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ML/AI - SEMLA
• Eliza  (J Weizenbaum 1966) demonstrates  we can be 

easily fooled believing an intelligent behaviour even if it 
is just pattern matching and pattern substitutions

• Fast forward to early 80’s first attempts to integrate 
pattern recognition, machine learning, vision, spoken and 
natural language processing into “intelligent” platforms

• The dream is still valid create systems that learn



EARLY ATTEMPTS — SEMLA

• The perceptron  was invented late 50’s 
early 60’s — Just one layer

• Neural networks have been around since 
60’s - 70’s

• 2010 New hardware architectures — 
GPU 

• More recently better software framework, 
better models, algorithms  and hardware

Image from Wikipedia



DEEP LEARNING — SEMLA

• Countless possibilities but:

• How do we cope with robustness

• How do we deploy in mission critical systems

• The social and ethical impact 



SEMLA GOAL
• Bridge the gap between software engineers  and 

machine learning experts — topics:

• Architecture and software design
• Model/data verification and validation
• Change management 
• User experience evaluation and adjustment
• Privacy, safety, and security issues
• Ethical concerns
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SEMLA PROGRAM
• Talks, panels and posters

• Panels:

• Computing the world to change the world: risks and opportunities

• Are we ready for AI 

• The industry’s take on SEMLA

• Discussion session on education

• All material  is available at: http://semla.polymtl.ca/
•



SEMLA 
MOVING 

FORWARD
Why worry



WHY WORRY ?
• Software runs the world we need to build more and 

more applications BUT we need to trust software: we 
depend on it

• Quality assurance and testing need complete, precise, 
non ambiguous, non vague specifications

• If specifications are not complete or non ambiguous 
how can we define an oracle



ML/AI SHOULD IT HELP US TO:

• Imitate human behaviour ?

• Play game well ?

• Build programs that use the same methods  that 
human use?



NON TECHNICAL ISSUES

• Is the ML/AI application adapting to the user or vice-versa?

• If we trust too much the system behaviour we may 
overlook risky situations:

• how do we keep the human in the loop?

• The human remains the final judge but there are 
sociological, ethical and political  ramifications



IS ML A PANACEA
• Not all task are well suited for ML

• We can often solve the same or similar problem with 
traditional coding

• If we have physical laws and mathematical models why 
should we learn from data ?

• Find the right problem for the right tool is  “a huge 
challenge”



CONTRADICTION

• If we write a program to 
compute an answer it implies we 
have not such an answer

• If we do not know what the 
answer is, how can we write an 
oracle and test the program?

E. J. Weyuker, “On testing non-testable programs,” The Computer Journal, vol. 25, no. 4, pp. 465–470, 1982



NON TESTABLE PROGRAMS
• Since we invented the first programming language we had to deal 

with non-testable programs (think to an assembler or a 
compiler !)

• Notable examples:

• programs that compute an answer

• programs that produce too much data

• programs for which the tester has a misconception
E. J. Weyuker, “On testing non-testable programs,” The Computer Journal, vol. 25, no. 4, pp. 465–470, 1982



NON TESTABLE PROGRAMS

• Pseudo-oracles

• If we cannot hope to have a full, non vague, 
precise specification

• If we cannot reasonably check the output

• If we do not have the “answer”



PSEUDO-ORACLE PROBLEMS

• Simulation programs

• Compilers

• Combinatorial optimizations

• NLP 
Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang, H. Huang,  and T. Y. Chen. Metamorphic testing and its applications. In Proc. of the 8th International 
Symposium on Future Soft- ware Technology (ISFST 2004), 2004. 



ERROR SOURCES

Houssem Ben Braiek, Foutse Khomh On Testing Machine Learning Programs;  arXiv:1812.02257

https://arxiv.org/search/cs?searchtype=author&query=Braiek%2C+H+B
https://arxiv.org/search/cs?searchtype=author&query=Khomh%2C+F
https://arxiv.org/abs/1812.02257


CONTROVERSIAL STATEMENT

• The ML/AI QA problem is not new at all

• The Pseudo-oracle problem was there long before ML and AI

• Untestable programs are just more common

• Today what matter the most are data

• Without the data it may ba hard or impossible  to interpret, 
explain, introspect or validate results  



THE NEW ARISTOCRACY

• Have access to 
(labelled) training data 

• Can define 
architecture and model

• Have enough 
resources to 
materialize the model

• Rely on 3-d party 
components

• Do not have access to 
(labelled) training data

• Resources may not be 
there 



SW PRODUCTION AND ML/AI
The double speeds contradiction



DEEP LEARNING 
CONTRADICTION

• Training a DNN requires special hardware to 
accelerate computations

• To train on source code our SATD model 
required multiple GPUs and a  couple of weeks 
just for one  architecture configuration

• Finding the best configuration may be impractical



SOFTWARE 2.0
• Will traditional software disappear?

