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 On-going work 
 researches on the potential symbioses between 

software engineering SE and artificial intelligence AI

 The overall goal
 to obtain better software and AI systems making them 

more robust, reliable, and secure, and easier to specify, 
build, maintain, or improve

 Group members
 2+ faculties and 3 PhD and 7 MS students
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H u m an -levelcon trolth rough d eep rein forcem en t
learn in g
V olody m yr M n ih 1*, K oray K avuk cuoglu1*,D avid Silver1*, A n dreiA .R u su 1,Joel V eness1,M arc G .Bellem are1,A lex G rav es1,
M artin R iedm iller1, A n dreas K .Fidjeland 1,G eorg O strovsk i1,Stig P etersen 1,C h arles B eattie1,A m ir Sadik 1,Ioan nis A n ton oglo u1,
H elen K in g1,D h arsh an K u m aran 1, D aan W ierstra1,Sh an e Legg1 & D em is H assab is1

T hetheory ofreinforcem entlearning provid esan orm ativeaccou nt1,
d eeplyrooted in psych ological2 and neuroscientific3 p erspectiveson
anim alb ehaviou r,of how agen ts m ay op tim ize their con trolof an
en vironm ent.T o usereinforcem entlearning successfully in situations
approachin g real-w orld com p lexity,how ever,agentsarecon fronted
w ith ad ifficu lttask:they m u stderive efficien trepresentationsofthe
en vironm en tfrom high-dim en sionalsen sory inputs,an d use these
to generalize pastexperienceto new situations.R em arkably,hum ans
and other anim alsseem to solve thisproblem through a harm on iou s
com bination ofreinforcem entlearning an d h ierarchicalsen sory pro-
cessing system s4,5,the form er evid enced by a w ealth ofn euraldata
revealin g notable parallelsbetw een thephasicsignalsem itted by dopa-
m in ergic n eurons and tem poraldifferen ce reinforcem en tlearn in g
algorithm s3.W hile reinforcem en tlearn ing agen tshave achieved som e
successesin a variety ofd om ains6 –8,theirapp licability haspreviously
b een lim ited to dom ainsin w h ich usefulfeaturescan be hand crafted,
or to dom ain s w ith fu lly observed,low -dim ensionalstate spaces.
H ere w e use recentadvancesin training deep n euraln etw orks9–11 to
d evelop a novelartificialagent,term ed a deep Q -netw ork,thatcan
learn successfulpoliciesdirectly from high-dim ensionalsensory inputs
u sin g end -to-en d rein forcem ent learnin g.W e tested th is agent on
the ch allen gin g dom ain of classic A tari2600 gam es1 2.W e d em on-
strate thatthe deep Q -netw ork agen t,receiving only the pixelsand
the gam e score asin puts,w as able to su rpassthe perform an ce ofall
p reviousalgorithm s and achieve a levelcom parable to thatofa p ro-
fession alhum an gam estesteracrossa setof49 gam es,usin g thesam e
algorithm ,n etw ork arch itecture an d hyperparam eters. T his w ork
b ridges the divide betw een h igh-dim ensional sensory in puts and
actions,resulting in the firstartificialagentthatiscapab le oflearn-
in g to excelata diverse array ofchallenging tasks.

W e setoutto create a single algorithm thatw ould beableto develop
a w ide range ofcom petencieson a varied range ofch allen gin g tasks—a
centralgoalofgeneralartificialintelligence13 thathaseluded previous
efforts8,14,15.To achieve this,w e developed anovelagent,adeep Q -netw ork
(D Q N ),w hich isable to com bine reinforcem entlearn ing w ith a class
ofartificialneuralnetw ork16 know n asdeep neuralnetw orks.N otably,
recentadvancesin deep neuralnetw orks9–11,in w hich severallayers of
n odesare used to build up progressively m ore abstractrepresentations
ofthedata,have m ade itpossibleforartificialneuralnetw orks to learn
concepts su ch asobjectcategoriesdirectly from raw sensory data.W e
use one particularly successful architecture, the deep con volutional
n etw ork17,w hich uses hierarchicallayers oftiled convolutionalfilters
to m im ic theeffectsofreceptivefields—inspired by H ubeland W iesel’s
sem inalw ork on feedforw ard processing in early visualcortex18—thereby
exploiting the localspatialcorrelationspresentin im ages,and building
in robustness to naturaltransform ations such as changesofview poin t
or scale.

