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Al Dependability?



Al and ML

mEveryone is talking about Al and ML, recently more
about risks and concerns in terms of dependability
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Technically unsolved
problems at
Microsoft Created a Twitter Bot to Learn

From Users. It Quickly Became a Racist Jerk. G O O g | e P h Oto

By DANIEL VICTOR  MARCH 24, 2016
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[ https://www.theguardian.com/technology/2015/jul/01/

[ https://www.nytimes.com/2016/03/25/ google-sorry-racist-auto-tag-photo-app ]
teclhnolofgy/ m|crosoft—cre.ailedl—oa—twnter—bot- [ https://www.theguardian.com/technology/2018/jan/12/
to-learn-from-users-it-quickly-became- google-racism-ban-gorilla-black-people ]

a-racist-jerk.html ]
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What will you do if you are responsible? (1)

®\When Honda sees ramen shop sign
mFirst buzzin Dec 2017

= [ http://www. [ https://twitter.com/_gyochan_/status/
,,,,,, . tenkaippin.co.jp/ 938240168078622720 ]
K¥x—o0 company.html ] [ https://twitter.com/Bleu_kakeru727/status/
937680760491753473 ]
mNow a caution on the web site  swm= 7 13170y
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mSecond buzz &
in Sep 2018

8:24 PM - 12 Sep 2018

15,099 Retvneets 20.908Lkes OGP O R o o ™S

Can you find beforehand or prevent adverse (7) news??
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What will you do if you are responsible? (2)

mFrom DeNA (May 2018)

BGenerate an image of a certain pose
BGenerate a movie given a pose sequence while

smoothly changing the character & & & &
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[ https://dena.com/intl/anime-generation/ ] (4 f? ? ? ?

What do you ensure to sell this to anime companies?
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Cause of New Difficulties



Software 2.0 or Inductive Software Dev.

M| et us focus on ML

mPresent movement on Al was driven by ML, specifically
advance in deep learning techniques

m\With ML, we construct a software componentin a
different way: derive the rule that governs the behavior
from training data (not directly from engineers)

mIn the Japanese industry, the terms
“inductive software development” Medium
and “inductive programming” R
is also used Software 2.0

I sometimes see people refer to neural networks as just “another tool in your

machine learning toolbox”. They have some pros and cons, they work here or

[h tt p S: / / me d | um.com / @ k a rp at h y / there, and sometimes you can use them to win Kaggle competitions.

Unfortunately, this interpretation completely misses the forest for the trees.

SOft\Na I’e-Z-O-a 64 1 5 2 b 3 7 C3 5 ] Neural networks are not just another classifier, they represent the beginning

of a fundamental shift in how we write software. They are Software 2.0.
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Exam P le Boundary created from training data

Gibbon
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[ http://free-photos.gatag.net/ ]
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Resulting Characteristics (1)

Imperfect and has limitation on performance,
impossible to estimate the performance before
construction or changes

® Contract not based on the specification but only on “the best
effort together”

m Half-a-year effort to find “we should give up”

® Requiring much courage of users/customers and
creative ideas to find acceptable usages
with the inevitable imperfectness
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Resulting Characteristics (2)

Often difficult/costly or impossible to define the right
output for each arbitrary input
(no deductive/logical specification, non-testable)

B The “unit testing” principle invalidated

® Obvious faults (in training data, configuration, learning-
algorithm code) not detected, possibly

® Fault localization (debugging) very difficult

® Not to straightforward to have enormous number of test
cases to increase the confidence (e.g., random testing)
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Resulting Characteristics (3)

Impossible to describe the boundary of
what can be done and what cannot be done

(in a human-interpretable way) u u

Have adversarial examples " g
(slight input changes cause h
large output change)

mVery difficult to have confidence on the quality
B The “equivalence class” principle invalidated

[ Goodfellow et al., Explaining and Harnessing [ Wicker et al., Feature-Guided Black-Box Safety
Adversarial Examples, 2015 ] Testing of Deep Neural Networks, 2018 ]
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Resulting Characteristics (4)

