

Pangu Research Group (Kyushu Univ.)

(知能ソフトウェア工学研究室) (https://pangukaitian.github.io/pangu/en/index.html)

- On-going work
 - researches on the potential symbioses between software engineering SE and artificial intelligence AI
- The overall goal
 - to obtain better software and AI systems making them more robust, reliable, and secure, and easier to specify, build, maintain, or improve
- Group members
 - 2+ faculties and 3 PhD and 7 MS students

Problems and Critiques for DL Systems

- Un-safe, e.g., lack of robustness (reliability and safety)
- Hard to explain to human users (interpretability)
 - Deep neural networks are essentially black-boxes and researchers have a hard time to understand how they deduce conclusions
- Fairness, accountability, ethics, trustworthiness, etc.
 - What would human review entail if models were available for direct inspection?

7

Problems and Critiques for DL Systems

- Un-safe, e.g., lack of robustness (reliability and safety)
- Hard to explain to human users (interpretability)
 - Deep neural networks are essentially black-boxes and researchers have a hard time to understand how they deduce conclusions
- Fairness, accountability, ethics, trustworthiness, etc.
 - What would human review entail if models were available for direct inspection?

To design reliable systems, engineers typically engage in both testing and verification

- By testing: we mean evaluating the system in several conditions and observing its behavior, watching for defects.
- By verification: we mean producing a compelling argument that the system will not misbehave under a very broad range of circumstances.

* Ian Goodfellow and Nicolas Papernot. 2017. The Challenge of Verification and Testing of Machine Learning.

To design reliable systems, engineers typically engage in both testing and verification

- By testing: we mean evaluating the system in several conditions and observing its behavior, watching for defects. (this talk focuses on testing)
- By verification: we mean producing a compelling argument that the system will not misbehave under a very broad range of circumstances.

* Ian Goodfellow and Nicolas Papernot. 2017. The Challenge of Verification and Testing of Machine Learning.

13

Testing Issues for DL Systems

- Test coverage criterion
 - How to define the test coverage criteria of DL systems?
- Test data generation
 - How to automatically generate a mass of test data for DL systems?
- Test data quality
 - How to evaluate the quality of test data for DL systems?

Testing Issues for DL Systems

- Test coverage criterion
 - How to define the test coverage criteria of DL systems?
- Test data generation
 - How to automatically generate a mass of test data for DL systems?
- Test data quality
 - How to evaluate the quality of test data for DL systems?

15

Quality Assurance for Traditional Software Testing Criteria and Tools

- Line Coverage
- Branch Coverage
- Function Coverage
- Data Flow Coverage
- Combinatorial Coverage
- Mutation testing Coverage

Agitar

Towards Quality Assurance for DL Systems

- Multi-granularity testing criteria for DL systems (ASE 2018)
 - ACM SIGSOFT Distinguished Paper Award

Coverage-guided fuzzing testing framework

25

Towards Quality Assurance for DL Systems

- Multi-granularity testing criteria for DL systems (ASE 2018)
 - ACM SIGSOFT Distinguished Paper Award

Coverage-guided fuzzing testing framework

Test coverage criteria for DL systems (1)

- Neuron coverage: how much decision logic exercised
 - Neuron coverage = # neurons activated / # total neurons
- Kexin Pei, Yinzhi Cao, Junfeng Yang, Suman Jana. "DeepXplore: Automated Whitebox Testing of Deep Learning Systems", in Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP 2017)

2

Problems for Neuron Coverage

- Neuron coverage uses the same threshold as the activation evaluation for all the neurons
- It is straightforward to obtain a trivial test suite that has high neuron coverage but does not provide any adversarial example

^{*}Testing Deep Neural Networks. Youcheng Sun, Xiaowei Huang, Daniel Kroening. arXiv:1803.04792, 2017

e Scale	Empirica	al Study
DNNs	#Neurons	#Layers
LeNet-1	52	7
LeNet-4	148	8
LeNet-5	268	9
VGG-19	16,168	25
ResNet-50	95,059	176
	DNNs LeNet-1 LeNet-4 LeNet-5 VGG-19	LeNet-1 52 LeNet-4 148 LeNet-5 268 VGG-19 16,168

DeepGauge Results Summary (2) Defects could occur in both regions, which need to be tested KMNC larger than NBC and SNAC, corner cases are difficult to cover All Behaviors Behavior

Towards Quality Assurance for DL Systems

- Multi-granularity testing criteria for DL systems (ASE 2018)
 - ACM SIGSOFT Distinguished Paper Award

Coverage-guided fuzzing testing framework

DeepHunter In Action

- RQ1: What coverage can DeepHunter achieve when guided by the six testing criteria?
- RQ2: Can DeepHunter enable diverse erroneous behavior detection of DNNs?
- RQ3: Can DeepHunter detect potential defects introduced during DNN quantization?

51

Subject Dataset and DNNs Dataset DataSet DNN Model #Neuron #Layer Description Acc. 52 Hand written LeNet-1 0.976 MNIST digits recog. LeNet-4 148 0.989 from 0 to 9 LeNet-5 268 0.990 General image ResNet-20 2,570 70 0.917 CIFAR-10 12,426 0.928 with 10-class VGG-16 1000-class large MobileNet 38,904 0.871* **ImageNet** ResNet-50 94,059 0.929* scale image cla. * The reported top-5 test accuracy of pretrained DNN model in [45]. ResNet-20 LeNet-1 0.099 0.975 0.975 MNIST LeNet-4 0.077 0.986 0.986 0.058 0.990 0.116 0.071 0.977 0.988 LeNet-5 0.056 0.515 0.385 0.239 0.623 0.894 0.932 0.977 0.914 0.965 0.995 0.859 ResNet-20 CIFAR-10 VGG-16 VGG16

DeepGuage and DeepHunter

- DeepGuage defines a set of testing criteria to provide a way to gauge testing quality and guide test generation
- DeepHunter leverages coverage feedbacks and performs large scale fuzzing test generation for defect detection of DNN development and deployment

The Fun is Just Starting!

- There are lots of exciting new research problems for DL/ML
 - Build analysis tools for testing and verification of DL/ML systems
 - Build better debugging support for opaque DL/ML systems
 - Make DL/ML systems explainable
 - ...

