

Search voltage graph for order degree problem

Masato Haruishi

CANDAR2018, Graph Golf workshop

27 Nov. 2018

Outline

- 1. What is graph golf?
- 2. Our graphs
- 3. Voltage graph
- 4. Our strategy
 - 1. Strengths
 - 2. Overview
 - 3. Flowchart
- 5. Source code

1.What is graph golf?

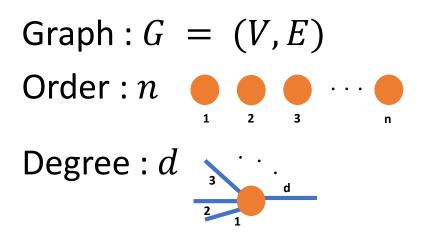
What is graph golf?

Graph Golf is an order/degree problem.

- The order/degree problem with parameters n and d: Find a graph with minimum diameter over all undirected graphs with the number of vertices = n and degree ≤ d.
- The person who looks for smaller **ASPL** and **diameter** will win.
- There are general graph and grid graph categories.
- I joined the general category.

Glossary

ASPL (average shortest path length):


The average of the shortest path lengths of all vertex combinations.

Diameter:

Maximum vertex distance of graph.

Definition of graph

Undirected and unweighted

Shortest path length : $s(v_1, v_2)$ for $v_1, v_2 \in V$

Diameter : $k = \max\{s(v_1, v_2) | v_1, v_2 \in V\}$

Average shortest path length :

L = average{s(v_1, v_2) | $v_1, v_2 \in V, v_1 \neq v_2$ }

2.Our graphs

Constant and the second second

Results

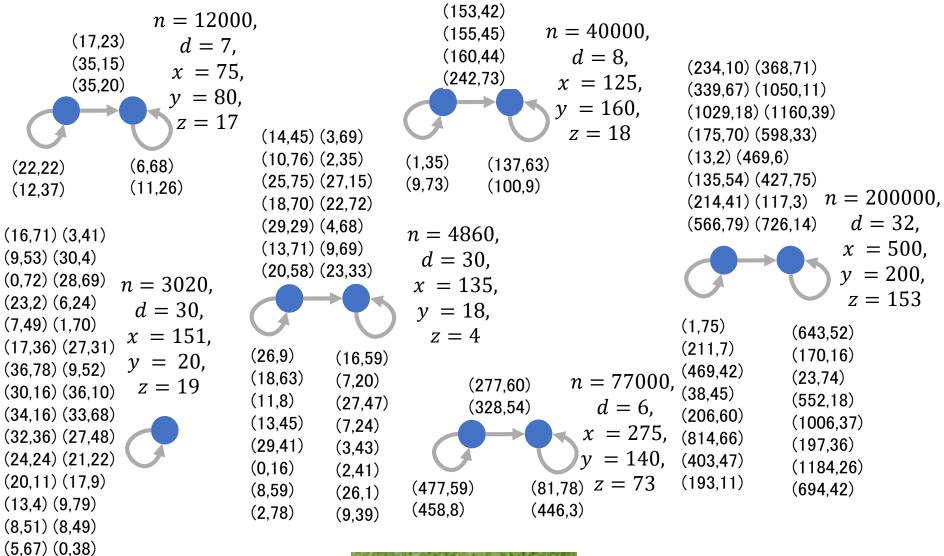
General Graph Widest Improvement ranking

	Rank	Author	Number of best solutions	
Ŧ	1	Masahiro Nakao	8	
	2	haruishi masato	6	
	3	Toru Koizumi	1	
	3	Teruaki Kitasuka, Masahiro lida	1	

General Graph Deepest Improvement ranking

	Rank	Author	ASPL gap	
Ŧ	1	Masahiro Nakao	0.0	
Ŧ	1	Toru Koizumi	0.0	
Ŧ	1	Teruaki Kitasuka, Masahiro Iida	0.0	
	4	haruishi masato	0.000481028525212146	

