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Deep Learning Matches Human Intelligence
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Driving Force of Many Novel Technologies

FINANCE RETAIL INSURANCE EDUCATION

TRANSPORTATION

Deep learning is increasingly used in
safety-critical systems

Deep learning reliability and safety is crucial

Medical diagnosis

Robotics Malware detection 6
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Problems and Critiques for DL Systems

Un-safe, e.g., lack of robustness (reliability and safety)

Hard to explain to human users (interpretability)

Deep neural networks are essentially black-boxes and
researchers have a hard time to understand how they
deduce conclusions

Fairness, accountability, ethics, trustworthiness, etc.

What would human review entail if models were available
for direct inspection?
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Current Deep Learning is Vulnerable

Classified as panda Small adversarial noise Classified as gibbon
an Goodfellow, Jon Shlens, Christian Szegedy, Explainingand Harnessing Adversarial Examples, ICLR, 2014

Accident

K

- Sl

Tesla autopilot failed to recognize a white truck against
bright sky leading to fatal crash
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To design reliable systems, engineers typically

engage in both testing and verification

By testing: we mean evaluating the system in
several conditions and observing its behavior,
watching for defects.

By verification: we mean producing a compelling
argument that the system will not misbehave under
a very broad range of circumstances.

* lan Goodfellow and Nicolas Papernot. 2017. The Challenge of Verification and Testing of Machine Learning.
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To design reliable systems, engineers typically

engage in both testing and verification

By testing: we mean evaluating the system in
several conditions and observing its behavior,
watching for defects. (this talk focuses on testing)

By verification: we mean producing a compelling
argument that the system will not misbehave under
a very broad range of circumstances.

* lan Goodfellow and Nicolas Papernot. 2017. The Challenge of Verification and Testing of Machine Learning.

13

Testing Issues for DL Systems

m Test coverage criterion

* How to define the test coverage criteria of DL
systems?

= Test data generation

» How to automatically generate a mass of test data
for DL systems?

= Test data quality
» How to evaluate the quality of test data for DL

systems?

14
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Testing Issues for DL Systems

m Test coverage criterion

» How to define the test coverage criteria of DL
systems?

» Test data generation

* How to automatically generate a mass of test data
for DL systems?

Quality Assurance for Traditional Software

Testing Criteria and Tools

Atlassian
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Line Coverage Java Code Coverage e
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Function Coverage
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Quality Assurance for DL is at Early Stage

SOSP17 ICSE’18
DeepXplore // DeepTest

Fairness DeepConcolic e i) DeepRoad
Dé'eb'_b'_&ugqf i
ISSTA'18 FSE'18
TensorFlow Program Bugs MODE: DL Debugging
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Traditional Software

Deep Learning Software
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Fundamental Different Programming Paradigm

The decision logic of a traditional software:
In the form of code

The decision logic of a DL system:
The structure of DNN
The connection weights

[ ] [ ]
= Traditional Deep Learning
T Software Developer T Software Developer
l Coding Collectior/\\sfding
s : [ Training Data] [ Train Program]
h Traditional program

(control flow graph)

Compilation l Transformation

Input =——p§ Executable code j=— Output l ,gﬂ/ | Newalnetwork
Input ——| Deep Learning Model |— Qutput
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Source of defects:

The decision logic of a traditional software:
In the form of code

The decision logic of a DL system:
The structure of DNN
The connection weights

[ ] [ ]
Traditional Deep Learning
T Software Developer T Software Developer
l Coding CoIIectioT//Q\\C:)di"g
s - - I{Training Data] I[Train Program]]
B Traditional program

(control flow graph)

Compilation l Transformation

Input ——| Executable code |= Output

)

‘ Neuralnetwork

Input ——| Deep Learning Model |— Output

20

sources of defects
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DL Software Decision Logic Learning

N > [EFHE D>

Data Collection Training Program Model Evaluation

* 4. Update Model Based on Loss Gradient

5. Repeat Until Loss is
Minimized

l

X =——>

3. Calculate Loss
2. Feed Labeled
Input

Output layer

1. Initialize Network with Random Parameters
21

Source of defects:

Data Collection Training Program Evaluation

5. Repeat Until Loss is
Minimized

l

3. Calculate Loss
2. Feed Labeled
Input

Output layer

1. Initialize Network with Random Parameters
22
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Lacking of
Interpretability and Understandability

Lo’ N o > > =

Data Collection Training Program Training Exec. Evaluation

Behavior of the DL system?

