Workshop in CANDAR'18, Hida Takayama, Gifu, Japan 2018-11-27

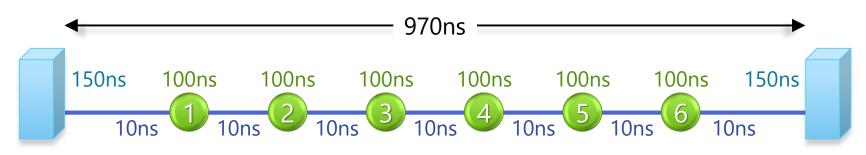
Graph Golf 2018 The Order/degree Problem Competition

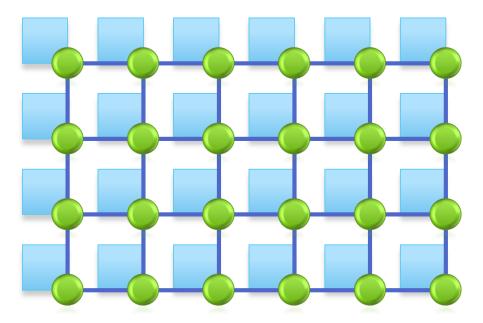
Timetable

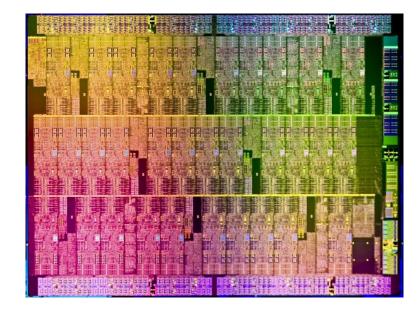
- 13:30-13:50
- <u>13:50-14</u>:20
- 14:20-14:40
- 14:40-15:00
- 15:00-15:20
- 15:20-15:30
- Introduction & Award ceremony Keynote *by Takeru Inoue* Winner's talk *by Masahiro Nakao* Winner's talk *by Toru Koizumi* Contributor's talk *by Masato Haruishi*
- Organizer's talk by Michihiro Koibuchi

Introduction

Graph Golf


- An online competition for the order/degree problem
- Aims at:
 - Building a catalog of "best" graphs
 - Sharing knowledge for creating small-diameter graphs
 - Connecting graph-theoreticians and computer engineers
- Past workshops
 - CANDAR '15, '16, '17
 - Intl. Symp. on Networks-on-Chip (NOCS 2016)
 - FIT 2016 (Japanese)
- NII News Release (Japanese)
 - https://www.nii.ac.jp/news/release/


Winners of the 2015 competition


Background

- Low-latency networks are desired in supercomputers
 - 1µs for 3M cores \doteqdot **7 hops for 100k nodes**

• On-chip networks will soon face the same problem

https://www.extremetech.com/extreme/171678-intel-unveils-72-core-x86-knights-landing-cpu-for-exascale-supercomputing

Degree/Diameter Problem (DDP)

- Given a diameter k and a degree d, find a graph with the largest order n.
 - Known solutions are listed in the Combinatorics Wiki

