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Graph Golf (Order/Degree Problem)

Graph Golf as optimization problem 
• Given:  

Order of graph:  

Maximum degree of graph:  
• Minimize: 

Diameter of graph 
Average Shortest Path Length(ASPL) 

• Note: 
Diameter has higher priority than ASPL. 
Smaller Diameter ≠ Better ASPL.
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Difficulties in Graph Golf

• Vast search space 

At least  optimal solutions exist. 
• Objective function is not convex. 
• One edge can change many shortest paths. 

Every modification to the graph requires entire 
recalculation of ASPL/Diameter. 

• The calculation time required for ASPL/Diameter 
is polynomial, but  is so large (up to 1e6)
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My Results

• I found 5 best solutions

Order n Degree d Diameter ASPL ASPL gap

50 4 4 2.64082 0.04898

1726 30 3 2.47921 0.01834

9344 6 7 5.48822 0.11436

65536 6 9 6.73615 0.18302

100,000 8 7 5.94733 0.20869
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Deepest Improvement



Approach

• Find better solution by Simulated Annealing from 
multiple initial solutions. 

• Design symmetric and memory-efficient graph, in 
order to, 
1. Reduce theoretical calculation time 
2. Avoid memory bandwidth bottleneck 

• Make use of GPU for ASPL calculation, achieved  
about 700x faster than single thread naive CPU 
implementation



Design of Graph

• I designed “part shift graph”, similar to Cayley Graph 
• Vertices have indices  
 
Indices are regarded as elements of cyclic group  

• Show an example of  

• Choose size of “part”  from divisors of  
• Then construct a “part”.

0…n − 1

Zn

(n, d) = (12,4)
m = 3 n

1 2 3 4 50 6 7 8 9n-1



Design of Graph

• “part” is a subgraph, all edges join  vertices.0…m − 1
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Design of Graph

• Copy & Shift the part by m( = 3)
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Design of Graph

• Copy & Shift the part by m( = 3)



Design of Graph

• Erase duplicated edges

Diameter: 2 
ASPL: 1.63636



Design of Graph

• This graph is symmetric, thereby All Pairs Shortest Path 
problem can be solved by Single Source Shortest 

Path(SSSP) problem  times.m



Design of Graph

• This graph is symmetric, thereby edge data requires 

only  space.O(md)



Design of Graph

•  is such a small number that  edge data can 
be stored in the cache.
m O(md)

Order n Degree d Diameter ASPL ASPL gap m

50 4 4 2.64082 0.04898 50
1726 30 3 2.47921 0.01834 2
9344 6 7 5.48822 0.11436 16
65536 6 9 6.73615 0.18302 64
100,000 8 7 5.94733 0.20869 (4,5)
4855 15 4 3.42917 0.13066 5

1,000,000 32 5 4.33066 0.34858 64



Simulated Annealing: Overview

• I’m a beginner of Simulated Annealing 
• Representation of solution: “part” 
• Cooling Schedule: Exponential Cooling 
• Initial Temperature: Determined by experiments 
• # of iteration: Determined by experiments (3M~10M) 
• Energy: Difference of ASPLs



Simulated Annealing: Initial Solution

• “part” can be represented as weighted order  graph 

• Generate random graph and convert it into a “part” 
• Weight is difference of indices.
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Simulated Annealing: The Neighbors of State

• 2 types of the neighbor 
1. Modify a weight of single edge
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Simulated Annealing: The Neighbors of State

• 2 types of the neighbor 
2. Cut 2 edges and reconstruct 2 edges
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ASPL Calculation

• Average Shortest Path Length(ASPL) of Graph  is 
defined as 

• The calculation of All Pairs Shortest Path is needed. 
• Calculation time is enormous 

• Floyd–Warshall algorithm:  

• Solving SSSP for all vertices:  

• Solving SSSP for all vertices of the “part”:  
• Parallelization is required

(V, E)

O(n3)
O(n2d)

O(nmd)

ASPL(V, E) =
∑u∈V ∑v∈V d(u, v)

n(n − 1)



• Parallelization is required 
• Somehow, my laboratory PC has two Geforce GTX 780 
• I got four PCs equipping Geforce GTX745  
 
 
 
 
 

• I implemented CUDA code inspired by Beamer’s Bottom-up 
Algorithm

OS: Ubuntu18.04 
CPU: i7-4790 3.6GHz 
RAM: 8GB 
GPU: Geforce GTX745

Why GPU Acceleration?