• Likely not

• There are domains where we have plenty of labelled data for example a 
switch or light controllers, car engines

• Simply learn the desired behaviour

• If you have understanding of the problem and physical laws but the 
coding task is difficult while data are abundant software 2.0 can be the 
answer



DATA-OPS

• Data are the key for ML/AI we need new skills and  
expertises

• There are traditional ML algorithm that can 
(almost) fit  right  now in the DevOps cycle

• DNN  is another story even with Google resurces



DATA-DRIVEN SW ENG

• The desired behaviour can be learn if we have enough data 

• and computational resources

• We need data engineers  working with the traditional 
software engineers

• Curate collected data, ensure consistency, reliability and 
trustworthiness   



DATA-DEV/OPS

• We need better and less expensive hardware

• We need better and faster training/adaptation 
algorithm

• We need better and faster testing approaches

• We need better visualization/introspection tools



END OF FIRST PART



ML AND MODELS
The imperfect reality



Code Complete: A Practical 
Handbook of Software Construction
a) Industry Average: "about 15 - 50 errors per 1000 lines of delivered
code."

(b) Microsoft Applications: "about 10 - 20 defects per 1000 lines of code
during in-house testing, and 0.5 defect per KLOC (KLOC IS CALLED AS 1000 lines of code) in released
product (Moore 1992).”

(c) "Harlan Mills pioneered 'cleanroom development', a technique that has
been able to achieve rates as low as 3 defects per 1000 lines of code during
in-house testing and 0.1 defect per 1000 lines of code in released product
(Cobb and Mills 1990). A few projects - for example, the space-shuttle
software - have achieved a level of 0 defects in 500,000 lines of code using
a system of formal development methods, peer reviews, and statistical
testing."



SOFTWARE DEFECTS 
PREDICTION

G.  Canfora, A. De Lucia, M. Di Penta, R.  Oliveto, A.  Panichella, and S.  Panichella. 2013. Multi-objective Cross-Project 
Defect Prediction. In Proceedings of the 2013 IEEE Sixth International Conference on Software Testing, Verification and 
Validation (ICST '13). I

S. Kpodjedo, F. Ricca, P. Galinier, Y. Guéhéneuc, and G. Antoniol, “Design evolution metrics for defect prediction in object 
oriented systems,” Empirical software engineering, vol. 16, iss. 1, pp. 141-175, 2011. 

• Multivariate logistic regression models

• Poisson models

• Classification and regression trees



CLUSTERING AND MODELING
split = sample.split(dataset$Species, SplitRatio = .8)
training_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)

training_set[,1:4] = scale(training_set[,1:4])
test_set[,1:4] = scale(test_set[,1:4])

classifier = svm(formula = Species~Petal.Width 
            + Petal.Length,
               data = training_set,

          type = 'C-classification', kernel = 'radial')
      

test_pred  = predict(classifier1, type = 'response',  
                        newdata = test_set[-5])

table(test_set[,5], test_pred1)

##                 setosa versicolor virginica
##   setosa         10          0         0
##   versicolor     0         10         0
##   virginica        0          2          8

R data exploration and  visualization  plus SVM classifier



DOES IT HOLD TRUE?

Image from Wikipedia

Cross-validation: estimate what will happen in the wild 



THREE IS BETTER THEN TWO

• Cross validation may be source 
of bias

• We need three (or more) sets 

• Is it really what ML/AI is doing 
see Tensorflow training

• It goes back to MIT media lab 
and Tomaso Poggio ideas

Cesare Furlanello, Maria Serafini, Stefano Merler, Giuseppe Jurman:
Entropy-based gene ranking without selection bias for the predictive classification of microarray data. BMC Bioinformatics 4: 54 (2003)

Data
Train/Validate

Test

https://dblp.org/pers/hd/s/Serafini:Maria
https://dblp.org/pers/hd/m/Merler:Stefano
https://dblp.org/pers/hd/j/Jurman:Giuseppe
https://dblp.org/db/journals/bmcbi/bmcbi4.html#FurlanelloSMJ03


ML/AI METHODS EVALUATION

• We base our evaluation on well known and 
accepted metrics derived from the confusion 
matrix

• Hardly ever an approach is 100% correct

• Human also are often wrong why should we ask a 
machine be always correct ?



