
Construction of Small
Diameter/ASPL Graph with GPU

Hajime Terao

The Graduate School of Informatics and Engineering 
The University of Electro-Communications

Graph Golf (Order/Degree Problem)

Graph Golf as optimization problem
• Given:

Order of graph:

Maximum degree of graph:
• Minimize:

Diameter of graph
Average Shortest Path Length(ASPL)

• Note:
Diameter has higher priority than ASPL.
Smaller Diameter ≠ Better ASPL.

n
d

Difficulties in Graph Golf

• Vast search space 

At least optimal solutions exist.
• Objective function is not convex.
• One edge can change many shortest paths. 

Every modification to the graph requires entire
recalculation of ASPL/Diameter.

• The calculation time required for ASPL/Diameter 
is polynomial, but is so large (up to 1e6)

n!

n

My Results

• I found 5 best solutions

Order n Degree d Diameter ASPL ASPL gap

50 4 4 2.64082 0.04898

1726 30 3 2.47921 0.01834

9344 6 7 5.48822 0.11436

65536 6 9 6.73615 0.18302

100,000 8 7 5.94733 0.20869

My Results

• I found 5 best solutions

Order n Degree d Diameter ASPL ASPL gap

50 4 4 2.64082 0.04898

1726 30 3 2.47921 0.01834

9344 6 7 5.48822 0.11436

65536 6 9 6.73615 0.18302

100,000 8 7 5.94733 0.20869

Deepest Improvement

Approach

• Find better solution by Simulated Annealing from
multiple initial solutions.

• Design symmetric and memory-efficient graph, in
order to,
1. Reduce theoretical calculation time
2. Avoid memory bandwidth bottleneck

• Make use of GPU for ASPL calculation, achieved  
about 700x faster than single thread naive CPU
implementation

Design of Graph

• I designed “part shift graph”, similar to Cayley Graph
• Vertices have indices  
 
Indices are regarded as elements of cyclic group

• Show an example of

• Choose size of “part” from divisors of
• Then construct a “part”.

0…n − 1

Zn

(n, d) = (12,4)
m = 3 n

1 2 3 4 50 6 7 8 9n-1

Design of Graph

• “part” is a subgraph, all edges join vertices.0…m − 1

3

4

5
6

7

8

9

10

11

Design of Graph

• Copy & Shift the part by m(= 3)
6

7

8

9

10

11

Design of Graph

• Copy & Shift the part by m(= 3)

9

10

11

Design of Graph

• Copy & Shift the part by m(= 3)

Design of Graph

• Erase duplicated edges

Diameter: 2 
ASPL: 1.63636

Design of Graph

• This graph is symmetric, thereby All Pairs Shortest Path 
problem can be solved by Single Source Shortest

Path(SSSP) problem times.m

Design of Graph

• This graph is symmetric, thereby edge data requires

only space.O(md)

Design of Graph

• is such a small number that edge data can
be stored in the cache.
m O(md)

Order n Degree d Diameter ASPL ASPL gap m

50 4 4 2.64082 0.04898 50
1726 30 3 2.47921 0.01834 2
9344 6 7 5.48822 0.11436 16
65536 6 9 6.73615 0.18302 64
100,000 8 7 5.94733 0.20869 (4,5)
4855 15 4 3.42917 0.13066 5

1,000,000 32 5 4.33066 0.34858 64

Simulated Annealing: Overview

• I’m a beginner of Simulated Annealing
• Representation of solution: “part”
• Cooling Schedule: Exponential Cooling
• Initial Temperature: Determined by experiments
• # of iteration: Determined by experiments (3M~10M)
• Energy: Difference of ASPLs

Simulated Annealing: Initial Solution

• “part” can be represented as weighted order graph

• Generate random graph and convert it into a “part”
• Weight is difference of indices.

m

≡3

4

5
6

7

8

9

10

11

0 1

2

3

11

10

4
7

10

Simulated Annealing: The Neighbors of State

• 2 types of the neighbor
1. Modify a weight of single edge

0 1

2

3

8

10

4
7

10

0 1

2

3

11

10

4
7

10

(edge weight)% = (difference of indices)%m m

Simulated Annealing: The Neighbors of State

• 2 types of the neighbor
2. Cut 2 edges and reconstruct 2 edges

0 1

2

11

10

7
105

1

0 1

2

3

11

10

4
7

10

(edge weight)% = (difference of indices)%m m

ASPL Calculation

• Average Shortest Path Length(ASPL) of Graph is
defined as

• The calculation of All Pairs Shortest Path is needed.
• Calculation time is enormous

• Floyd–Warshall algorithm:

• Solving SSSP for all vertices:

• Solving SSSP for all vertices of the “part”:
• Parallelization is required

(V, E)

O(n3)
O(n2d)

O(nmd)

ASPL(V, E) =
∑u∈V ∑v∈V d(u, v)

n(n − 1)

• Parallelization is required
• Somehow, my laboratory PC has two Geforce GTX 780
• I got four PCs equipping Geforce GTX745  
 
 
 
 
 

• I implemented CUDA code inspired by Beamer’s Bottom-up
Algorithm

OS: Ubuntu18.04 
CPU: i7-4790 3.6GHz 
RAM: 8GB
GPU: Geforce GTX745

Why GPU Acceleration?