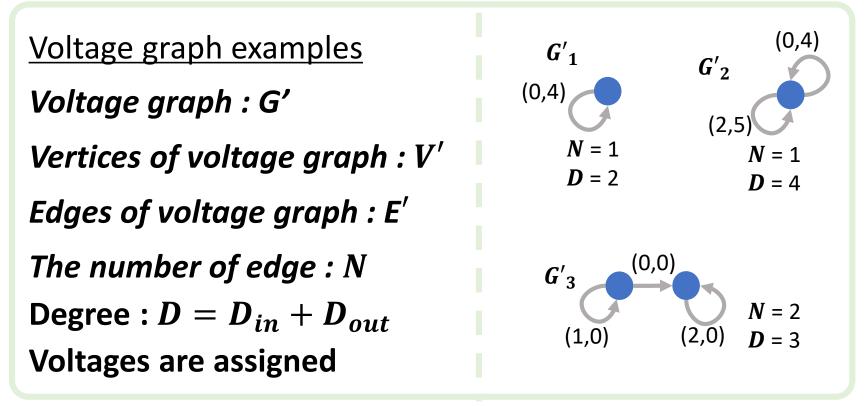
I won the second place of general graph widest improvement ranking and fourth place of general graph deepest improvement ranking.


Results

Order n	Degree <i>d</i>	Diam. k	ASPL <i>l</i>	ASPL gap
72	4	4	2.98592	0.00000
256	5	5	3.49314	0.02255
256	10	3	2.56863	0.00000
2300	10	5	3.58765	0.03132
3019	30	3	2.69323	0.00138
4855	30	4	2.80889	0.00048
12000	7	7	5.17601	0.26402
20000	11	6	4.44389	0.12263
40000	8	7	5.46501	0.11843
77000	6	9	6.83465	0.21499
132000	8	8	6.09465	0.29266
200000	32	5	3.84909	0.01326
200000	64	4	3.23627	0.25707
400000	32	5	3.99682	0.07890

I submit six best graphs such as a graph of order 3019 and degree 30.

Results



3.Voltage graph

Voltage graph

- a directed graph.
- contains edges labeled with voltage.