Neurons Connection Strength

23

Quality Measurement Immature

cao? N [

Data Collection Training Program Training Exec. Model

7 DN
@ —— > | Test Accuracy
@
@

I Layer 1 I ’ Layer2 I l Layer 3 ]
(inpit Layer) (Output Layer)

High accuracy 7§4> High DL quality

24
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Towards Quality Assurance for DL Systems

4 -. Multi-granularity testing criteria
DéepGange - - for DL systems (ASE 2018)
ACM SIGSOFT Distinguished Paper Award

P o Coverage-guided fuzzing testing
DeepHunter framework

25

Towards Quality Assurance for DL Systems

s 5 Multi-granularity testing criteria
DéepGange -~ for DL systems (ASE 2018)
ACM SIGSOFT Distinguished Paper Award

26
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Test coverage criteria for DL systems (1)

= Neuron coverage: how much decision logic exercised

* Neuron coverage = # neurons activated / # total
neurons

= Kexin Pei, Yinzhi Cao, Junfeng Yang, Suman Jana. "DeepXplore: Automated Whitebox Testing of Deep
Learning Systems", in Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP
2017)

_______________________

3 Activation
threshold=0.75

(3,1,2]-[2,-11,1]"=1

Problems for Neuron Coverage

= Neuron coverage uses the same threshold as the
activation evaluation for all the neurons

= |t is straightforward to obtain a trivial test suite that
has high neuron coverage but does not provide any
adversarial example

*Testing Deep Neural Networks. Youcheng Sun, Xiaowei Huang, Daniel
Kroening. arXiv:1803.04792, 2017

28
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Overview of DeepGauge

* Enable testing quality evaluation
of DL systems from multiple
portrayals

* Provide systematic guidance
of test generation for
detecting defects

* Facilitate interpretation &
understanding

of DeepGauge

Simple to understand & use

Efficient to compute

General to diverse DNNs

Scale to large DNNs

Adaptability

Adaptable by cases

12/11/2018
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Neuron-level Criteria

We use the output values of neuron n determined
from the training to characterize its behaviors

profiling
Training Data =3

stati

X

Test Data

stical distriby

tion

o () ) () ) (O (o ()
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Neuron-level Criteria

Neurons
Large Scale Test Data =——————pp D

K-Multisection Neuron Coverage (KMNC)
measures how thoroughly the given set of test =

inputs T covers the major function region
[lown, highn] of a neuron n.

Ynen {SP | 3x €T : ¢(x,n) € ST}
k x |N|

KMNCov(T, k) =

o ) o) o) (o] (o) () ()

32

12/11/2018

16



Neuron-level Criteria

Neurons
Large Scale Test Data = D

Neuron Boundary Coverage (NBC)

measures how many corner-case regions (w.r.t.
both of the upper and lower boundary values)
have been covered by the given test input set T.

UpperCornerNeuron| + |LowerCornerNeuron
Pr

NBCov(T) < N] i ol

) ) ) () (o o
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Neuron-level Criteria

Neurons
Large Scale Test Data =——————pp D

Strong Neuron Activation Coverage (SNAC)

measures how many corner cases (w.r.t. the <]
upper boundary value) have been covered by
the given test inputs T.
. o |UpperCornerNeuron)|
SNACov(T) = V] i) L

o () ) (] () (oY (o ()

34
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Layer-level Criteria

We use the top hyperactive neurons and their combinations
(or the sequences) to characterize the behaviors of a DNN

profiling

Training Data =3 .@
g @ =
o g statistical distribytion

Test Data

o () ) () ) (O (o () 3

Large Scale Test Data ﬂb D hJ D D

Top-k Neuron Coverage (TKNC)

measures how many neurons have
once been the most active k neurons
on each layer.

| Uxe‘T(Ul(v(" topy,(x,))|

TKNCov(T, k) = N

Neuron interactions of same layer

36
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Large Scale Test Data ﬁb e f0&E

Top-k Neuron Patterns (TKNP)

Given a test input x, the sequence of the

top-k neurons on each layer forms a

pattern

TKNPat(T, k) = |{(top(x,1),...,top,(x,0)) | x € T}

Neuron interactions across layers

Layer-level Criteria

@
:
@:‘
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Large Scale Empirical Study

MNIST
60,000
10,000

(28,28,1)
784 dim.

