Construction of Small Diameter/ASPL Graph with GPU

Hajime Terao

The Graduate School of Informatics and Engineering
The University of Electro-Communications
Graph Golf as optimization problem

- Given:
 - Order of graph: \(n \)
 - Maximum degree of graph: \(d \)

- Minimize:
 - Diameter of graph
 - Average Shortest Path Length (ASPL)

- Note:
 - Diameter has higher priority than ASPL.
 - Smaller Diameter \(\neq \) Better ASPL.
Difficulties in Graph Golf

• Vast search space
 At least $n!$ optimal solutions exist.
• Objective function is not convex.
• One edge can change many shortest paths.
 Every modification to the graph requires entire
 recalculation of ASPL/Diameter.
• The calculation time required for ASPL/Diameter
 is polynomial, but n is so large (up to $1e6$)
My Results

• I found 5 best solutions

<table>
<thead>
<tr>
<th>Order n</th>
<th>Degree d</th>
<th>Diameter</th>
<th>ASPL</th>
<th>ASPL gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4</td>
<td>4</td>
<td>2.64082</td>
<td>0.04898</td>
</tr>
<tr>
<td>1726</td>
<td>30</td>
<td>3</td>
<td>2.47921</td>
<td>0.01834</td>
</tr>
<tr>
<td>9344</td>
<td>6</td>
<td>7</td>
<td>5.48822</td>
<td>0.11436</td>
</tr>
<tr>
<td>65536</td>
<td>6</td>
<td>9</td>
<td>6.73615</td>
<td>0.18302</td>
</tr>
<tr>
<td>100,000</td>
<td>8</td>
<td>7</td>
<td>5.94733</td>
<td>0.20869</td>
</tr>
</tbody>
</table>
My Results

- I found 5 best solutions

<table>
<thead>
<tr>
<th>Order n</th>
<th>Degree d</th>
<th>Diameter</th>
<th>ASPL</th>
<th>ASPL gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4</td>
<td>4</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>1726</td>
<td>30</td>
<td>3</td>
<td>2.47921</td>
<td>0.01834</td>
</tr>
<tr>
<td>9344</td>
<td>6</td>
<td>7</td>
<td>5.48822</td>
<td>0.11436</td>
</tr>
<tr>
<td>65536</td>
<td>6</td>
<td>9</td>
<td>6.73615</td>
<td>0.18302</td>
</tr>
<tr>
<td>100,000</td>
<td>8</td>
<td>7</td>
<td>5.94733</td>
<td>0.20869</td>
</tr>
</tbody>
</table>

Deepest Improvement
Approach

• Find better solution by Simulated Annealing from multiple initial solutions.
• Design symmetric and memory-efficient graph, in order to,
 1. Reduce theoretical calculation time
 2. Avoid memory bandwidth bottleneck
• Make use of GPU for ASPL calculation, achieved about 700x faster than single thread naive CPU implementation
Design of Graph

- I designed “part shift graph”, similar to Cayley Graph
- Vertices have indices $0 \ldots n - 1$
- Indices are regarded as elements of cyclic group \mathbb{Z}_n
- Show an example of $(n, d) = (12, 4)$
- Choose size of “part” $m = 3$ from divisors of n
- Then construct a “part”.

Indices are regarded as elements of cyclic group \mathbb{Z}_n
"part" is a subgraph, all edges join \(0 \ldots m - 1\) vertices.
Design of Graph

- Copy & Shift the part by $m(= 3)$
Design of Graph

• Copy & Shift the part by $m(= 3)$
Design of Graph

• Copy & Shift the part by \(m(= 3) \)
Design of Graph

- Erase duplicated edges

Diameter: 2
ASPL: 1.63636
This graph is symmetric, thereby All Pairs Shortest Path problem can be solved by Single Source Shortest Path (SSSP) problem m times.
Design of Graph

- This graph is symmetric, thereby edge data requires only $O(md)$ space.
Design of Graph

- m is such a small number that $O(md)$ edge data can be stored in the cache.

<table>
<thead>
<tr>
<th>Order n</th>
<th>Degree d</th>
<th>Diameter</th>
<th>ASPL</th>
<th>ASPL gap</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4</td>
<td>4</td>
<td>2.64082</td>
<td>0.04898</td>
<td>50</td>
</tr>
<tr>
<td>1726</td>
<td>30</td>
<td>3</td>
<td>2.47921</td>
<td>0.01834</td>
<td>2</td>
</tr>
<tr>
<td>9344</td>
<td>6</td>
<td>7</td>
<td>5.48822</td>
<td>0.11436</td>
<td>16</td>
</tr>
<tr>
<td>65536</td>
<td>6</td>
<td>9</td>
<td>6.73615</td>
<td>0.18302</td>
<td>64</td>
</tr>
<tr>
<td>100,000</td>
<td>8</td>
<td>7</td>
<td>5.94733</td>
<td>0.20869</td>
<td>(4,5)</td>
</tr>
<tr>
<td>4855</td>
<td>15</td>
<td>4</td>
<td>3.42917</td>
<td>0.13066</td>
<td>5</td>
</tr>
<tr>
<td>1,000,000</td>
<td>32</td>
<td>5</td>
<td>4.33066</td>
<td>0.34858</td>
<td>64</td>
</tr>
</tbody>
</table>
Simulated Annealing: Overview

• I’m a beginner of Simulated Annealing
• Representation of solution: “part”
• Cooling Schedule: Exponential Cooling
• Initial Temperature: Determined by experiments
• # of iteration: Determined by experiments (3M~10M)
• Energy: Difference of ASPLs
Simulated Annealing: Initial Solution

