Using Mixed-Integer-Programming on the Order-Degree-Problem

GraphGolf Workshop (24.11.2021)

Robert Waniek

Modelling the ODP (n, d) as a MIP (with ASPL)

objective function $\min 10 \cdot k+I$ diameter $k \quad \forall s, t \in V, s \neq t: S P_{s t} \leq k$

$$
\text { ASPL } \left\lvert\, \frac{1}{n \cdot(n-1)} \sum_{s \in V} \sum_{\substack{t \in V \\ s \neq t}} S P_{s t}=1\right.
$$

APSP $\forall s, t \in V, s \neq t: S P_{s t}=? ? ?$
degree d $\forall i \in V: \sum_{\substack{j \in V \\ i \neq j}} z_{i j} \leq d$

$$
\begin{aligned}
& \forall i, j \in V, i \neq j: z_{i j} \in\{0,1\} \\
& \forall s, t \in V, s \neq t: S P_{s t} \in \mathbb{N}
\end{aligned}
$$

APSP-Variations and their model size

■ Classic Multi-Commodity-Flow: $O\left(n^{4}\right)$
■ Quadratic Seidel-APSP: $O\left(n^{2}\right)$

- Linearized Seidel-APSP: $O\left(n^{3}\right)$

1 MCF-APSP model for competition instance $(40,5)$ exceeded 64GB memory limit of used test system
2 more/better established methods for linear models
3 limit search space by setting bounds (known or heuristic)
4 further tuning options by limiting the diameter k

Analysis of Optimal Solution for $(40,5)$

Approach
Observations
Use the Structure

Future
Bonus

Assume (Heuristic Solution) Structure

less variables leads to faster (and most likely better) results:
■ fix variables of inner tree structure (blue, yellow, green)

- connect red nodes with green nodes
reduce search space by problem-based symmetry-breaking

ToDo: look out for cutting off optimal solutions

Random, Greedy, Optimize

1 fast heuristic: connect green \& red nodes randomly
2 slow heuristic: connect green \& red nodes greedily
both: link nodes with submaximal degree fast: add random edge, if feasible slow: choose longest path from possible pairs

3 assist optimization model:
■ reduce model size with fixings

- start with good heuristic solutions
solutions always stay feasbile w.r.t. ODP

Calculation Results

focus: enumeration of all instances < 100 nodes optimization model implemented with ZIMPL generated MIP model files solved with Gurobi

■ 4465 instances (excluding trivial by $3 \leq d \leq n-3$)

- 2490 solved by heuristics (usually $d \geq \frac{n}{2}$ - "easy")
- 3574 solved by MIP models ("medium")
observation on "hard" instances
■ odd $n \cdot d$
- $d<\frac{n}{4}$
usually due to unreachable lower bound

■ combine structure assumption with known and future methods

■ feasibility proof for tree structure (without edges to red nodes)

■ follow-up: further fixings for less symmetry?
■ follow-up: improvement of lower bounds for "hard" instances?

■ avoid MIP numeric issues for larger node counts

Links

Approach

Observations
Use the
Structure
■ www.zib.de/projects/research-campus-modal
■ modelling: https://zimpl.zib.de
■ solver: https://www.gurobi.com
■ framework: https://www.scipopt.org

quadratic Seidel-APSP

Approach

Observations

$$
\begin{aligned}
& \forall s, t \in V: \\
& \quad S P_{s t}=1+\sum_{j=1}^{n}\left(1-\operatorname{dist}_{s t j}\right) \\
& \forall j \in\{1, \ldots, n-1\}: \forall s, t \in V: \\
& \quad \operatorname{dist}_{s t(j+1)} \leq \operatorname{dist}_{s t j}+\sum_{\substack{u \in V^{s \neq u \neq t}}} \operatorname{dist}_{s u j} \cdot \operatorname{dist}_{u t 1} \\
& \forall s, t \in V, s \neq t: \forall j \in\{1, \ldots, n\} \\
& \quad \operatorname{dist}_{s t j} \in\{0,1\}
\end{aligned}
$$

Optimal Solution of $(9,3)$

Approach

$~$ very raw idea: construct tree-based structed solution by alternating links inside and between lower tree levels