IMAGE

(LSVRC-2012)
1,000,000+
50,000
(224,224,3)

150528 dim.

DNNs

LeNet-1

LeNet-4

LeNet-5

VGG-19

ResNet-50

#Neurons

52

148
268
16,168

95,059

#layers

7

8

9

25

176

38
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NVIDIA

Large Scale

Adversarial
Test Gen

5 DNNs Profiling

18 Groups of Large Scale Adv Test Gen

Coverage
Eval

......

Empirical Study

Coverage Parameters

Parameter setting

k=1,000 k=10,000

LB=I LB=I-0.5*C
UB=u UB=u+0.5*0
UB=u UB=u+0.5*C
k=1 k=2
k=1 k=2

th.=0.0,0.25, 0.5, 0.75

190,000 Test data = 150,000 (MNIST) + 40,000 (ImageNet)
414 Evaluation Configurations= 270 (MNIST) + 144 (ImageNet)

Tesla M40 GPU 24GB / 18-core 2.3GHz Xeon 64-bit 196 GB
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* CW and JSMA make smaller perturbation
* Advon ImageNet is often imperceptible
JSMA and CW is computation intensive

* Even more obvious on ImageNet subjects
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DeepXplore’s Neuron Coverage |4

M Testorig. M Testorig.+FGSM i Test orig.+BIM M Test orig.+JSMA M Test orig.+CW

1005, 100% 1005 100% 1005

1000%

B00%
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200%

LeNet-1 LeNet-4 LeNet-5 LeNet-1 LeNet-4 LeNet-5
(1) Threshold=0 (2) Threshold=0.2
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50%

40%
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10%

0%

VGG19
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LeNet-5
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10%
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ResNet50
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LeNet-1

DeepGauge Results Summary (1

KMNC(k=1000) NBC (ub,Ib) , SNAC(ub) TKNP (k=

0% - .

LeNet-1 LeNet4

o o%
LeNet-4 LeNet-5 LeNet-1 LeNet-4 LeNet-5 LeNet-1 LeNet4 LeNet-5

* Our criteria could distinguish benign and defects with little perturbations

Increase the coverage could potentially increase the chance of defect detection

1)

LeNets

* TestGen guided by DeepGauge generates thousands of unique error trigger tests

43

DeepGauge Results Summary (2):

* Defects could occur in both regions, which need to be tested

* KMNC larger than NBC and SNAC, corner cases are difficult to cover

All Behaviors

E

Corner-case
Behaviors

(Boundary Coverage)

Erroneous
Behaviors

44
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DeepGauge Results Summary

M Testorig. M Testorig.+FGSM Test orig.+BIM M Test orig.+CW
A75NATENTA% 0% 20.3%29.6%29.4%
3%

38% 24% 228%
369% " 575

0% 0% 0%
LeNet-1 LeNet4 LeNet-5 LeNet-1 LeNet-4 LeNet-5 VGG19 ResNet50 VGG19 ResNet50
(1) k=1000 (2) k=10000 (1) k=1000 (2) k=10000

(a) K-multisection Neuron Coverage (a) K-multisection Neuron Coverage

* Criteria show different precision with different parameters
* The accuracy could be adapted on specific DNN models
* Precision could be further enhanced efficiently with bucket

45

Towards Quality Assurance for DL Systems

a0 Coverage-guided fuzzing testing
DeepHunter framework

46
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Overview of DeepHunter

Prenrocessin Batch Batch Seed Power : H
a d Pool Selection . Sampling | Scheduling Sanity Checking

Initial Seeds ey : l Coos Oracle E— Falled
Prioritization ! | Analysis Tests

Batch Maintenance DNN Feedback

4
~ béepﬁntxqq a @

6 coverage criteria

47

Metamorphic Transformation

_ Batch ’ _| Batch
Preprocessing F{ Pool ( Selection

:
Sanity Checking

i Seed Power
. Sampling | Scheduling

i ‘
Initial Seeds e | coeg Oracle — Failed
Prioritization ' | Analysis Tests

Batch Maintenance : DNN Feedback

* Brightness

* Contrast . .

