

Conservative Interconnect of Large-scale HPC systems

Kohta Nakashima Fujitsu Laboratories Ltd. 2019.11.26

Copyright 2019 FUJITSU LABORATORIES LIMITED

2 data flow shared the link

For cost

Small # of switches and links can reduce system cost

Smaller diameter and average shortest path length improve the HPC system performance and cost

Copyright 2019 FUJITSU LABORATORIES LIMITED

1.0us

 $1.0+0.2 \times 4 = 1.8 \text{us}$

Interconnect technologies are important for HPC systems

For performance

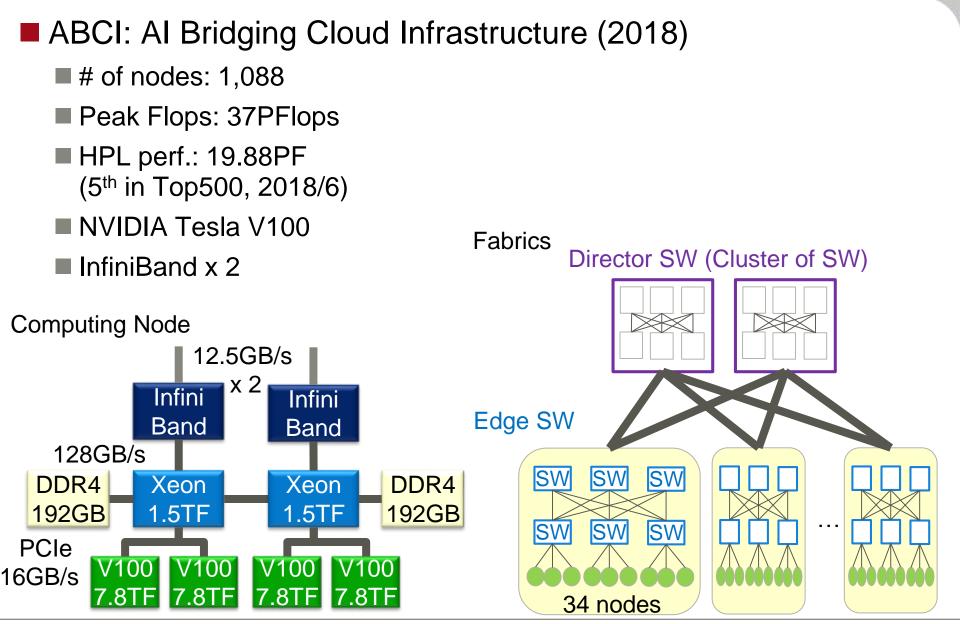
Introduction

Low latency and high bandwidth can improve system performance

- Latency (InfiniBand):
 - Direct connection: 1us
 - Switch latency: 0.2us/switch
- Throughput:
 - Average shortest path length affects throughput

UJITSU

Outline



Introduction

- Example of HPC systems
- Network topologies for HPC systems
- The reason why the HPC networks are so conservative
- How to explorer to innovate HPC networks

Example of supercomputer in Japan (1)

Example of supercomputer in Japan (2)

Oakforest-PACS (2016)

- # of nodes: 8,208
- Peak Flops: 25PFlops
- HPL perf.: 13.55PF (6th in Top500, 2016/11)
- Xeon Phi 68 cores/1.4GHz
- OmniPath 100Gbps(12.5GB/s)

Copyright 2019 FUJITSU LABORATORIES LIMITED

20 systems in Top500 list

Topology		Interconnect		
Fat Tree:	16 systems	InfiniBand:	7 systems	
Dragonfly:	3 systems	OmniPath:	5 systems	
Torus:	1 system	Aries(Cray):	3 systems	
		■ TX2: 1, BXI: 1, 0	TX2: 1, BXI: 1, Custom: 2	

Rank	Name	Fabric	Rank	Name	Fabric
1	Summit	Fat Tree/IB	11	PANGEA III	Fat Tree?/IB
2	Sierra	Fat Tree/IB	12	Sequoia	Torus/Custom
3	TaihuLight	Fat Tree/Custom	13	Cori	DF/Aries
4	Tianhe-2A	Fat Tree/TX2	14	Nurion	Fat Tree/OPA
5	Frontera	Fat Tree/IB	15	Oakforest-PACS	Fat Tree/OPA
6	Piz Daint	DF/Aries	16	HPC4	Fat Tree?/IB
7	Trinity	DF/Aries	17	Tera-1000-2	Fat Tree/BXI
8	ABCI	Fat Tree/IB	18	Stampede2	Fat Tree/OPA
9	SuperMUC-NG	Fat Tree/OPA	19	Marconi	Fat Tree/OPA
10	Lassen	Fat Tree?/IB	20	DGX SuperPOD	Fat Tree?/IB