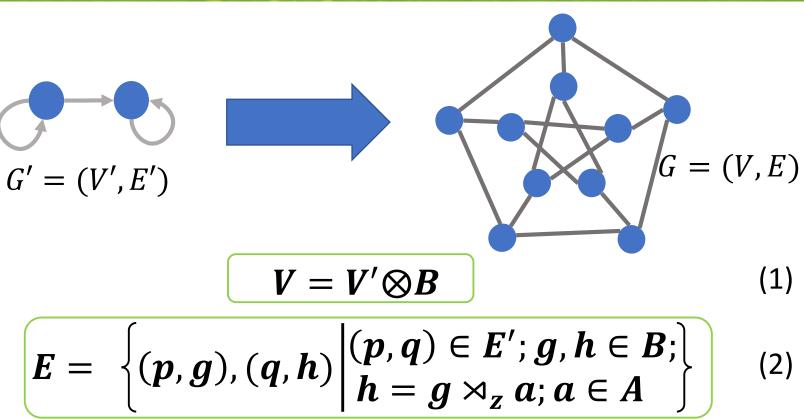
How to make a derived graph

Order :
$$n$$
 $n = Nk \ (k \in \mathbb{N})$ Degree : d $d = D$

Parameters : $x, y, z \in \mathbb{N}$ such that

$$k = xy$$

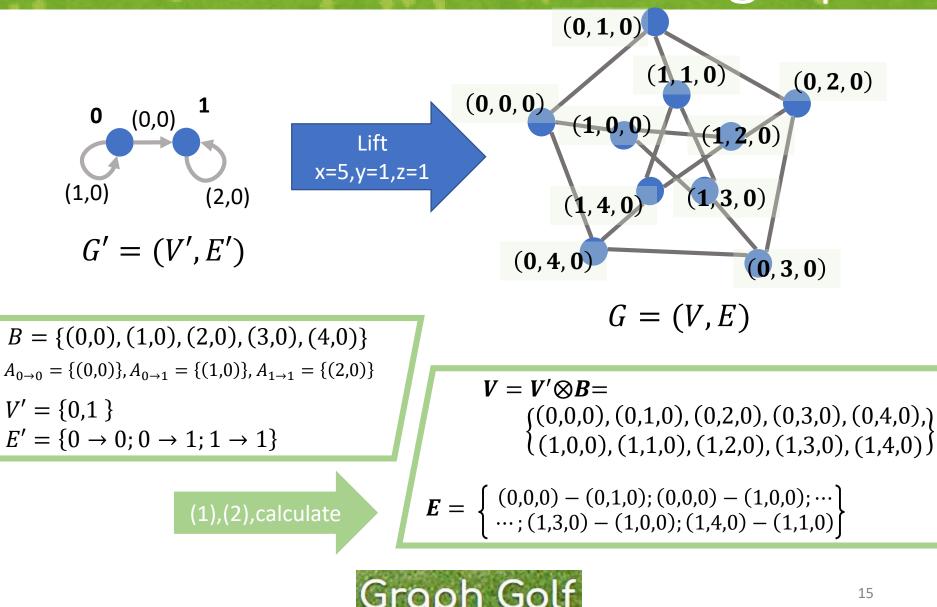
$$z^{y} \equiv 1 \mod x$$


Voltages : **B**

Assigned voltages : A

$$B = Z_x \otimes Z_y \quad (Z_x = \{i | 0 \le i \le x - 1\}, Z_y = \{i | 0 \le i \le y - 1\})$$
$$A \subseteq B$$

How to make a derived graph



The operator \rtimes represents semi-direct product

Defined as $(a, b) \rtimes_e (c, d) = (a + e^b c, b + d)$

How to make a derived graph

How to calculate ASPL

Breadth-first search

you can calculate the distance to a vertex and all other vertices.

Pseudocode	² 1.	function breadth-first search (v)
	2.	j = 0
	3.	$V \leftarrow 1$
	4.	Add v to the queue
	5.	While Queue is not empty do
	6.	$\mathbf{v} \leftarrow Retrieve$ from Q
	7.	for each Vertex i connected to v do
	8.	if i not visited then
	9.	Mark i as visited
	10.	j = j + 1
	11.	Add i to

Time taken to calculate ASPL

In case of the random graph.

- In order to obtain ASPL, we perform a Breadthfirst search at all nodes.
- The Breadth-first search consumes ${m O}({m nd})$ time.
- Since it must be done on all nodes, ASPL consumes $oldsymbol{O}oldsymbol{n^2d}$ time.

Time taken to calculate ASPL

In case of the derived graph.

• The derived graph are isomorphic from any vertex corresponding to the voltage graph.

• The Breadth-first search for obtaining the ASPL is only the number of vertices of the voltage graph. So, O(nd) time.

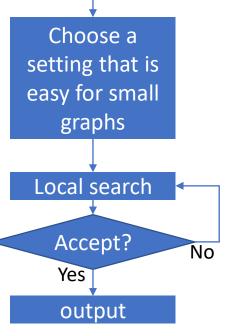
4. Our strategy

Strengths

There are many sets of parameters.

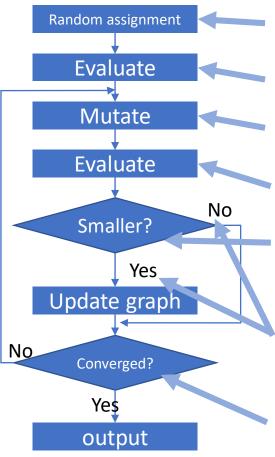
- For example, N = 2 and n = 20000, there are 7140 kinds, such as (x, y, z) = (200, 50, 31).
- However, most sets can't make good graphs.
- Therefore, calculate every parameters lightly.
- Then choose a parameter that can make good graphs.
- Search the selected parameters thoroughly.
- As a result, good graphs can be made with little time.