) . Pixel value transformation
¢ Pixel Noise
* Blurring
* Translation
¢ Scalin . .

. g . Affine transformation

* Horizontal Shearing
* Rotation 48
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Coverage Guidance & Oracles

Preprocessing }*—&(

Batch

: Seed 2 Power
. Sampling | Scheduling

Sanity Checking

O

Selection
( o ) Batch
Initia Seeds 4' Prioritization
Batch Maintenance

i Coverage |
( ' Analysis Dlzcie
\ DNN Feedback

/

* NC

* KMNC
* NBC

DeepGange i
* SNAC
* TKNC

\;/

General Oracles

* Robustness

* Fragmentation

* Cross Platform

49

Large Scale Parallelization

Central
Controller

I

¥ ) ¥ Keras
e -

Tensor

&

O

¥ Microsoft

CaEaZ Ché?r:er CNTK

.xnet PYTHRCH

50
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DeepHunter In Action

RQ1: What coverage can DeepHunter achieve when
guided by the six testing criteria?

RQ2: Can DeepHunter enable diverse erroneous
behavior detection of DNNs?

RQ3: Can DeepHunter detect potential defects
introduced during DNN quantization?

51

Subject Dataset and DNNs

Loss

Dataset Test

—— Training loss

DataSet Descrltion DNN Model #Neuron #Layer At 9y T Trining loss
Hand written LeNet-1 52 7 0.976
MNIST digits recog. LeNet-4 148 8 0.989
from 0to 9 LeNet-5 268 9 0.990
CIFAR-10 General image  ResNet-20 2,570 70 0917

with 10-class VGG-16 12,426 17 0.928
1000-class large MobileNet 38,904 87 0.871*
scale image cla. ResNet-50 94,059 176  0.929"

ImageNet

[ 50 100 150 200 250 300

ResEZﬁi"ét-zo

oss

* The reported top-5 test accuracy of pretrained DNN model in [45].

DataSet DNN Epoch Syno. Train Loss Train Acc. Test Acc.

0 A 0.131 0.965 0.967 — Training oss
LeNet:1 30 B 0.099 0975 0975 ‘ T velenenioss
45 C 0.087 0979 0976
0 A 0.117 0974 0078 s
MNIST LeNetd 25 B 0.077 0.986 0.986
50 C 0.058 0.990 0.989 4
10 A 0.116 0.977 0.983 3
LeNet-5s 30 B 0.071 0.988 0.989
5 C 0.056 0.992 0.990
40 A 0.515 0.894 0.859 !
ResNet20 55 B 0385 0932 0.880
. 95 C 0239 0977 0917
CIFAR-10 0 A 063 0914 0850 TTTh e B e e e
VGG-16 55 B 0.443 0.965 0.900 Epochs
95 C 0316 0.995 0.928 VGG16 52
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Significantly Improve

K

LeNet-1
LeNet-4
LeNet-5
ResNet-20
VGG-16
MobileNet
ResNet-50

LeNet-5

192

13 F
o [ 02 |§

MNC(%) NBC{%) SNAC(%) TKNC(%) NC{%] NBC(%) I

Init. B D.H. Init. ®D.H.

MobileNet ResNet-50

32
01 oy 0

KMNC(5%) NBC[3) SNAC(%)

Intt. mDH.