http://combinatoricswiki.org/wiki/The_Degree_Diameter_Problem_for_General_Graphs

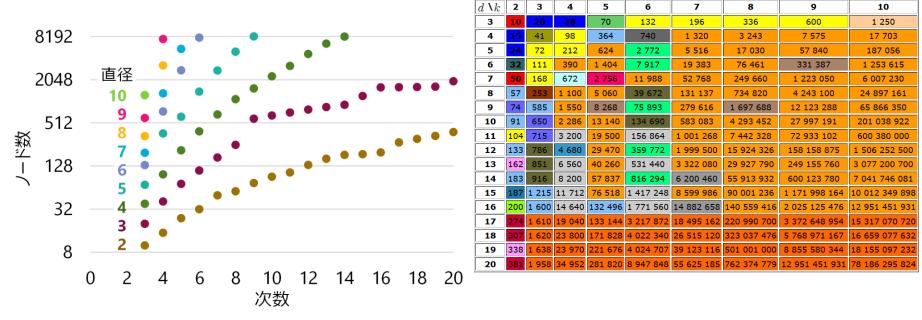
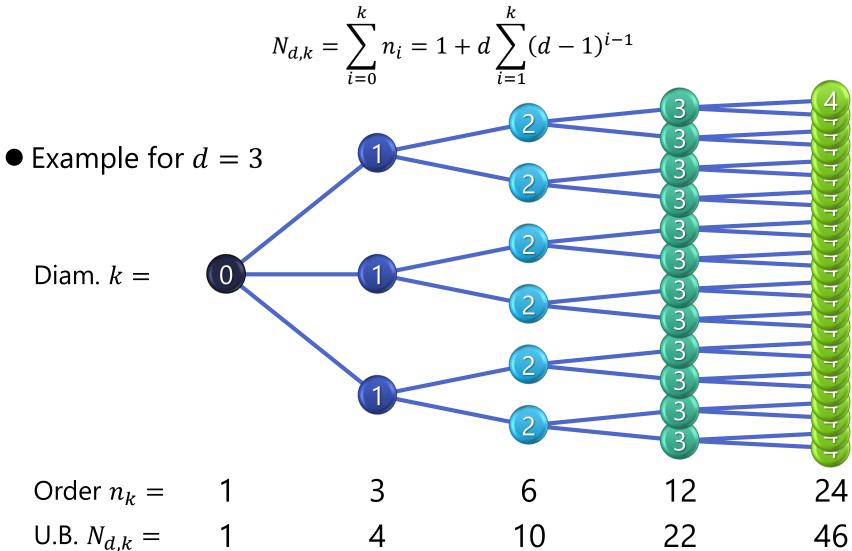
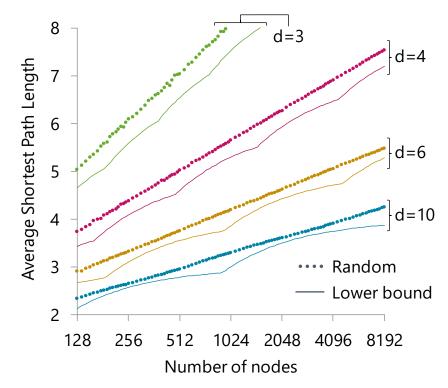



Table of the orders of the largest known graphs for the undirected degree diameter problem

- Solutions given are not very useful for interconnects
 - Because these orders don't fit hardware design


Moore Bound for DDP

• Given diameter k and degree d, the upper bound of the order n is

Order/Degree Problem (ODP)

- Given an order *n* and a degree *d*, find the graph with the smallest diameter *k*.
 - Among those with the same diameter, find the one with the smallest ASPL *l*.
- Gives useful solutions to design interconnects
 - However, theoreticians are not interested in ODP (why?)
- There can be better graphs than the random graphs

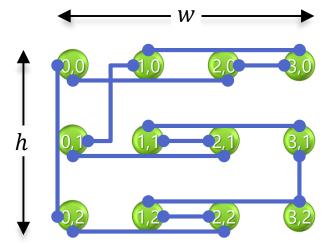
Moore Bound for ODP

• The lower bound $K_{n,d}$ of diameter k for order n and degree d

$$K_{n,d} = \begin{cases} \left[\frac{n-1}{2}\right] & \text{if } d = 2\\ \left[\log_{d-1}\left(\frac{(n-1)(d-2)}{d} + 1\right)\right] & \text{if } d > 2 \end{cases}$$

• The lower bound $L_{n,d}$ of ASPL l for order n and degree d

$$L_{n,d} = \begin{cases} 1 & \text{if } K_{n,d} = 1\\ \frac{\sum_{i=1}^{K_{n,d}-1} i d(d-1)^{i-1} + K_{n,d} \left(n-1-\sum_{i=1}^{K_{n,d}-1} d(d-1)^{i-1}\right)}{n-1} & \text{if } K_{n,d} \ge 2 \end{cases}$$


• ASPL gap p

$$p = \frac{l - L_{n,d}}{L_{n,d}}$$

ODP on Grid Graphs

• Given a degree d, find the graph with the smallest diameter k on a $w \times h$ grid, while keeping the lengths of each edge $\leq r$ in a Manhattan distance

- Example: $w \times h = 4 \times 3$, d = 2, r = 2

Award Rules

Improvement Award

- Who find the largest number of "best" solutions
- The best solution means a graph with the smallest diameter, and with the smallest ASPL among those with the same diameter, for each order/degree pair.

