32, 𝑑 = 5, 𝑘 = 3

– 𝑛 = 256, 𝑑 = 18, 𝑘 = 3

– 𝑛 = 1344, 𝑑 = 30, 𝑘 = 3

• We couldn’t get good base graphs
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2. Cayley graph as a base
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16Cayley graphs
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Large (𝑑, 𝑘)-graph in DDP (degree/diameter problem) are Cayley graphs [3].

• Given  𝑚, 𝑛, 𝑟
where  𝑟𝑛 ≡ 1 mod 𝑚 ,  gcd(𝜙(𝑚), 𝑛) > 1

𝜙(𝑚): Euler’s totient function

• Given  bouquets

𝐵 1, 𝑙 = [(𝑎0, 𝑏0)|(𝑎1, 𝑏1)(𝑎2, 𝑏2)⋯ (𝑎𝑙 , 𝑏𝑙)] or 

𝐵 0, 𝑙 = [(𝑎1, 𝑏1)(𝑎2, 𝑏2)⋯ (𝑎𝑙 , 𝑏𝑙)]

• Order  𝑚𝑛

• Degree   2𝑙 + 1 if using 𝐵 1, 𝑙 , or 2𝑙 if using 𝐵 0, 𝑙

[3] E. Loz and G. Pineda-Villavicencio, “New Benchmarks for Large-Scale Networks with Given Maximum 

Degree and Diameter”, The Computer Journal, 53(7).



17Advantage of Cayley graphs
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• Fast diameter and ASPL computation

– Since Cayley graph is vertex-transitive,

single-source ASPL 𝑙′ = all-pair ASPL 𝑙.

– Using Dijkstra algorithm, single-source ASPL 𝑙′
can be calculated faster than all-pair ASPL 𝑙.

𝑙′ =
1

𝑛 − 1
 
𝑗=1

𝑛−1

𝑑0𝑗

𝑙 =
1

𝑛(𝑛 − 1)
 
𝑖=0

𝑛−1

 
𝑗=0

𝑛−1

𝑑𝑖𝑗

where 𝑑𝑖𝑗 is a path length between node 𝑖 and 𝑗



18Vertex-transitive
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a 1 2 1

b 1 1 2

c 2 1 1

d 1 2 1

For example: Square graph

Select a node as root and write like a tree

Distance table
𝑙′ =

1

4 − 1
 
𝑗=1

4−1

𝑑0𝑗 = 1.33

𝑙 =
1

4(4 − 1)
 
𝑖=0

4−1

 
𝑗=0

4−1

𝑑𝑖𝑗 = 1.33

4

16



19Disadvantages of Cayley graphs
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• Not optimal in general

For example of 256 nodes, degree 18 problem;

– 𝑘 = 3, 𝑙 = 1.938: Best of Competition

– 𝑘 = 3, 𝑙 = 1.984: Cayley graph 
𝑚 = 8, 𝑛 = 32, 𝑟 = 11,
B(0,9)=[(1, 17)(2, 25)(3, 28)(4, 21)(4, 29)(5, 13)(7, 11)(7, 16)(7, 28)]

– 𝑘 = 3, 𝑙 = 2.188: Random

• For non-arbitrary order 𝑚 × 𝑛
(𝑚, 𝑛, 𝑟) should satisfies 𝑟𝑛 ≡ 1 mod 𝑚 and  gcd(𝜙(𝑚), 𝑛) > 1.

– (𝑚, 𝑛, 𝑟) exist for orders: 250, 252, 253, 256, 258, 260

– not exist for orders: 251, 254, 255, 257, 259



20An example of Cayley graphs
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2.894

2.898

2.902

2.906

2.91

4840 4850 4860 4870 4880 4890 4900 4910 4920

Target: 4896 nodes, degree 24

Smallest ASPL: 2.896

(order 4872)

A
S

P
L

Order

• Select 4872 nodes graph as a base

• Make desired order/degree graph by adding nodes



2. Cayley graph as a base 

Node bisection method
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22Node bisection

1. Choose a node 𝑣

2. Divide 𝑑 neighbors of 𝑣 into

{𝑠1, … , 𝑠𝑑/2}, { 𝑡1, … , 𝑡𝑑/2}

3. Cut edges 𝑣-𝑡1 ⋯ 𝑣-𝑡𝑑/2

4. Add bisected node 𝑣′ and a edge 𝑣-𝑣′

5. Add edges 𝑣′-𝑡1 ⋯𝑣
′-𝑡𝑑/2

6. Add 𝑑/2 −1 edges randomly to 𝑣 and 𝑣′

respectively (except 𝑠, 𝑡, 𝑣, 𝑣′)

Nov. 22, 2017. CANDAR'17. Aomori, Japan.

