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Overview

m In participating in Graph Golf, we focused on the deepest
improvement award.

m Generalized Moore graphs (GMGs) are known to have the smallest
average shortest path length (ASPL) among all d—regular graphs with
order n [1], [2].

m We have developed some efficient depth-first search algorithms for
finding GMGs|[3].

m Despite these efforts, the algorithm still suffers from backtrackings.

m We show that the computations can be reduced by randomly
traversing the search trees.

m We found GMGs that were not found using the deterministic search.

[1] V. G. Cerf et al., Congressus Numerantium, vol. 9, pp. 379-398, 1973.
[2] V. G. Cerf et al., Networks, vol. 4, no. 4, pp. 335-342, 1974.
[3] Y. Satotani et al., TENCON 2018 - 2018 IEEE Region 10 Conference, pp. 0832-0837, 2018.
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Generalized Moore Graph

Definition (Cerf et al.[1])

A d-regular graph G with order n is called a generalized Moore graph
(GMQG) if the following holds for all vertices v.
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[1] V. G. Cerf et al., Congressus Numerantium, vol. 9, pp. 379-398, 1973.
Satotani and Takahashi Finding GMGs at Random Graph Golf online WS 3/7




Depth-First Search Algorithm

m Each node in the search tree contains a graph and a set of edges to
include/exclude.

m To check if a node contains a GMG, we may need to create a regular
graph.

m Is it possible to know if a node will reach the GMG before creating a
regular graph?
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Property of GMGs

Theorem (Satotani and Takahashi[3])

A d-regular graph G with order n is a GMG if and only if both of the
following two conditions are satisfied.

1. G has no cycle with length less than 2K, ;4 — 1.
2. The diameter of G is K, g — 1 if R, 4 = 0, and K, 4 if R, 4 > 0.

m If any cycle of length less than
2K, 4 — 1 will be made
including the edge, exclude it.

m If the edge is excluded and the
diameter exceed K, 4 despite
including all remaining edges,
include the edge.

[3] Y. Satotani et al., TENCON 2018 - 2018 IEEE Region 10 Conference, pp. 0832-0837, 2018.
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Proposed Method and Performance Evaluation

m Our previous method is deterministic (always “include” then “exclude”).

m This helps the graph grow faster at the early stage,

but backtrackings can occur at the later stage (no feasible next node).
m We propose a new algorithm that randomly traverse the search tree in an
attempt to reduce the backtrackings.

m An experiment to compare their performance

m evaluation metric: the number of nodes the algorithms visited

m random traversal algorithm runs 20 time
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[4] A. J. Hoffman et al., IBM Journal of Research and Development, vol. 4, no. 5, pp. 497-504, 1960.
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Existence of a GMG and Summary
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m Contributions
m We proposed a new method for finding a GMG that randomly traverses
the search trees to reduce backtrackings.
m We confirmed through experiments that the random traversal reduces
the computational costs in some settings.
= We found 12 new GMGs.
m Future work
m Developing a cost function of a node for more efficient algorithm (such
as A*).
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Appendix: The Root Node of a Search Tree

We used following spanning tree as the root node in search trees[3].

1. Construct a balanced tree with
depth K, 4 and degree d.
2. Label each node as follows:
m root node is 0,
m children of root are 1,...,d,
m i-th child node of a node
labeled in 1,,0,,—1...11 is
ilmlm_l - l1.
3. Delete d(d — 1)Knd — R, 4
nodes with the highest label
values.

However, the validity of using these spanning trees is unknown.

[3] Y. Satotani et al., TENCON 2018 - 2018 IEEE Region 10 Conference, pp. 0832-0837, 2018.
Satotani and Takahashi Finding GMGs at Random Graph Golf online WS 2/3



Appendix: Comparison of Computation Time

m We also compared the computation time.
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m We can see the characteristics similar to those seen in the comparison
of visited nodes.
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