Parallel Top-Down BFS

1

2

3

4
5

0

6 7

frontier next

0

frontier visited unvisited

3 2 4

Find unvisited vertices from each vertex in the frontier

Parallel Top-Down BFS

Find unvisited vertices from each vertex in the frontier

1

2

3

4
5

0

6 7

frontier next

frontier visited unvisited

3 2 4 5 6 7

Parallel Top-Down BFS

Find unvisited vertices from each vertex in the frontier

1

2

3

4
5

0

6 7

frontier next

frontier visited unvisited

5 6 7 1

Parallel Top-Down BFS

Find unvisited vertices from each vertex in the frontier

1

2

3

4
5

0

6 7

frontier next

frontier visited unvisited

5 6 7 1Atomic operations needed

Wasted edge traversals

Find frontier vertices from each unvisited vertex

Beamer’s Algorithm (Bottom-up BFS)

1

2

3

4
5

0

6 7

frontier next

0

frontier visited unvisited

3 2 4

Find frontier vertices from each unvisited vertex

Beamer’s Algorithm (Bottom-up BFS)

1

2

3

4
5

0

6 7

frontier next

frontier visited unvisited

3 2 4 5 6 7

Find frontier vertices from each unvisited vertex

Beamer’s Algorithm (Bottom-up BFS)

1

2

3

4
5

0

6 7

frontier next

frontier visited unvisited

3 2 4 5 6 7

 Wasted edge traversals reduced

No atomic operation needed

Find frontier vertices from each unvisited vertex

Beamer’s Algorithm (Bottom-up BFS)

1

2

3

4
5

0

6 7

frontier next

frontier visited unvisited

5 6 7 1

Optimization for CUDA

• Beamer’s Bottom-up Algorithm is less efficient for
ASPL calculation with CUDA because
1. visited/unvisited flag is 1 bit information, but each
edge traversal cause 32 byte memory access.
Memory bandwidth limits performance.

2. branch divergence gets most of the CUDA cores
assigned to vertices idle.

• To maximize efficiency, perform multiple SSSP at once.

Assign bit vectors for all vertices

Optimization for CUDA

B0

B1

B5

B3

B2

B6

B4

B7

Set th bit of th vector “1”i i

Optimization for CUDA

B0

B1

B5

B3

B2

B6

B4

B7

0 (unvisited) 1 (visited)

Update vectors with bitwise OR of neighbors

Optimization for CUDA

iter :1
B1

B5

B3

B4

0 (unvisited) 1 (visited)

0

2

6 7

B3 B5 B1 B4B0
5

1 (updated)

← | | |

Optimization for CUDA

B0

B1

B5

B3

B2

B6

B4

B7

0 (unvisited) 1 (visited) 1 (updated)

iter :1
Update vectors in parallel

In th iteration, # of corresponds # of distance pairst t

Optimization for CUDA

B0

B1

B5

B3

B2

B6

B4

B7

0 (unvisited) 1 (visited) 1 (updated)

iter :1
:24

Optimization for CUDA

B0

B1

B5

B3

B2

B6

B4

B7

0 (unvisited) 1 (visited) 1 (updated)

Update with bitwise OR of neighbors
iter :2
:24

Optimization for CUDA

B0

B1

B5

B3

B2

B6

B4

B7

0 (unvisited) 1 (visited) 1 (updated)

Update with bitwise OR of neighbors
iter :3
:8

Optimization for CUDA

Terminate iteration when all bit get “1"
iter :4
:0

B0

B1

B5

B3

B2

B6

B4

B7

0 (unvisited) 1 (visited) 1 (updated)

Optimization for CUDA

ASPL :
24 ⋅ 1 + 24 ⋅ 2 + 8 ⋅ 3

8 ⋅ 7
= 1.714285…

iter :1
:24
iter :2
:24
iter :3
:8

B0

B1

B5

B3

B2

B6

B4

B7

0 (unvisited) 1 (visited) 1 (updated)

Performance of the implementation

• This implementation reduces memory access
drastically.

• ASPL of part shift graph with  
can be calculated in 113ms with Geforce GTX780

• ASPL of entire graph with  
is calculated in 160s, 710x faster than native serial BFS
implementation with i7-8700.

(n, d, m) = (1e6,32,64)

(n, d) = (1e6,32)

Conclusion

• “part shift graph” can achieve small Diameter/ASPL.
• GPU acceleration is powerful tool for ASPL calculation

of large graphs.

Source Code & References

Scott Beamer, Krste Asanović, and David Patterson.  
Searching for a parent instead of fighting over children: A fast breadth-first search
implementation for graph500. Technical Report UCB/EECS-2011-117, EECS Department,
University of California, Berkeley, 2011.

Scott Beamer, Understanding and Improving Graph Algorithm Performance, Technical
Report UCB/EECS-2016-153 EECS Department, University of California, Berkeley 2016.

• Source Code 
https://github.com/confused-uec/graphgolf-cuda

• References

https://github.com/confused-uec/graphgolf-cuda