W e considertasks in w hich the agentin teractsw ith an environ m en t
through a sequenceofobservations,actionsand rew ards.T he goalofthe

agentisto selectactionsin a fashion th atm axim izescum ulative future
rew ard.M oreform ally,w e use a deep con volutionalneuralnetw ork to
approxim ate the optim alaction -value fun ction

Q s,að Þ~ m ax
p

rtz crtz 1z c2rtz 2z ...jst~ s,at~ a, p ,

w hich isthem axim um sum ofrew ardsrtdiscoun ted by c ateach tim e-
step t,achievable by a behaviour policy p 5 P(ajs),after m aking an
observation (s) and taking an action (a) (see M eth ods)19.

R einforcem ent learnin g is kn ow n to be unstable or even to diverge
w hen a non linear fun ction approxim ator such as a neuralnetw ork is
used to representthe action-value (also know n as Q ) function20.T his
instability has severalcauses:the correlations presentin the sequence
ofobservation s,thefactthatsm allupdatesto Q m aysignificantly change
thepolicy and thereforechangethedata distribution,and the correlations
betw een theaction-values(Q )and the targetvaluesrz c m ax

a0
Q s0,a0ð Þ.

W eaddresstheseinstabilitiesw ith a novelvariantofQ -learning,w hich
uses tw o key ideas.First,w e used a biologically inspired m echanism
term ed experience replay21–23 th atrandom izes over the data,thereby
rem oving correlation sin theobservation sequence and sm oothing over
changesin the data distribution (seebelow fordetails).Second,w e used
an iterative update thatadjusts the action-values (Q ) tow ards target
valuesthatare only periodically updated,thereby reducing correlations
w ith th e target.

W hile otherstablem ethodsexistfortraining neuralnetw orksin the
reinforcem entlearning setting,such asneuralfitted Q -iteration 24,these
m ethodsinvolvetherepeated trainin gofn etw orksden ovo on hun dreds
ofiterations.C onsequently,these m ethods,unlike ouralgorithm ,are
too inefficien tto be used successfully w ith large neuraln etw orks.W e
param eterize an approxim ate value fun ction Q (s,a;hi) using the deep
convolutionalneuralnetw ork show n in Fig.1,in w hich hiare the param -
eters (that is,w eights) of the Q -netw ork at iteration i. T o perform
experience replay w e store the agent’s experien ces et5 (st,at,rt,st1 1)
at each tim e-step t in a data set D t5 {e1,…,et}.D urin g learn ing,w e
ap ply Q -learning updates,on sam ples (orm inibatches) ofexperience
(s,a,r,s9), U (D ),draw n uniform ly atrandom from the poolofstored
sam ples.Th e Q -learning update at iteration iuses the follow ing loss
function:

Li hið Þ~ s,a,r,s0ð Þ* U Dð Þ rz c m ax
a0

Q (s0,a0;h
{
i ){ Q s,a;hið Þ

2
" #

in w hich c isth ediscountfactordeterm ining the agen t’shorizon ,hiare
the param eters ofthe Q -netw ork atiteration iand h

{
i are the netw ork

param eters used to com pute the targetatiteration i.T he target net-
w ork param etersh{

i are only upd ated w ith the Q -netw ork param eters
(hi) every C steps and are held fixed betw een in dividualupdates (see
M ethods).

T o evaluate our D Q N agent,w e took advantage of the A tari2600
platform ,w hich offers a diverse array oftasks (n 5 49) designed to be

*T hese au tho rs co ntrib uted e qu ally to th is w ork.