Who achieve the smallest ASPL gap over all the order/degree pairs

Deepest

Improvement Award

 Effectively, who achieve the ASPL gap = 0

2018 Problems & Rankings

The 2018 Problems

• General Graph Category

n	d	
72	4	Real on-chip network
256	5	
256	10	
2300	10	DDP (2286, 10)
3019	30	Real supercomputer
4855	30	Real supercomputer
12000	7	DDP (11988, 7)
20000	11	DDP (19500, 11)
40000	8	DDP (39672, 8)
77000	6	DDP (76461, 6)
132000	8	DDP (131137, 8)
200000	32	
200000	64	
400000	32	

• Grid Graph Category

w imes h	d	r		
4×16	4	4	For practice	
32×32	4	3	Length-bounded	
32×32	4	4	Balanced	
32×32	4	5	Moore-bounded	
16×64	4	4	Length-bounded	
16×64	4	5	Balanced	
16×64	4	7	Moore-bounded	
4×256	4	12	Length-bounded	
4×256	4	18	Balanced	
4×256	4	24	Moore-bounded	

Widest Improvement Rankings

• General Graph

Rank	Authors	#Best solutions
1	Masahiro Nakao	8
2	Masato Haruishi	6
3	Toru Koizumi	1
3	Teruaki Kitasuka, Masahiro lida	1

• Grid Graph

Rank	Authors	#Best solutions
1	EvbCFfp1XB	5
1	Nakano *	5

* Nakano is one of the organizers and excluded from the awards

14

Deepest Improvement Rankings

• General Graph

Rank	Authors	ASPL gap
1	Masahiro Nakao	0
1	Toru Koizumi	0
1	Teruaki Kitasuka, Masahiro lida	0
4	Masato Haruishi	0.0004810285252121

• Grid Graph

Rank	Authors	ASPL gap
1	EvbCFfp1XB	0.1125992063492065
2	Nakano *	0.6503390762463344

* Nakano is one of the organizers and excluded from the awards

15

Remarkable Achievements

16

• Featured Graphs

n	d	Diam. k	ASPL <i>l</i>	Diam. gap	ASPL gap	Found by
72	4	4	2.9859154929	0	0	Masahiro Nakao
256	5	5	3.4931372549	0		Masahiro Nakao
256	10	3	2.568627450		es a real	3 challengers
2300	10	5	3.5876468029	on-cnip	network!	Masahiro Nakao
3019	30	3	2.6932289447	0	0.0013800381	Masato Haruishi
4855	30	4	2.8088864673	1	0.0004810285	Masato Haruishi
12000	7	7	5 Optimi	izes a real	640220018	Masato Haruishi
20000	11	6	4.4 superc	omputer!	.1226286314	Masahiro Nakao
40000	8	7	5.4650116252	1	0.1184279606	Masato Haruishi

• Non-featured Graphs

n	d	Diam. k	ASPL <i>l</i>	Diam. gap	ASPL gap	Found by
2394	10	4	3.6005014625	0	0.0267446719	Teruaki Kitasuka
20468	11	5	4.4 Beat the	e best-knov	vn 69849025	Teruaki Kitasuka
80050	6	8	6.80. DDP	solutions!!!	63101600	Teruaki Kitasuka
137745	8	7	6.1304594029	1	0.3202026948	Teruaki Kitasuka

17

Award Ceremony

Masahiro Nakao

RIKEN Center for Computational Science General Graph Deepest Improvement Award

Toru Koizumi

The University of Tokyo

General Graph Deepest Improvement Award

Teruaki Kitasuka Hiroshima University and Masahiro Iida Kumamoto University

EvbCFfp1XB

Congratulations!!

Graph Golf 2018 Organizing Committee