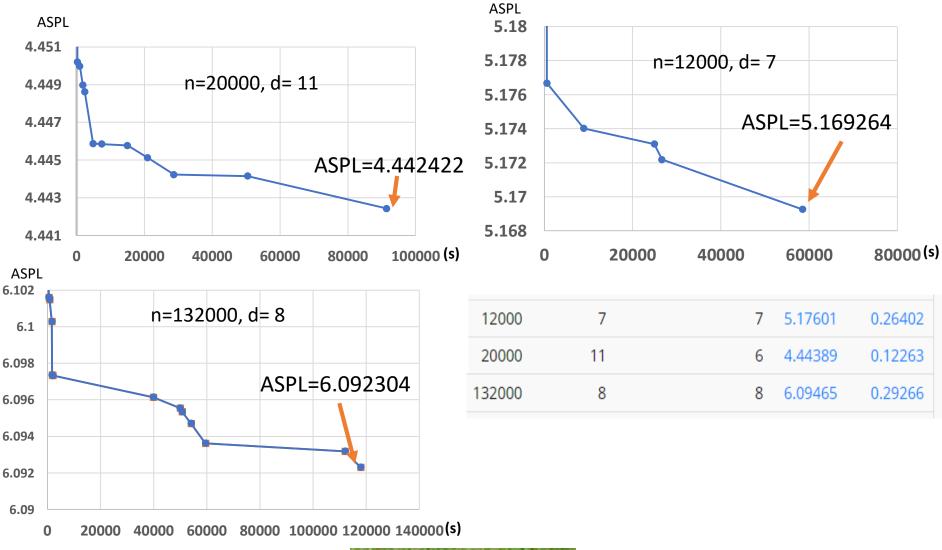

Overview

- Determine the initial values.(parameters and voltage graph)
- 2. Randomly assign voltages to voltage graph.
- 3. Perform local search until convergence.
- 4. Do 2 and 3 several times.
- 5. Try all combinations of initial values.
- 6. Choose an initial values that can create a small graph.
- 7. Repeat steps 2 and 3 with the initial values found in 7.

Flowchart



- This is the flowchart of my strategy.
- Search all parameters x, y and z to reduce uncertainty factors.

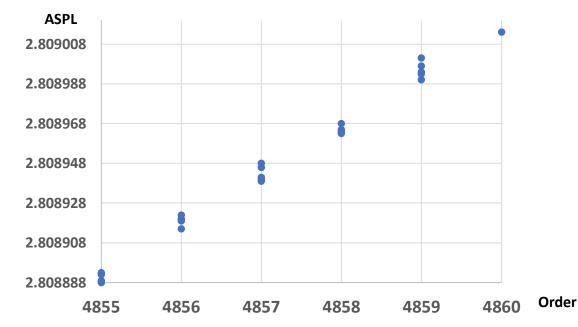

Local search

- 1. Generate a derived graph randomly.
- 2. Calculate the diameter of the graph and ASPL.
- 3. Make a little change in voltage set.
- 4. Calculate the diameter and ASPL.
- 5. Judged whether the graph has become small.
- If it is smaller, update the graph. If it is big, cancel the change.
- 7. It is determined whether or not convergence has occurred.
- 8. If it is not the end go back to 3.

Convergence

What I noticed (1/3)

- In voltage graph, Orders with many divisors give good results.
- I could not make a good graph at n= 4855.
- However, *n*= 4860 got a good graph.


As the number of divisors increases, the number of parameter sets also increases.

Therefore, we predict that good graphs are easy to calculate.

What I noticed(2/3)

• Deleting one order lowers ASPL.

• At the time of z = 1, I could not get a good graph.

What I noticed (3/3)

[Which voltage graph is better?]

- The voltage graph I used is N = 2 and N = 1.
- In some orders, N = 4 or N = 8 was better. (Specifically, 256 is N = 4. 20000 is N = 8.)
- There were other good voltage graphs, but it was not enough time to find out properly.

5. Source code

Constant Williams

Source code

[URL]

https://github.com/Haruishimasato/voltagegraph/tree/Haruishimasato-programs

• I release the program on GitHub.

References

[1] Teruaki Kitasuka, Takayuki Matsuzaki, and Masahiro Iida (2018), Order Adjustment Approach using Cayley Graphs for the Order/Degree Problem. advance publication, IEICE trans. on Information and Systems.DOI: 10.1587/transinf.2018PAP0008

[2]Ibuki Kawamata (2017), Approximate evaluation and voltage assignment for order/degree problem

Graph Golf workshop, CANDAR 2017. <u>http://research.nii.ac.jp/graphgolf/2017/candar17/graphgolf2</u> <u>017-kawamata.pdf</u>