1 G o ogle D eep M in d ,5 N ew S treet Sq u are,Lo nd on E C 4A 3T W ,U K .
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 Deep learning reliability and safety is crucial

Self-driving car Medical diagnosis

Malware detectionRobotics
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 Un-safe, e.g., lack of robustness (reliability and safety)

 Hard to explain to human users (interpretability)
 Deep neural networks are essentially black-boxes and 

researchers have a hard time to understand how they 
deduce conclusions

 Fairness, accountability, ethics, trustworthiness, etc.
 What would human review entail if models were available 

for direct inspection?
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Classified as panda Small adversarial noise Classified as gibbon

Accident
9

Ian Goodfellow, Jon Shlens, Christian Szegedy, Explaining and Harnessing Adversarial Examples, ICLR, 2014

10

Tesla autopilot failed to recognize a white truck against 
bright sky leading to fatal crash
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How to assure the quality of DL systems?

 By testing: we mean evaluating the system in 
several conditions and observing its behavior, 
watching for defects.

 By verification: we mean producing a compelling 
argument that the system will not misbehave under 
a very broad range of circumstances.

12

* Ian Goodfellow and Nicolas Papernot. 2017. The Challenge of Verification and Testing of Machine Learning.
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 By testing: we mean evaluating the system in 
several conditions and observing its behavior, 
watching for defects. (this talk focuses on testing)

 By verification: we mean producing a compelling 
argument that the system will not misbehave under 
a very broad range of circumstances.

13

* Ian Goodfellow and Nicolas Papernot. 2017. The Challenge of Verification and Testing of Machine Learning.
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 Test coverage criterion 
 How to define the test coverage criteria of DL 

systems?

 Test data generation 
 How to automatically generate a mass of test data 

for DL systems?

 Test data quality
 How to evaluate the quality of test data for DL 

systems?
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15

 Test coverage criterion 
 How to define the test coverage criteria of DL 

systems?

 Test data generation 
 How to automatically generate a mass of test data 

for DL systems?

 Test data quality
 How to evaluate the quality of test data for DL 

systems?

• Line Coverage

• Branch Coverage

• Function Coverage

• Data Flow Coverage

• Combinatorial Coverage

• Mutation testing Coverage

…..

µJava
Major

OCELOT
16
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DeepXplore DeepTest

DeepConcolic DeepRoad

ASE’18

Fairness

17

SOSP’17 ICSE’18

TensorFlow Program Bugs MODE: DL Debugging
FSE’18ISSTA’18

SQA
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 The decision logic of a traditional software:
 In the form of code

 The decision logic of a DL system:
 The structure of DNN
 The connection weights

19

 The decision logic of a traditional software:
 In the form of code

 The decision logic of a DL system:
 The structure of DNN
 The connection weights

sources of defects 20
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𝑥

2. Feed Labeled 
Input

𝑙

3. Calculate Loss

4. Update Model Based on Loss Gradient

5. Repeat Until Loss is 
Minimized

1. Initialize Network with Random Parameters

Data Collection Training Program Training Exec. Model Evaluation
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Input

𝑙

3. Calculate Loss

4. Update Model Based on Loss Gradient

5. Repeat Until Loss is 
Minimized

1. Initialize Network with Random Parameters

Data Collection Training Program Training Exec. Model Evaluation

22
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Data Collection Training Program Training Exec. Model Evaluation

Behavior of the DL system?

Neurons Connection Strength

23

Test data set Test AccuracyTest Accuracy

High accuracy High DL quality

Data Collection Training Program Training Exec. Model Evaluation

24
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 Multi-granularity testing criteria  
for DL systems (ASE 2018)
 ACM SIGSOFT Distinguished Paper Award

 Coverage-guided fuzzing testing 
framework
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 Multi-granularity testing criteria  
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 ACM SIGSOFT Distinguished Paper Award

 Coverage-guided fuzzing testing 
framework
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 Neuron coverage:  how much decision logic exercised 

 Neuron coverage = # neurons activated / # total 
neurons

 Kexin Pei, Yinzhi Cao, Junfeng Yang, Suman Jana. "DeepXplore: Automated Whitebox Testing of Deep 
Learning Systems", in Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP 
2017)

27
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f: ReLU max(x,0)

3

1

2

1

2

3

f(1)
1

Activation 
threshold=0.75

[3,1,2]  [2,-11,1]T=1
Neuron coverage: 4/7=57%

.