Parallel Top-Down BFS
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Parallel Top-Down BFS

Find unvisited vertices from each vertex in the frontier

1

2

3

4
5

0

6 7

frontier next

frontier visited unvisited

5 6 7 1Atomic operations needed

Wasted edge traversals



Find frontier vertices from each unvisited vertex

Beamer’s Algorithm (Bottom-up BFS)
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Find frontier vertices from each unvisited vertex

Beamer’s Algorithm (Bottom-up BFS)
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Find frontier vertices from each unvisited vertex

Beamer’s Algorithm (Bottom-up BFS)

1

2

3

4
5

0

6 7

frontier next

frontier visited unvisited

3 2 4 5 6 7

 Wasted edge traversals reduced

No atomic operation needed



Find frontier vertices from each unvisited vertex

Beamer’s Algorithm (Bottom-up BFS)
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Optimization for CUDA 

• Beamer’s Bottom-up Algorithm is less efficient for 
ASPL calculation with CUDA because 
1. visited/unvisited flag is 1 bit information, but each 
edge traversal cause 32 byte memory access. 
Memory bandwidth limits performance. 

2. branch divergence gets most of the CUDA cores 
assigned to vertices idle. 

• To maximize efficiency, perform multiple SSSP at once.



Assign bit vectors for all vertices

Optimization for CUDA 
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Set  th bit of  th vector “1”i i

Optimization for CUDA 

B0
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0 (unvisited) 1 (visited)



Update vectors with bitwise OR of neighbors

Optimization for CUDA 

iter :1
B1

B5

B3

B4

0 (unvisited) 1 (visited)
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6 7
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1 (updated)

← | | |



Optimization for CUDA 
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0 (unvisited) 1 (visited) 1 (updated)

iter :1
Update vectors in parallel



In  th iteration, # of       corresponds # of distance  pairst t

Optimization for CUDA 
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#       :24



Optimization for CUDA 
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Optimization for CUDA 

B0

B1

B5

B3

B2
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0 (unvisited) 1 (visited) 1 (updated)

Update with bitwise OR of neighbors
iter :3
#       :8



Optimization for CUDA 

Terminate iteration when all bit get “1"
iter :4
#       :0

B0

B1

B5

B3

B2

B6

B4

B7

0 (unvisited) 1 (visited) 1 (updated)



Optimization for CUDA 

ASPL :
24 ⋅ 1 + 24 ⋅ 2 + 8 ⋅ 3

8 ⋅ 7
= 1.714285…

iter :1
#       :24
iter :2
#       :24
iter :3
#       :8

B0

B1

B5

B3

B2

B6

B4

B7

0 (unvisited) 1 (visited) 1 (updated)



Performance of the implementation

• This implementation reduces memory access 
drastically. 

• ASPL of part shift graph with  
can be calculated in 113ms with Geforce GTX780 

• ASPL of entire graph with  
is calculated in 160s, 710x faster than native serial BFS 
implementation with i7-8700.

(n, d, m) = (1e6,32,64)

(n, d) = (1e6,32)



Conclusion

• “part shift graph” can achieve small Diameter/ASPL. 
• GPU acceleration is powerful tool for ASPL calculation 

of large graphs.



Source Code & References 

Scott Beamer, Krste Asanović, and David Patterson.  
Searching for a parent instead of fighting over children: A fast breadth-first search 
implementation for graph500. Technical Report UCB/EECS-2011-117, EECS Department, 
University of California, Berkeley, 2011.

Scott Beamer, Understanding and Improving Graph Algorithm Performance, Technical 
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• Source Code 
https://github.com/confused-uec/graphgolf-cuda 

• References

https://github.com/confused-uec/graphgolf-cuda