DF: Dragonfly, IB: InfiniBand, TX2: TH Express 2, OPA: OmniPath, BXI: Bull Exascale Interconnect

Other topologies

16 Fat Tree, 3 Dragonfly, 1 Torus in Top20

Others

- Dragonfly+
 - Gadi, National Computational Infrastructure (NCI Australia), #47
 - Niagara, University of Toronto, #76

Hypercube

• Eagle, National Renewable Energy Laboratory, 8D Hypercube #43

Top500: Fat Tree, Dragonfly, Torus, Dragonfly+, Hypercube

- Fat Tree: Almost all systems
- Dragonfly: Cray users
- Torus: Fujitsu FX series, IBM BlueGene, and Sugon users
- Dragonfly+: Challenging users with Mellanox InfiniBand
- Hypercube: A part of SGI users

Fabrics

Open

- Third party can purchase it and integrate the system using the fabrics
- InfiniBand (Mellanox) and OmniPath (Intel)

Fabric	Vendor	Тороlоду
InfiniBand	Mellanox	Fat Tree, Dragonfly+, Torus, Hypercube, etc
OmniPath	Intel	Fat Tree

Custom

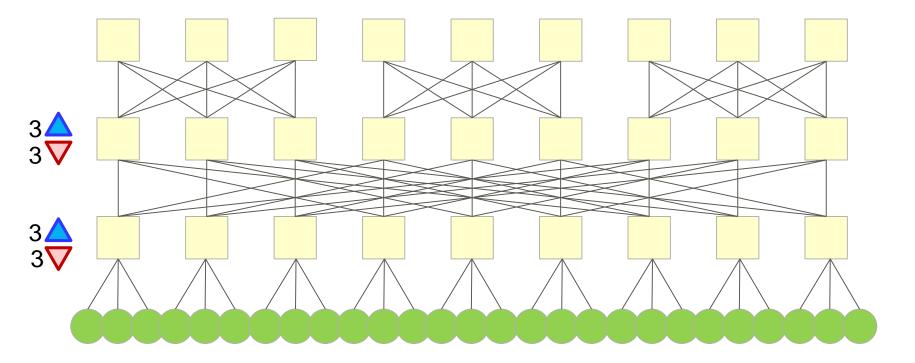
Vendor only provides the system integrated by the fabrics

Fabric	Vendor	Тороlоду		
Aries/Slingshot	Cray	Dragonfly		
BXI (*)	Atos	Fat Tree		
Tofu	Fujitsu	Torus		
(* BXI: Bull eXascale Interconnect, Bull was purchased by Atos				

Outline

Introduction

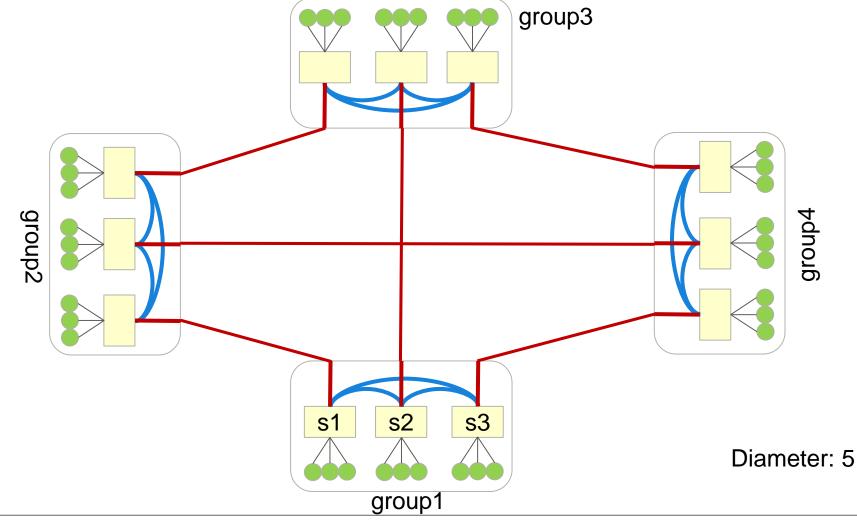
Example of HPC systems


Network topologies for HPC systems

- The reason why the HPC networks are so conservative
- How to explorer to innovate HPC networks

