Using Mixed-Integer-Programming on the Order-Degree-Problem

GraphGolf Workshop (24.11.2021)

Robert Waniek

Approach

Observations

Use the Structure

Future

Bonus

objective function	min $10 \cdot k + l$
diameter k	$\forall s, t \in V, s \neq t : SP_{st} \leq k$
ASPL /	$\frac{1}{n \cdot (n-1)} \sum_{s \in V} \sum_{\substack{t \in V \\ s \neq t}} SP_{st} = I$
APSP	$\forall s, t \in V, s \neq t : SP_{st} = ???$
degree d	$\forall i \in V : \sum_{\substack{j \in V \ i eq j}} z_{ij} \le d$
	$\forall i,j \in V, i \neq j : z_{ij} \in \{0,1\}$
	$\forall s, t \in V, s \neq t : SP_{st} \in \mathbb{N}$

APSP-Variations and their model size

Approach

- Observations
- Use the Structure
- Future
- Bonus

- Classic Multi-Commodity-Flow: $O(n^4)$
- Quadratic Seidel-APSP: O(n²)
- Linearized Seidel-APSP: $O(n^3)$

- MCF-APSP model for competition instance (40, 5) exceeded 64GB memory limit of used test system
- 2 more/better established methods for linear models
- 3 limit search space by setting bounds (known or heuristic)
- 4 further tuning options by limiting the diameter k

Analysis of Optimal Solution for (40, 5)

Approach

Observations

Use the Structure

Future

Bonus

Approach

Observations

Use the Structure

Future

Bonus

less variables leads to faster (and most likely better) results:
fix variables of inner tree structure (blue, yellow, green)
connect red nodes with green nodes

reduce search space by problem-based symmetry-breaking

ToDo: look out for cutting off optimal solutions

Random, Greedy, Optimize

Approach

Observations

Use the Structure

Future

Bonus

fast heuristic: connect green & red nodes randomly
 slow heuristic: connect green & red nodes greedily

both: link nodes with submaximal degree fast: add random edge, if feasible slow: choose longest path from possible pairs

3 assist optimization model:

- reduce model size with fixings
- start with good heuristic solutions

solutions always stay feasbile w.r.t. ODP

Calculation Results

Approach

Observations

Use the Structure

Future

Bonus

focus: enumeration of all instances < 100 nodes optimization model implemented with ZIMPL generated MIP model files solved with Gurobi

- 4465 instances (excluding trivial by $3 \le d \le n-3$)
- 2490 solved by heuristics (usually $d \ge \frac{n}{2}$ "easy")
- 3574 solved by MIP models ("medium")

observation on "hard" instances

```
odd n \cdot d
```

■ $d < \frac{n}{4}$

usually due to unreachable lower bound

possible next steps

Approach

Observations

Use the Structure

Future

Bonus

- combine structure assumption with known and future methods
- feasibility proof for tree structure (without edges to red nodes)
 - follow-up: further fixings for less symmetry?
 - follow-up: improvement of lower bounds for "hard" instances?

avoid MIP numeric issues for larger node counts

- Approach
- Observations
- Use the Structure
- Future
- Bonus

- www.zib.de/projects/research-campus-modal
- modelling: https://zimpl.zib.de
- solver: https://www.gurobi.com
- framework: https://www.scipopt.org

quadratic Seidel-APSP

Approach

Observations

Use the Structure

Future

Bonus

$$\begin{aligned} \forall s, t \in V : \\ SP_{st} &= 1 + \sum_{j=1}^{n} (1 - dist_{stj}) \\ \forall j \in \{1, \dots, n-1\} : \forall s, t \in V : \\ dist_{st(j+1)} &\leq dist_{stj} + \sum_{\substack{u \in V \\ s \neq u \neq t}} dist_{suj} \cdot dist_{ut1} \\ \forall s, t \in V, s \neq t : \forall j \in \{1, \dots, n\} \\ dist_{stj} \in \{0, 1\} \end{aligned}$$

Optimal Solution of (9,3)

Observations

Use the Structure

Future

Bonus

 \rightsquigarrow very raw idea: construct tree-based structed solution by alternating links inside and between lower tree levels