 Neuron coverage uses the same threshold as the 
activation evaluation for all the neurons

 It is straightforward to obtain a trivial test suite that 
has high neuron coverage but does not provide any 
adversarial example

*Testing Deep Neural Networks. Youcheng Sun, Xiaowei Huang, Daniel 
Kroening. arXiv:1803.04792, 2017

28
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• Enable testing quality evaluation
of DL systems from multiple
portrayals

• Provide systematic guidance 
of  test generation for
detecting defects 

• Facilitate interpretation &
understanding

29

Simple to understand & use

Efficient to compute

General to diverse DNNs

Scale to large DNNs

Adaptable by cases

30
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Test Data

Training Data
profiling

31

We use the output values of neuron n determined 
from the training to characterize its behaviors

statistical distribution

Large Scale Test Data
Neurons

32

 K-Multisection Neuron Coverage (KMNC)
 measures how thoroughly the given set of test 

inputs T covers the major function region 
[lown, highn] of a neuron n.
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Large Scale Test Data
Neurons

33

 Neuron Boundary Coverage (NBC)
 measures how many corner-case regions (w.r.t.

both of the upper and lower boundary values) 
have been covered by the given test input set T.

Large Scale Test Data
Neurons

34

 Strong Neuron Activation Coverage (SNAC)
 measures how many corner cases (w.r.t. the 

upper boundary value) have been covered by 
the given test inputs T.
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Test Data

Training Data
profiling

35

We use the top hyperactive neurons and their combinations 
(or the sequences) to characterize the behaviors of a DNN

statistical distribution

Large Scale Test Data
Layers

Neuron interactions of same layer
36

 Top-k Neuron Coverage (TKNC)
 measures how many neurons have 

once been the most active k neurons 
on each layer.
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Large Scale Test Data
Layers

Neuron interactions across layers

37

 Top-k Neuron Patterns (TKNP)
 Given a test input x, the sequence of the 

top-k neurons on each layer forms a 
pattern

MNIST

(LSVRC-2012)

DNNs #Neurons #Layers

LeNet-1 52 7

LeNet-4 148 8

LeNet-5 268 9

VGG-19 16,168 25

ResNet-50 95,059 176

60,000
10,000
(28,28,1)

1,000,000+
50,000
(224,224,3)

784 dim.

150528 dim.

38
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KMNC

NBC

SNAC

TKNC

TKNP

NC

FGSM

BIM

JSMA

C&W

DNNs

Coverage
Criteria Parameter setting

KMNC k=1,000 k=10,000 N.A

NBC
LB=l LB=l-0.5*σ LB=l-σ

UB=u UB=u+0.5*σ UB=u+σ
SNAC UB=u UB=u+0.5*σ UB=u+σ
TKNC k=1 k=2 k=3

TKNP k=1 k=2 k=3

NC th.= 0.0, 0.25, 0.5, 0.75

Test
org.

Adversarial
Test Gen

Coverage
Eval. Coverage Parameters

414 Evaluation Configurations= 270 (MNIST) + 144 (ImageNet)

190,000 Test data = 150,000 (MNIST) + 40,000 (ImageNet)

5 DNNs Profiling

18 Groups of Large Scale Adv Test Gen

Tesla M40 GPU 24GB / 18-core 2.3GHz Xeon 64-bit 196 GB 39

• CW and JSMA make smaller perturbation

• Adv on ImageNet is often imperceptible

• JSMA and CW is computation intensive

• Even more obvious on ImageNet subjects
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MNIST
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ImageNet

KMNC(k=1000) NBC (ub,lb) SNAC(ub) TKNP (k=1)
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14000