𝑣

𝑠1

𝑡1

𝑡𝑑/2

𝑠𝑑/2

𝑠1

𝑡1

𝑡𝑑/2

𝑠𝑑/2

𝑣 𝑣′
𝑑/2 −1 edges

𝑑/2 −1 edges



23Node bisection
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a

b

d

c

1. Choose a node 𝑣

2. Divide 𝑑 neighbors of 𝑣 into

{𝑠1, … , 𝑠𝑑/2}, { 𝑡1, … , 𝑡𝑑/2}

3. Cut edges 𝑣-𝑡1 ⋯ 𝑣-𝑡𝑑/2

4. Add bisected node 𝑣′ and a edge 𝑣-𝑣′

5. Add edges 𝑣′-𝑡1 ⋯𝑣
′-𝑡𝑑/2

6. Add 𝑑/2 −1 edges randomly to 𝑣 and 𝑣′

respectively (except 𝑠, 𝑡, 𝑣, 𝑣′)

𝑡1
𝑣

𝑠1



24Node bisection
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1. Choose a node 𝑣

2. Divide 𝑑 neighbors of 𝑣 into

{𝑠1, … , 𝑠𝑑/2}, { 𝑡1, … , 𝑡𝑑/2}

3. Cut edges 𝑣-𝑡1 ⋯ 𝑣-𝑡𝑑/2

4. Add bisected node 𝑣′ and a edge 𝑣-𝑣′

5. Add edges 𝑣′-𝑡1 ⋯𝑣
′-𝑡𝑑/2

6. Add 𝑑/2 −1 edges randomly to 𝑣 and 𝑣′

respectively (except 𝑠, 𝑡, 𝑣, 𝑣′)

𝑠1

𝑡1

e

𝑣

𝑣′



25Node bisection
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1. Choose a node 𝑣

2. Divide 𝑑 neighbors of 𝑣 into

{𝑠1, … , 𝑠𝑑/2}, { 𝑡1, … , 𝑡𝑑/2}

3. Cut edges 𝑣-𝑡1 ⋯ 𝑣-𝑡𝑑/2

4. Add bisected node 𝑣′ and a edge 𝑣-𝑣′

5. Add edges 𝑣′-𝑡1 ⋯𝑣
′-𝑡𝑑/2

6. Add 𝑑/2 −1 edges randomly to 𝑣 and 𝑣′

respectively (except 𝑠, 𝑡, 𝑣, 𝑣′)

𝑠1

𝑡1

e

𝑣

𝑣′



26Node bisection

Target: 4896 nodes, degree 24

4872 nodes (Cayley graph) + 24 nodes
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2.895

2.8955

2.896

2.8965

2.897

2.8975

2.898

2.8985

4872 4874 4876 4878 4880 4882 4884 4886 4888 4890 4892 4894 4896

Start point: 2.89550

End point: 2.89825

A
S

P
L

Order

Apply 2-opt: 2.89823



2. Cayley graph as a base

Node removing method
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28Node removing (𝑛 nodes)
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: Cut the edge

1. Choose a node 𝑣 randomly

2. Cut edges 𝑣-𝑠1 ⋯ 𝑣-𝑠𝑑

3. Remove a node 𝑣

4. Add edges randomly

5. Repeat 1.-4. 𝑛 times 

𝑣

𝑠1

𝑠2

𝑠𝑑

𝑠1

𝑠2

𝑠𝑑



29Node removing

Target: 9344 nodes, degree 10

9360 nodes (Cayley graph) – 16 nodes
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4.2467

4.24675

4.2468

4.24685

4.2469

4.24695

4.247

4.24705

9344 9346 9348 9350 9352 9354 9356 9358 9360

A
S

P
L

Order

Start point: 4.2470

End point: 4.24680

Apply 2-opt: 4.24675



Pros and Cons
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31Pros and Cons

• Brown’s construction

– Small diameter (𝑘 = 2)

– It may be useful for graphs only 𝑘 = 3

• Cayley graphs

– Fast diameter and ASPL computation

– Can change order/degree by parameters

– Need technique to find a better one
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Conclusion
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33Conclusion

• Our results

We won General graph widest improvement 

and Grid graph deepest improvement

• Approach

1. Brown’s construction

• Uniting Two 𝐵 25 and add nodes

2. Cayley graph as a base

• Node removing method

• Node bisection method
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