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Graph Golf (Order/Degree Problem)

Graph Golf as optimization problem
* Given:

Order of graph: n

Maximum degree of graph: d

* Minimize:
Diameter of graph
Average Shortest Path Length(ASPL)
* Note:
Diameter has higher priority than ASPL.
Smaller Diameter # Better ASPL.



Difficulties in Graph Golf

* Vast search space

At least n! optimal solutions exist.
* Objective function is not convex.
* One edge can change many shortest paths.

Every modification to the graph requires entire

recalculation of ASPL/Diameter.

* The calculation time required for ASPL/Diameter

is polynomial, but n is so large (up to 1e6)



My Results

e | found 5 best solutions
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Approach

* Find better solution by Simulated Annealing from
multiple initial solutions.
e Design symmetric and memory-efficient graph, in
order to,
1. Reduce theoretical calculation time
2. Avoid memory bandwidth bottleneck
e Make use of GPU for ASPL calculation, achieved
about 700x faster than single thread naive CPU

implementation



Design of Graph

| designed “part shift graph”, similar to Cayley Graph

e Vertices have indices0...n — 1
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Indices are regarded as elements of cyclic group Z,
e Show an example of (n,d) = (12,4)

e Choose size of “part” m = 3 from divisors of n

e Then construct a “part”.



Design of Graph

« "part”is a subgraph, all edges join 0...m — 1 vertices.
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Design of Graph

« Copy & Shift the part by m( = 3)
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Design of Graph

* Erase duplicated edges

®\ 2
Diameter: 2 \/

1 1
ASPL: 1.63636 O =yy




Design of Graph

* This graph is symmetric, thereby All Pairs Shortest Path

problem can be solved by Single Source Shortest

Path(SSSP) problem m times.




Design of Graph

* This graph is symmetric, thereby edge data requires
only O(md) space.




Design of Graph

e mis such a small number that O(md) edge data can

be stored in the cache.
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Simulated Annealing: Overview

* |I'm a beginner of Simulated Annealing

e Representation of solution: “part”

* Cooling Schedule: Exponential Cooling

* |nitial Temperature: Determined by experiments

o # of iteration: Determined by experiments (3M~10M)
* Energy: Difference of ASPLs



Simulated Annealing: Initial Solution

e "part” can be represented as weighted order m graph
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* Generate random graph and convert it into a “part”

* Weight is difference of indices.



Simulated Annealing: The Neighbors of State

* 2 types of the neighbor
1. Modity a weight of single edge

(edge weight)%m = (difference of indices)%m



Simulated Annealing: The Neighbors of State

* 2 types of the neighbor
2. Cut 2 edges and reconstruct 2 edges

(edge weight)%m = (difference of indices)%m



ASPL Calculation

« Average Shortest Path Length(ASPL) of Graph (V, E) is

defined as

zuEV zvEV d(u’ V)
nn—1)

* The calculation of All Pairs Shortest Path is needed.

ASPL(V,E) =

e Calculation time is enormous

. Floyd-Warshall algorithm: O(n°)
« Solving SSSP for all vertices: O(n?d)
 Solving SSSP for all vertices of the “part”: O(nmd)

* Parallelization is required



Why GPU Acceleration?

 Parallelization is required
 Somehow, my laboratory PC has two Geforce GTX 780

| gotfour PCs equpmg Geforce GTX745
. OS: Ubuntu18.04

PR CPU: i7-4790 3.6GHz
N N = . GPU: Geforce GTX745

o |im ‘CUDA code d by Beamer’s Bottom-up
Algorithm



Parallel Top-Down BFS

Find unvisited vertices from each vertex in the frontier
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Parallel Top-Down BFS

Find unvisited vertices from each vertex in the frontier

0 0 Atomic operations needed
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Beamer’s Algorithm (Bottom-up BFS)

Find frontier vertices from each unvisited vertex
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Beamer’s Algorithm (Bottom-up BFS)

Find frontier vertices from each unvisited vertex
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Beamer’s Algorithm (Bottom-up BFS)

Find frontier vertices from each unvisited vertex
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Optimization for CUDA

* Beamer's Bottom-up Algorithm is less efficient for

ASPL calculation wit

1. visited/unvisited f

n CUDA because

ag is 1 bit information, but each

edge traversal cause 32 byte memory access.

Memory bandwidth limits performance.

2. branch divergence gets most of the CUDA cores

assigned to vertices idle.

e To maximize efficien

cy, perform multiple SSSP at once.
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Set 1 th bit of 1 th vector “1”
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Optimization for CUDA

Update vectors with bitwise OR of neighbors
iter :1
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Optimization for CUDA

Update vectors in parallel

iter :1 »
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Optimization for CUDA

In 7 th iteration, # of‘corresponds # of distance 1 pairs

iter :1 »
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Optimization for CUDA

Update with bitwise OR of neighbors
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Optimization for CUDA

Update with bitwise OR of neighbors
iter :3
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Optimization for CUDA

Terminate iteration when all bit get “1"
iter :4
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Optimization for CUDA

el

(O 0 (unvisited) Q) 1 (visited) @ 1 (updated)
24-14+24-24+8-3
| 8.7

ASPL = 1.714285...




Performance of the implementation

* This implementation reduces memory access
drastically.

« ASPL of part shift graph with (n,d, m) = (1€6,32,64)
can be calculated in 113ms with Geforce GTX780

» ASPL of entire graph with (n,d) = (1e€6,32)
is calculated in 160s, 710x faster than native serial BFS

implementation with i7-8700.



Conclusion

* "part shift graph” can achieve small Diameter/ASPL.
e GPU acceleration is powerful tool tfor ASPL calculation

of large graphs.



Source Code & References

e Source Code

https://github.com/confused-uec/graphgolf-cuda
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