Construction of Small
Diameter/ASPL Graph with GPU

Hajime Terao

The Graduate School of Informatics and Engineering
The University of Electro-Communications

Graph Golf (Order/Degree Problem)

Graph Golf as optimization problem
* Given:

Order of graph: n

Maximum degree of graph: d

* Minimize:
Diameter of graph
Average Shortest Path Length(ASPL)
* Note:
Diameter has higher priority than ASPL.
Smaller Diameter # Better ASPL.

Difficulties in Graph Golf

* Vast search space

At least n! optimal solutions exist.
* Objective function is not convex.
* One edge can change many shortest paths.

Every modification to the graph requires entire

recalculation of ASPL/Diameter.

* The calculation time required for ASPL/Diameter

is polynomial, but n is so large (up to 1e6)

My Results

e | found 5 best solutions

2.64082 0.04898

1726 30 3 247921 0.01834
9344 0 7 5.48822 0.11436
65536 o 9 6.73615 0.18302

100,000 3 7 594733 0.20869

My Results

e | found 5 best solutions

50 4 4

1726 30 3 247921 0.01834
9344 0 7 5.48822 0.11436
65536 o 9 6.73615 0.18302

100,000 3 7 594733 0.20869

Approach

* Find better solution by Simulated Annealing from
multiple initial solutions.
e Design symmetric and memory-efficient graph, in
order to,
1. Reduce theoretical calculation time
2. Avoid memory bandwidth bottleneck
e Make use of GPU for ASPL calculation, achieved
about 700x faster than single thread naive CPU

implementation

Design of Graph

| designed “part shift graph”, similar to Cayley Graph

e Vertices have indices0...n — 1

OO DOOOB®O®:-:

Indices are regarded as elements of cyclic group Z,
e Show an example of (n,d) = (12,4)

e Choose size of “part” m = 3 from divisors of n

e Then construct a “part”.

Design of Graph

« "part”is a subgraph, all edges join 0...m — 1 vertices.
° o
O @

PN
SN

Design of Graph

Design of Graph

<)
L

Uy

Design of Graph

« Copy & Shift the part by m(= 3)

R

%
%

-

3

Design of Graph

* Erase duplicated edges

®\ 2
Diameter: 2 \/

1 1
ASPL: 1.63636 O =yy

Design of Graph

* This graph is symmetric, thereby All Pairs Shortest Path

problem can be solved by Single Source Shortest

Path(SSSP) problem m times.

Design of Graph

* This graph is symmetric, thereby edge data requires
only O(md) space.

Design of Graph

e mis such a small number that O(md) edge data can

be stored in the cache.

1726
9344
65536
100,000
4835
1,000,000

30

oo ~ N O N W

2.64082
247921
548822
0./73615
594733
3.42917
4.33066

0.04898
0.01834
0.11436
0.18302
0.20869
0.13066
0.34858

2
16
64

(4,5)

64

Simulated Annealing: Overview

* |I'm a beginner of Simulated Annealing

e Representation of solution: “part”

* Cooling Schedule: Exponential Cooling

* |nitial Temperature: Determined by experiments

o # of iteration: Determined by experiments (3M~10M)
* Energy: Difference of ASPLs

Simulated Annealing: Initial Solution

e "part” can be represented as weighted order m graph

©
O @

. &

@ b/'@
X7

Oz~ C

* Generate random graph and convert it into a “part”

* Weight is difference of indices.

Simulated Annealing: The Neighbors of State

* 2 types of the neighbor
1. Modity a weight of single edge

(edge weight)%m = (difference of indices)%m

Simulated Annealing: The Neighbors of State

* 2 types of the neighbor
2. Cut 2 edges and reconstruct 2 edges

(edge weight)%m = (difference of indices)%m

ASPL Calculation

« Average Shortest Path Length(ASPL) of Graph (V, E) is

defined as

zuEV zvEV d(u’ V)
nn—1)

* The calculation of All Pairs Shortest Path is needed.

ASPL(V,E) =

e Calculation time is enormous

. Floyd-Warshall algorithm: O(n°)
« Solving SSSP for all vertices: O(n?d)
 Solving SSSP for all vertices of the “part”: O(nmd)

* Parallelization is required

Why GPU Acceleration?