0%

10%

20%

30%

40%

50%

VGG19 ResNet50

47.4%

35.7%

47.8%

38%

47.5%

36.9%

43%

32.2%

0%

2%

5%

7%

10%

12%

VGG19 ResNet50

4.74%

2.89%

11.48%

7.35%
6.92%

8.74%

4.1%

2.82%

0%

1%

2%

4%

5%

6%

0%

3%

6%

8%

11%

14%

VGG19 ResNet50

5.36%
4.74%

13.11%

9.83%

6.99%

10.49%

4.65%4.63%

(1) Upper-bound

0

2,000

4,000

6,000

8,000

10,000

VGG19 ResNet50

9,9489,816 9,9989,989 9,998

8,265

4,9994,999

(1) k=1

42



12/11/2018

22

• Our criteria could distinguish benign and defects with little perturbations

• Increase the coverage could potentially increase the chance of defect detection

• TestGen guided by DeepGauge generates thousands of unique error trigger tests

KMNC(k=1000) NBC (ub,lb) SNAC(ub) TKNP (k=1)
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• Defects could occur in both regions, which need to be tested

• KMNC larger than NBC and SNAC, corner cases are difficult to cover

44
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• Criteria show different precision with different parameters
• The accuracy could be adapted on specific DNN models
• Precision could be further enhanced efficiently with bucket
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(a) K-multisection Neuron Coverage
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0%

11%

22%

33%

44%

55%

LeNet-1 LeNet-4 LeNet-5

44.2%

47.7%47.9%
48.8%

52.3%
51.5%

47.6%

50.2%

46.6% 46%

49.7%
48.6%

37.2%

39.7%

37.3%

(2) k=10000

Test orig. Test orig.+FGSM Test orig.+BIM Test orig.+JSMA Test orig.+CW
90%

0%

10%

20%

30%

40%

50%

VGG19 ResNet50

47.4%

35.7%

47.8%

38%

47.5%

36.9%

43%

32.2%

Test orig. Test orig.+FGSM Test orig.+BIM Test orig.+CW

0%

6%

12%

18%

24%

30%

VGG19 ResNet50

29.4%

18.5%

29.6%

19.1%

29.3%

18.8%

22.8%

13.5%

(a) K-multisection Neuron Coverage

(1) k=1000 (2) k=10000

45

 Multi-granularity testing criteria  
for DL systems (ASE 2018)
 ACM SIGSOFT Distinguished Paper Award

 Coverage-guided fuzzing testing 
framework

46
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47

6 coverage criteria

48

• Brightness
• Contrast
• Pixel Noise
• Blurring

Affine transformation

Pixel value transformation

• Translation
• Scaling
• Horizontal Shearing
• Rotation
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49

• NC
• KMNC
• NBC

• SNAC
• TKNC

General Oracles

• Robustness
• Fragmentation
• Cross Platform

50

Central
Controller

Gen

Gen

Gen

….

50
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 RQ1: What coverage can DeepHunter achieve when 
guided by the six testing criteria? 

 RQ2: Can DeepHunter enable diverse erroneous 
behavior detection of DNNs? 

 RQ3: Can DeepHunter detect potential defects 
introduced during DNN quantization?

51

VGG16

ResNet-20

52
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53

LeNet-1
LeNet-4
LeNet-5
ResNet-20
VGG-16
MobileNet
ResNet-50

54
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55

 DeepGuage defines a set of testing criteria to 
provide a way to gauge testing quality and 
guide test generation

 DeepHunter leverages coverage feedbacks 
and performs large scale fuzzing test 
generation for defect detection of DNN 
development and deployment

56
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Mutation Testing Workflow

Test data Quality Assessment

57

• Neuron Activation Configuration

• T-way combination sparse coverage

• (p,t)-completeness coverage

• T-way combination dense coverage

58
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59

 There are lots of exciting new research 
problems for DL/ML
 Build analysis tools for testing and verification of DL/ML 

systems
 Build better debugging support for opaque DL/ML systems
 Make DL/ML systems explainable
 ….

AI

SE Security

….
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