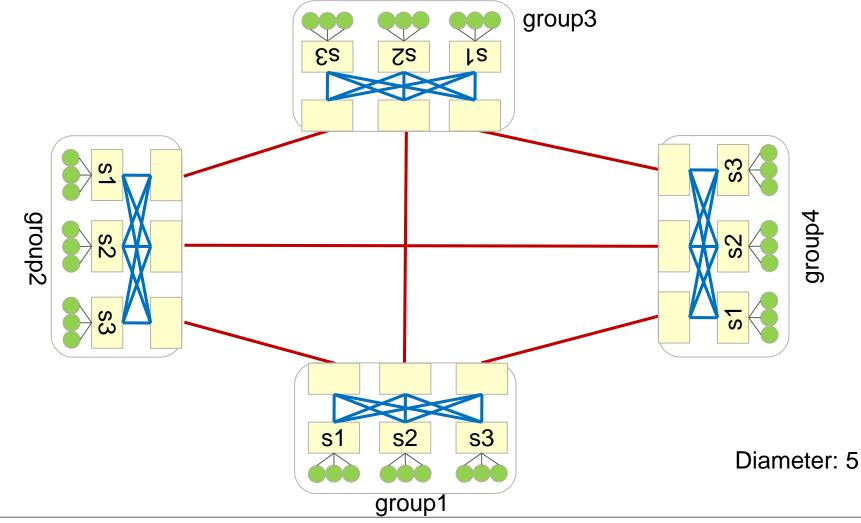
Fat Tree

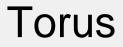
Non blocking, if # of ports for uplink and downlink is same
Configurable for performance, cost



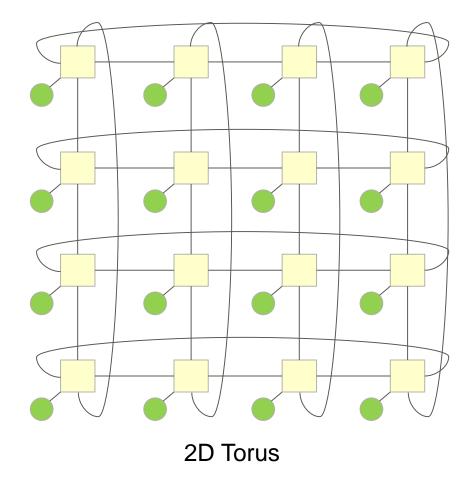
Diameter: 6

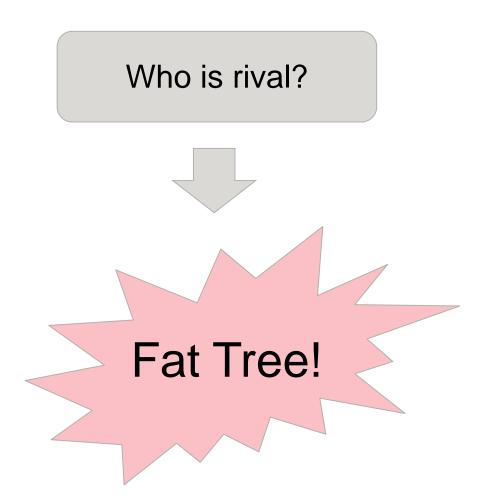
Dragonfly


Local: Local switches are connected directly in groupGlobal: Groups are connected directly



