Simulated annealing for Graph Golf

Toru Koizumi

Graduate School of Information Science and Technology The University of Tokyo

Introduction and my result

- Given number of vertex (n) and degree (d),
 - find the small diameter graph,
 - and minimize Average Shortest Path Length (ASPL, *l*).

Diameter = 2ASPL=1.571 (opt.)

- Average Shortest Path Length (ASPL, *l*) has a theoretical lower bound (*L*).
 - "ASPL gap" $(l L \ge 0)$
- For general graph with small n, we may be able to find a optimal solution (l = L).
- I am a beginner \rightarrow Target to 'Deepest Improvement'

General graph with small n

• I focused on these three problem.

Order <i>n</i>	Degree d	Length <i>r</i>	Diam. <i>k</i>	
72	4			4
256	5			5
256	10			3

• I thought (n=72,d=4) is the easiest but actually (n=256, d=10) is the easiest.

I got optimal solution for (n=256, d=10) 6/22

256 nodes, degree 10

	Rank	Author	Diam. <i>k</i>	ASPL <i>l</i>	Diam. gap	ASPL gap	Info.	Date (UTC)	Week
	1	Haruishi masato	3	2.56863	0	0.00000	۵ 🗨 🗩	2018-08-13 09:05:21	33
	1	thai9cdb	3	2.56863	0	0.00000	•	2018-07-29 13:08:27	30
¥	1	Toru Koizumi	3	2.56863	0	0.00000		2018-06-12 01:36:40	24
¥	1	Toru Koizumi	3	2.56863	0	0.00000		2018-06-12 01:33:30	24
¥	1	Toru Koizumi	3	2.56863	0	0.00000		2018-06-11 14:52:50	24
¥	1	Toru Koizumi	3	2.56863	0	0.00000		2018-06-11 14:50:46	24
¥	1	Toru Koizumi	3	2.56863	0	0.00000		2018-06-11 14:48:06	24
×	1	Toru Koizumi	3	2.56863	0	0.00000	() ()	2018-06-11 14:42:56	24
*	1	Teruaki Kitasuka, Masahiro lida	3	2.56863	0	0.00000	● 🖗 🗎 ≻_	2018-05-15 09:40:41	20
*	1	Masahiro Nakao	3	2.56863	0	0.00000	∎	2018-05-15 05:11:20	20

My approach

Random Graph

• Random graph has a ASPL that is not bad but far away from optimal solution.

Distribution of ASPL (random graph, n=256, d=10)

Search for optimal graph

- Random search cannot achieve optimal graph
 - Probability is $\sim 10^{-530}$ (n=256, d=10)
- Adopt simulated annealing
 - ? The Neighbors of a state
 - ? Probability distribution
 - ? Transition probabilities
 - ? Cooling schedule

The Neighbors of a state

- 10/22
- The neighbors of a optimal solution must be good solutions
- Should(?) consider the constraint of degree
 - Every vertex has d edges

• 2-opt is the simplest choice

Probability distribution

11/22

- Most popular choice: canonical ensemble
- Preparation: normalize graph related values

• Unit of ASPL
$$k \coloneqq \frac{2}{n(n-1)}$$

• ASPL gap $E(G) \coloneqq ASPL(G) - ASPL_{lower bound}$

•
$$\frac{\mathrm{E}(G)}{k} \in \mathbb{Z}_{\geq 0}$$

• The probability distribution

$$p(T;G) \propto e^{-\frac{E(G)}{kT}}$$

Transition probability

- Use Metropolis-Hastings algorithm
- One of the transition probability for realizing p(T; G)

$$A(T; G, G') = \begin{cases} 1 & for \ E(G) \ge E(G') \\ e^{-\frac{E(G') - E(G)}{kT}} & for \ E(G) < E(G') \end{cases}$$

Cooling schedule

- Most popular way: Exponential cooling
- This is a bad choice.
- Why?

Review of statistical physics

- Number of state $W(E) \coloneqq #\{G | E(G) = E\}$
- Entropy $S(E) \coloneqq k \log W(E)$

(V is always constant because we are calculating on canonical ensemble)

Entropy of graph (n=256, d=10)

Entropy of graph (n=256, d=10)

Entropy of graph (n=256, d=10)

17/22

 $E \vee s\left(\frac{\partial s}{\partial E}\right)$ and T (n=256, d=10)

• How far should we lower the temperature?

•
$$T = \frac{1}{\left(\frac{\partial S}{\partial E}\right)} \sim 0.26$$
 at $E = 0$

 \rightarrow calculate with *T*~0.26

Why not exponential cooling

- Using exponential cooling takes very long time to achieve an optimal solution because there are very few E~0 states.
- It is better to quickly cool down when E is small.

Annealing results

- According to theory,
 - $T \ge 0.30$ cannot achieve optimal solution.
 - $T \leq 0.25$ can achieve optimal solution

In fact,

- (n=256, d=10) problem is very easy
- Even greedy method (in other words, simulated annealing with T=0) can achieve optimal solution

- Simulated annealing is simple (but insufficient) way to find optimal solution
- Some configurations can be diverted general purpose one
 - 2-opt
 - Canonical ensemble
 - Metropolis-Hastings algorithm
- It is better to quickly cool down where it is close to optimal solution

Appendix: Entropy of graph (n=72, d=4)23/22