Blackbox and unexplainable for

why individual results are obtained . cdeconior
or how the component behaves
(in a human-interpretable way)

Test Image

Helpful train
dog image
(Inception)

RBF SVM
¥

Tawuin § § Tasuln
& A b o

Judging
with snow

Inception

m Possible semantic gaps from human expectation
m Obstacles for user/customer acceptance

[ Ribeiro et. al., " Why Should | Trust You?": [ Koh et. al., Understanding Black-box Predictions
Explaining the Predictions of Any Classifier, 2016 ] via Influence Functions, 2017 ]
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e.g., Active Research on Testing/Verification

B SMT-based verification [cav'17]

m Search-based testing with “neuron coverage” criteria [SOSP'17]
[ICSE'18]

m Testing based on system-level requirements INFM'17]
m Verification by stochastic game [TACAS'18]

B Metamorphic testing 1SsTA"18]

m Verification by abstract interpretation [iIcML'18]
®mEmpirical study on bug statistics [1ssTA18]

B Mutation analysis [ISSRE"18]

® Updated neuron coverage criteria [ASE'18]

® Concolic testing [ASE'18]

M Fairness testing [ASE'18]

m Uncertainty classification [wAISE'18]

B Structuring of assurance aspects [WAISE'18]
. coe



MLSE Activities



MLSE  Focus on ML, not general Al
« Discuss systems not only software

lSpeciaI Interest Group on | focuson SEAML not ML4SE
Machine Learning Systems Engineering

mFormally since Apr. 2018, with JSSST
(an academic society in Japan)

mTrigger: panel discussion at a SE event in Sep. 2017, and
following interactions in Facebook

m 10 events so far (plus 3 planned):

symposium, discussion camps, survey presentation, -+

Got 26 sponsors and almost 500 attendees

Most of the attendees have been from the industry
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Questionnaire Survey

mMethod

mDissemination by mailing lists and social networks
(software engineering, ML, and Al)

m“those who have used ML at work”

m2380 answers

mQuestion aspects
BmExperience on SE activities and on ML techniques
mPast projects that used ML
®mQuality attributes considered significant
mPerception of difficulties
B Characteristics of ML that lead to the difficulties



Profiling

Software Dev. Experience ML Experience
< 1year

3%

4-5
years
11%

Experienced engineers were recently pushed to learn and use ML}
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ML Usage Domain
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Manufacturing Home Appliance
Information & Communication Wholesale and Retail
Company-Specific Services Education
Foundational Development (e.g., Life Service / Amusement
middleware) Medical / Welfare
Academic Research Construction
Automotive / Railway Real Estate
Finance / Insurance Utility
Application in manufacturing is large (in Japan) 1
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Significant Quality Attributes
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Significant attributes in the past projects
Attributes expected to be significant in future

XAl (eXplainable Al) is thought as significant also in practice

Maintenance, security, and privacy are somewhat left behind

|
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Difficulty Level

We need to use new approaches as the
existing ones do not work anymore

We can apply the same approaches but
methods, etc,, are still immature

Decision Making with Customers

Testing & Quality Evaluation / Assurance
Debugging

Updates

Project Management

Operation

Training Data

Architecture Design

0 20 40 60 80 100

We already have dedicated methods, etc. We can use existing methods,
frameworks, or tools
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Some Insights

(at least in Japan)
mEngineers are facing with difficulties in the engineering
aspect, rather than (or not only) algorithmic aspects that
they were unfamiliar with but could learn

mHigh uncertainty in the implementation, not only
requirements/environments, is one of the core causes

mResearch papers are emerging but often limited to “easy to
evaluate” studies, such as testing and verification for finding
adversarial examples, rather than practical disciplines
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Summary

mMLSE is a new paradigm
mEssentially different with unique difficulties
(not a buzzword)
mStrong demands from the industry

We need your research contributions!
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