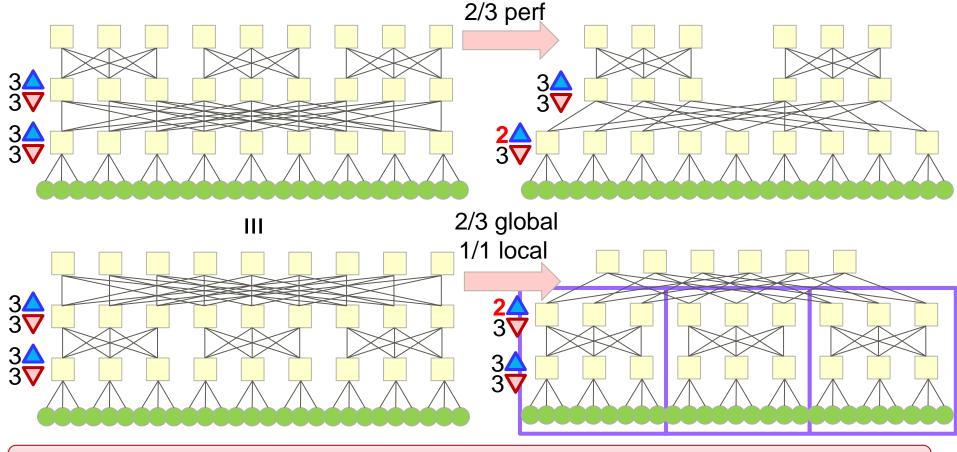
Dragonfly+


Local: Local nodes are connected by Clos (like Fat tree)Global: Groups are connected directly



Scalable, easy to connect physically for 10,000+ nodes

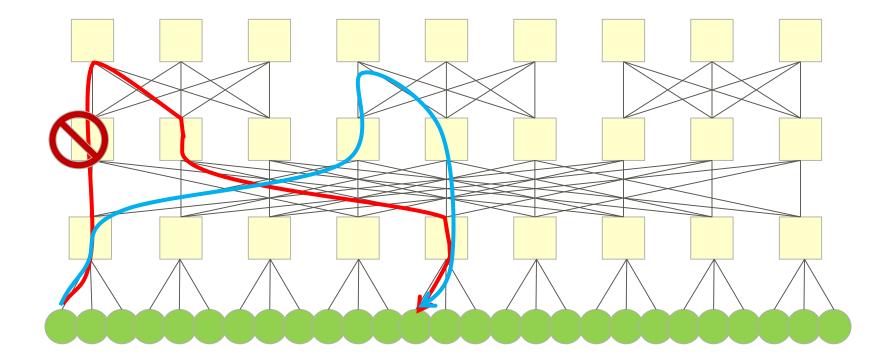
My recommendation for customers/colleagues


- > 16,000 nodes or Fujitsu FX series customer
 - Torus
 - Easy for physical installation
- **16,000 ~ 800**
 - For major customer
 - 3-level Fat Tree
 - Mature
 - For challenging customer
 - DF/DF+
 - DF+: Mellanox support
 - < 800 nodes
 - 2-level Fat Tree
 - Perfect

Detail of Fat Tree features (1)

FUjitsu

Easy to configure balance between performance and costEasy to explain the configuration of fabric

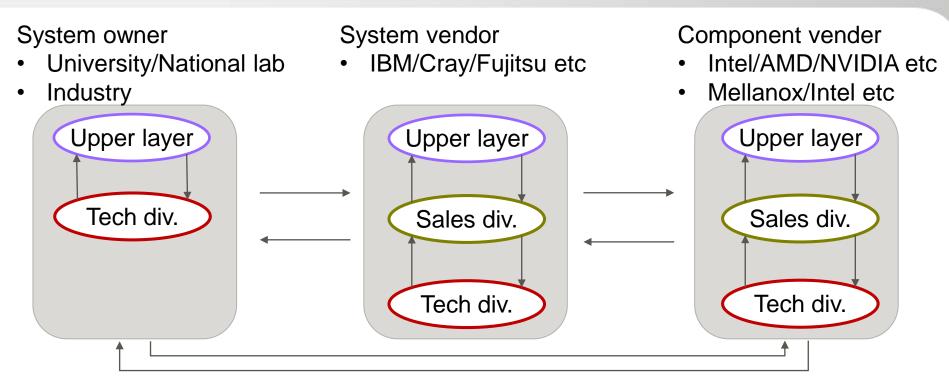


Sales engineer can configure the fabric for customer easily

Detail of Fat Tree features (2)

Easy to explain the behavior if some links or switches failed

Outline


Introduction

- Example of HPC systems
- Network topologies for HPC systems

The reason why the HPC networks are so conservative

How to explorer to innovate HPC networks

Road to decide configuration of HPC system suffront

- Define specification for the procurement
- Explain suitable purpose of the system
- Propose the system design
- Explain whether the procurement is good for business
- Consult and promote components