Defect Detection

s 15 g
8 =l
= O
8 O
g . s -‘_ O
— 10
& Lﬁ ST
80
o __
'—
| =
5 I
=
wi 5 .]_
(0]
L T L
5 1
=

0 1 =

NC KMNC NBC SNAC TKNC

Coverage Criteria

the Coverage

TKNC(%) BKNC[%)

NC
KMNC
NBC
SNAC
TKNC

54
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DNN Quantization Defects Detection

LeNet-5

60 8 00 o 0 ¢! 3 40
NUMBER DEFECTS DETECTED NUMBER DEFECTS DETECTED

QUAN. RATIO: m100% m50% =1%

MobileNet ResNet-50

600 800 1000
NUMBER DEFECTS DETECTED

QUAN. RATIO: m100% m50% =1%

DeepGuage and DeepHunter

DeepGuage defines a set of testing criteria to
provide a way to gauge testing quality and
guide test generation

DeepHunter leverages coverage feedbacks
and performs large scale fuzzing test
generation for defect detection of DNN
development and deployment

56
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DeepMutation: Mutation Testing of

DL Systems (ISSRE’18

DeepMutation: Mutation Testing of
Deep Learning Systems

Test data Quality Assessment

Xue, Bo L, Felix Juefe- Xu
n Zha, and !

Mutation Testing Workflow

SUT) o cxvtd ot v
1 71T e e gl ,, Mutant
T Software Generation

Z) s
5 o st daty. To 0 i, o shin O
a

o st and

0 b e nining progrem o uuo msjr souscs of
DLl et of DL sy, Fo macn esing of DL iens,
T e ——————— ek rion opebee 1o

&

= 1 Ivteoptenon

5 Over the pust docades, desp I

> i many ar

i il 3 <
) s sievad . el DL
) B i (1 g
e g - i s T e
o ¥ o o o e o1 1 Test
ot o . 3 o
‘ - e ehusor difernces 1 mode Test Sulte Executio
p o L i A
i . e f e fum
: o : e

it cvlusion. We it deign el mtation
Tt fesing operton tha cinetly maniplsie e tsiing duts
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Combinatorial Testing for Deep
Learning Systems

* Neuron Activation Configuration

L Ba'2, Fuyan Zhoog?, Miabui X
Yang Lit®. Tianjun Zhaa', and Yadong Wan

* Hnsbin Tnstiuie

* T-way combination sparse coverage

s Tochne) Shgupore
New York Usiversity Shanghai, China
. U,

¢ T-way combination dense coverage

* (p,t)-completeness coverage

&
a
25)
«
4
a r
I

T

=

- Parameters All Combinations 2-Pair (Pairwise)
i T s e s o colrsns o
s, We adapt the concept in CT and prop FL : A8, € PL P2 P3 PL P2 P3
DL systems, o5 & CT coveras P2:1,2 Tc1 AL Tc1 A 1 X
P X, Y Tc2 ALY Tca A2 Y
TC3 A 2 X TCE B 1 ¥
I Tca N2 X Tc7 8 2 X
2 Keywords: Combinaturial testing - Deep learning - Adversarial attacks TCS 8 1 X TCO c 1 X
5 TCE B 1 Y TC12 £ 2 Y
2 1 Introduction TCc? B 2 X
applicd in v Tcs B 2 Y
35], TCS c 1 X
. TC10 c 1 ¥
0 systems. TC11 c 2 X
staat. to adopt DI, deplovitg DI, Tc12 c 2 ¥
1 npplications cna ke o severe conse-

ais in avlonomous diving 12 DL ss=toms are
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The Fun is Just Starting!

= There are lots of exciting new research
problems for DL/ML

Build analysis tools for testing and verification of DL/ML
systems

Build better debugging support for opaque DL/ML systems
Make DL/ML systems explainable

ave ravonin L0, ooy
vehiCIe:mg s Neum Muscular |th
@@ 20 =l BV aUEgQOIllous : BlomedlcalProtem
irivac Irl]"hovat;on“"y automauccaEH SClenCESD‘ £ases -
“deve lopment Stechnology 'eeg =NAR Prm[m

@ mens s meweion
needsChallenges®!* 8 intelligent
manufacturers™ e !

Deep Learning Engineering
Towards the Intelligence of Future

% NVIDIA Al Tech Center (NVAITC)
10+ Nvidia Tesla M40, 20+ Tesla V100

e f_eglreDeeplmming \ ‘
#ssins | Engineering Life Cycle
4 g g Life Cyde |
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Thank you!
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