- “part” can be represented as weighted order m graph

- Generate random graph and convert it into a “part”
- Weight is difference of indices.
Simulated Annealing: The Neighbors of State

• 2 types of the neighbor
 1. Modify a weight of single edge

\[(\text{edge weight}) \% m = (\text{difference of indices}) \% m\]
Simulated Annealing: The Neighbors of State

- 2 types of the neighbor
 2. Cut 2 edges and reconstruct 2 edges

\[(\text{edge weight}) \% m = (\text{difference of indices}) \% m\]
ASPL Calculation

- Average Shortest Path Length (ASPL) of Graph \((V, E)\) is defined as

\[
\text{ASPL}(V, E) = \frac{\sum_{u \in V} \sum_{v \in V} d(u, v)}{n(n - 1)}
\]

- The calculation of All Pairs Shortest Path is needed.
- Calculation time is enormous
 - Floyd–Warshall algorithm: \(O(n^3)\)
 - Solving SSSP for all vertices: \(O(n^2d)\)
 - Solving SSSP for all vertices of the “part”: \(O(nmd)\)
- Parallelization is required
Why GPU Acceleration?

- **Parallelization** is required
- Somehow, my laboratory PC has **two** Geforce GTX 780
- I got **four** PCs equipping Geforce GTX745

OS: Ubuntu18.04
CPU: i7-4790 3.6GHz
RAM: 8GB
GPU: Geforce GTX745

- I implemented CUDA code inspired by Beamer’s Bottom-up Algorithm
Find **unvisited** vertices from each vertex in the **frontier**

- **Frontier**: 0
- **Next**: 3 2 4

![Diagram](image-url)
Parallel Top-Down BFS

Find **unvisited** vertices from each vertex in the **frontier**

- **Frontier:** 3 2 4
- **Next:** 5 6 7

Diagram: Shows a graph with vertices labeled 0 to 7, and edges connecting them. The vertices are color-coded as follows:
 - Purple: Frontier
 - Orange: Visited
 - Green: Unvisited
Parallel Top-Down BFS

Find **unvisited** vertices from each vertex in the **frontier**
Parallel Top-Down BFS

Find **unvisited** vertices from each vertex in the **frontier**

Atomic operations needed

Wasted edge traversals

- **frontier**
- **visited**
- **unvisited**
Find **frontier** vertices from each **unvisited** vertex

Beamer’s Algorithm (Bottom-up BFS)

```
frontier
0
3 2 4
next
```

- **frontier** vertices
- **visited** vertices
- **unvisited** vertices
Beamer’s Algorithm (Bottom-up BFS)

Find **frontier** vertices from each **unvisited** vertex

```
3 2 4
```

```
5 6 7
```

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7

Frontier: 3 2 4

Next: 5 6 7

- **Frontier**: vertices in the current layer that have not been visited.
- **Visited**: vertices that have been visited.
- **Unvisited**: vertices that have not been visited yet.
Beamer’s Algorithm (Bottom-up BFS)

Find **frontier** vertices from each **unvisited** vertex

```plaintext
<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>frontier</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```plaintext
<table>
<thead>
<tr>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>next</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No atomic operation needed

Wasted edge traversals reduced

- **frontier**
- **visited**
- **unvisited**
Beamer’s Algorithm (Bottom-up BFS)

Find **frontier** vertices from each **unvisited** vertex
Optimization for CUDA

• Beamer’s Bottom-up Algorithm is less efficient for ASPL calculation with CUDA because
 1. visited/unvisited flag is 1 bit information, but each edge traversal cause 32 byte memory access. Memory bandwidth limits performance.
 2. branch divergence gets most of the CUDA cores assigned to vertices idle.
• To maximize efficiency, perform multiple SSSP at once.
Optimization for CUDA

Assign bit vectors for all vertices
Set \(i \) th bit of \(i \) th vector “1”
Update vectors with bitwise OR of neighbors

iter : 1

○ 0 (unvisited) ● 1 (visited) ● 1 (updated)
Optimization for CUDA

Update vectors in parallel

iter : 1

- \(B_0 \) (unvisited)
- \(B_1 \) (visited)
- \(B_2 \) (updated)
- \(B_3 \) (unvisited)
- \(B_4 \) (updated)
- \(B_5 \) (visited)
- \(B_6 \) (unvisited)
- \(B_7 \) (visited)
In t th iteration, # of red corresponds # of distance t pairs

iter : 1
red : 24

Optimization for CUDA
Update with bitwise OR of neighbors

iter : 2

: 24
Update with bitwise OR of neighbors

iter : 3
: 8
Optimization for CUDA

Terminate iteration when all bit get "1"

iter : 4
: 0

0 (unvisited) 1 (visited) 1 (updated)
Optimization for CUDA

iter : 1
: 24

iter : 2
: 24

iter : 3
: 8

ASPL : \[
\frac{24 \cdot 1 + 24 \cdot 2 + 8 \cdot 3}{8 \cdot 7} = 1.714285\ldots
\]
Performance of the implementation

- This implementation reduces memory access drastically.
- ASPL of part shift graph with \((n, d, m) = (1e6, 32, 64)\) can be calculated in 113ms with Geforce GTX780.
- ASPL of entire graph with \((n, d) = (1e6, 32)\) is calculated in 160s, \(\mathbf{710x}\) faster than native serial BFS implementation with i7-8700.
Conclusion

• “part shift graph” can achieve small Diameter/ASPL.
• GPU acceleration is powerful tool for ASPL calculation of large graphs.
• Source Code

https://github.com/confused-uec/graphgolf-cuda

• References

Scott Beamer, Understanding and Improving Graph Algorithm Performance, Technical Report UCB/EECS-2016-153 EECS Department, University of California, Berkeley 2016.