Important to convince various stakeholders

Why the HPC networks are so conservative Fujirsu

Because Fat Tree is very suitable for HPC systems

- Easy to explain for the design
- Easy to configure cost and performance
- A little expensive but mature

Because stakeholders are conservative

- Hard to challenge the novel technologies with high risk because total budget of system is very high (1~1,000 M\$)
- Stakeholders
 - System owners
 - System vendors
 - Component venders

Outline

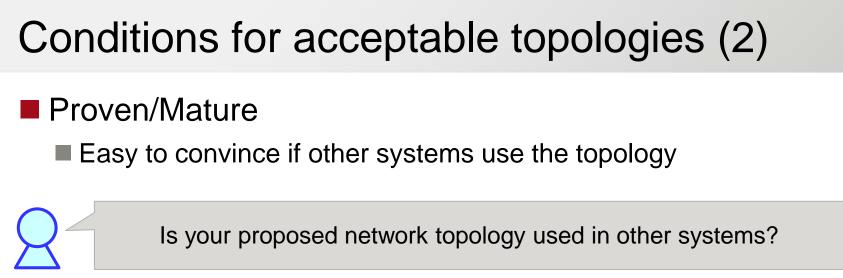
Introduction

- Example of HPC systems
- Network topologies for HPC systems
- The reason why the HPC networks are so conservative

How to explorer to innovate HPC networks

Conditions for acceptable topologies (1)

FUjitsu


Easy to understand

- Easy to configure the performance and cost
 - For not only engineers but also sales division
 - Without simulation, only use paper and pencil

Feel low risks

- Simple logic for routing, deadlock avoidance, and fault tolerant
- Easy to find another routing if some links failed

Feel relieved somehow...

Sure, X university and Y national laboratory used it.

(OK, I will ask my friend worked for X university)

How about the topology in X university?

It is good! No problem.

How to make stakeholders adopt novel topology? (1) jirsu

Strategy 1 : Collaboration with interconnect vendor

Pros

- If the topology has strong advantage compared to other topology, it can motivate interconnect vender to support.
- If interconnect vendor support the topology, system owners and system venders feel low risk and relieved

Cons

- If the topology reduce # of switches and/or links, it may be unacceptable for interconnect vender
- Almost all good topology can reduce # of switch; hard to accept to support it for interconnect vendor

Example of success: Dragonfly+ by Mellanox

How to make stakeholders adopt novel topology? (2) jirsu

Strategy 2 : Verification of usefulness of the topology through research collaboration with understanding customers

Pros

- Customers who are also research institutions jointly verify usefulness, so they are easy to accept
- If the customers are authority of interconnect, other customers may accept the topology

Cons

- Requires the system for verification for research collaboration
 - The system requires 100s computing nodes and switches...
 - Total cost: at least several million dollars...
- The system cost of verification:
 - For customer: Too high. Because the verification may fail
 - For system vendor: Too high as an investment, other customer may not accept the topology even if the verification succeeded

How to make stakeholders adopt novel topology? (3) jirsu

Strategy 3 : National project for supercomputing

Pros

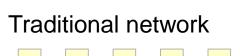
High probability of success because of huge investment

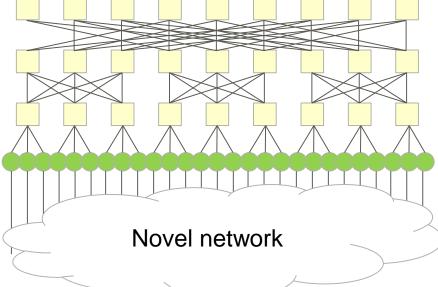
Cons

- Unacceptable too high risk technologies because of huge investment
- If the technologies for the project focus only huge systems, the merit of the technologies for mid-range systems may decrease...

Example of success:

- Dragonfly: XC30(Cascade), HPCS Project in DARPA, USA
- 6D-Mesh/Torus: Tofu K computer, National project for HPC in Japan


Summary and proposal


Summary: HPC interconnect is very conservative

- Fat tree is very suitable for practical HPC systems
- Stakeholders do not like take a risk

Proposal

- Network combination
 - Traditional network guarantees the minimum performance and fault tolerance
 - Novel network performs excellent performance

- Additional evaluation value for the novel network
 - Diameter and average shortest path length with failure switches and links
 - Worst case results when n switches/links failed

FUJTSU

shaping tomorrow with you