 Parallelization is required
 Somehow, my laboratory PC has two Geforce GTX 780

| gotfour PCs equpmg Geforce GTX745
. OS: Ubuntu18.04

PR CPU: i7-4790 3.6GHz
N N = . GPU: Geforce GTX745

o |im ‘CUDA code d by Beamer’s Bottom-up
Algorithm

Parallel Top-Down BFS

Find unvisited vertices from each vertex in the frontier

0 324

frontier next

O frontier O visited O unvisited

Parallel Top-Down BFS

Find unvisited vertices from each vertex in the frontier

324 b 067

frontier next

O frontier O visited O unvisited

Parallel Top-Down BFS

Find unvisited vertices from each vertex in the frontier

b 067 1

frontier next

O frontier O visited O unvisited

Parallel Top-Down BFS

Find unvisited vertices from each vertex in the frontier

0 0 Atomic operations needed
frontier exX
(L

O frontier O visited O unvisited

Beamer’s Algorithm (Bottom-up BFS)

Find frontier vertices from each unvisited vertex

0 324

frontier next

O frontier O visited O unvisited

Beamer’s Algorithm (Bottom-up BFS)

Find frontier vertices from each unvisited vertex

324 b 067

frontier next

O frontier O visited O unvisited

Beamer’s Algorithm (Bottom-up BFS)

Find frontier vertices from each unvisited vertex

324 b 067

frontier next

o somesperionresded] |\
N\ A —=—@
.sted edge traversals reduced
© (L

=

O frontier O visited O unvisited

Beamer’s Algorithm (Bottom-up BFS)

Find frontier vertices from each unvisited vertex

567 1

frontier next
1
0
4
3
3
6 [
)

O frontier O visited O unvisited

Optimization for CUDA

* Beamer's Bottom-up Algorithm is less efficient for

ASPL calculation wit

1. visited/unvisited f

n CUDA because

ag is 1 bit information, but each

edge traversal cause 32 byte memory access.

Memory bandwidth limits performance.

2. branch divergence gets most of the CUDA cores

assigned to vertices idle.

e To maximize efficien

cy, perform multiple SSSP at once.

<O)N)N)D)

w N)))))),

5

>

=om»ar il

O

: S@))))))

5 <0)))))

9)

S~ 6)))))) ’
S9N

<
a
-
O
O
e
-
0
©
N
E
o3
O

<
a
-
O
O
e
-
0
©
N
E
o3
O

Set 1 th bit of 1 th vector “1”

<ONN))

A)))))),

~J()))))))

<OMNN))
<OMMN)N)

_—

)

-\

N)))))),

0

D))D):

O 1 (visited)

() 0 (unvisited)

Optimization for CUDA

Update vectors with bitwise OR of neighbors
iter :1

<8lglgl

2
(O 0 (unvisited)) 1 (visited) @ 1 (updated)

Optimization for CUDA

Update vectors in parallel

iter :1 »

(LLCCE

(O 0 (unvisited)) 1 (visited) @ 1 (updated)

Optimization for CUDA

In 7 th iteration, # of‘corresponds # of distance 1 pairs

iter :1 »

(LLCCE

(O 0 (unvisited)) 1 (visited) @ 1 (updated)

Optimization for CUDA

Update with bitwise OR of neighbors

DE

(O 0 (unvisited)) 1 (visited) @ 1 (updated)

(((F

«

]
N

=
\—

@«

Optimization for CUDA

Update with bitwise OR of neighbors
iter :3

#‘:8

©

v «
WO

o
(CCCCRLCR

e:

]
N

U«
(LR

s

(O 0 (unvisited)) 1 (visited) @ 1 (updated)

Optimization for CUDA

Terminate iteration when all bit get “1"
iter :4

#‘:O

ee:
(CCCCCCER

e:

@
ee:

ee:

]
N

e:

o
(CCCCCCCNR

(O 0 (unvisited)) 1 (visited) @ 1 (updated)

Optimization for CUDA

el

(O 0 (unvisited) Q) 1 (visited) @ 1 (updated)
24-14+24-24+8-3
| 8.7

ASPL = 1.714285...

Performance of the implementation

* This implementation reduces memory access
drastically.

« ASPL of part shift graph with (n,d, m) = (1€6,32,64)
can be calculated in 113ms with Geforce GTX780

» ASPL of entire graph with (n,d) = (1e€6,32)
is calculated in 160s, 710x faster than native serial BFS

implementation with i7-8700.

Conclusion

* "part shift graph” can achieve small Diameter/ASPL.
e GPU acceleration is powerful tool tfor ASPL calculation

of large graphs.

Source Code & References

e Source Code

https://github.com/confused-uec/graphgolf-cuda

e References

Scott Beamer, Krste Asanovié, and David Patterson.
Searching for a parent instead of fighting over children: A fast breadth-first search

implementation for graph500. Technical Report UCB/EECS-2011-117, EECS Department,
University of California, Berkeley, 2011.

Scott Beamer, Understanding and Improving Graph Algorithm Performance, Technical
Report UCB/EECS-2016-153 EECS Department, University of California, Berkeley 2016.

https://github.com/confused-uec/graphgolf-cuda