THE SOCIAL RISK

• We are somehow used to human errors

• A program failure may have catastrophic effects

• The user should be aware of what is under the 
hood and the associated risks or at least be 
warned



THE ULTIMATE CHALLENGE: 
TEST NON TESTABLE 

PROGRAMS
see E Weyuker 80s papers



public static double YYY(double[] s, double[] t){
        double[][] matr = new double[s.length + 1][t.length + 1];

        matr[0][0] = 0;
        for (int i = 1; i <s.length + 1; i++) {
            matr[i][0] = inf;
        }
        for (int i = 1; i <t.length + 1; i++) {
            matr[0][i] = inf;
        }

        for (int i = 1; i < s.length + 1; i++) {
            for (int j = 1; j < t.length + 1; j++) {
                double cost = distanceD(s[i - 1], t[j - 1]);
                matr[i][j] = cost + minimum(matr[i - 1][j],   matr[i][j - 1],  matr[i - 1][j - 1]); 
              }
        }
        return matr[s.length][t.length];
    }

Hermann Ney. 1990. The use of a one-stage dynamic programming algorithm for connected word recognition. In Readings in 
speech recognition, Alex Waibel and Kai-Fu Lee (Eds.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA 188-196. 

UNDERSTANDING HUMAN SPEECH  
— THE PROTO AI  ALGORITHM



THE ASR SYSTEM

Lawrence R. Rabiner and Ronald W. Schafer. 2007. Introduction to digital speech processing. Found. 
Trends Signal Process. 1, 1 (January 2007),

G. Antoniol; Roldano Cattoni; Mauro Cettolo; Marcello Federico,  Robust Speech Understanding for 
Robot Telecontrol,  ICAR 1993 , pp. 205- 209, Tokyo, Japan

we are missing the entire “semantic” action part !



LINUX KERNEL SIMPLIFIES 
VIEW

Image from Wikipedia To large output space!



THE CONUNDRUM
• Size does matter :  1000 LOC is easier  to deal with than  10 

MLOC

• Complexity and architecture matter too:

• The Linux kernel is more complex than simple spoken 
language applications

• It is not black versus white box

• not many people patch the Linux kernel (white box users)



MATTER OF FACT

• Large, complex long lived systems often do not 
have complete, precise, non vague specification

• ML is often used when the answer is not know

• The problem is exacerbated by the fact we do not 
know the “right” ML tool to use!



MAKING THINGS WORSE

• ML models debugging

• ML models introspection 

• ML models are often not compositional 

• ML models are the result of numerical 
approximation 



Our experience with DNN: 

Technical Debt refers to

" not quite right code which we  
postpone making it right." 

[Ward Cunningham]



Developers "self-admit" technical debt…

"… at the file level, between 2.4 - 31.0% 
of the files contained one or more 
instances of self-admitted technical 
debt.” 
Use self admitted debt as an oracle and 
build a deep network to recognize them

// Unsafe; should error.

// FIXME: This is such  

a gross hack...



• Kim1 explores CNNs and their performance compared to previous work using a variety 
of classifiers (RNN, Naïve Bayes, SVM)

➢In some cases, CNN is out performed by a manually tuned SVM
• Fu and Menzies2 conduct a  study on linked and duplicate posts from Stack Overflow 
comparing CNN performance to a tuned SVM

➢Compared to CNN, tuning SVM is about 84X faster

• Y. Zhang and B. Wallace, “A sensitivity analysis of (and practitioners’ guide to) convolutional 
neural networks for sentence classification,” pp. 253–263, 2017. 

"46

Deep Learning on Sentence Classification 
Problems

1Y. Kim, “Convolutional neural networks for sentence classification,” CoRR, 2014.

2W. Fu and T. Menzies, “Easy over hard: A case study on deep learning,” in Proc. of the Joint Meeting on Foundations 
of Software Engineering (ESE), 2017, pp. 49–60.



TABLE I
CHARACTERISTICS OF THE STUDIED PROJECTS.

Project Release Number of Number of Comments Number of Design SATD % of Methods
Files Classes Methods Comments 2 Methods /2 Methods 2 Methods with design SATD

Ant 1.7.0 1,113 1,575 11,052 20,325 13,359 1 57 0.5%
ArgoUML 0.34 1,922 2,579 14,346 64,393 17,722 203 425 2%
Columba 1.4 1,549 1,884 7,035 33,415 10,305 8 418 5%
Hibernate 3.3.2 GA 2,129 2,529 17,405 15,901 9,073 21 377 2%
jEdit 4.2 394 889 4,785 15,468 10,894 6 77 2%
jFreeChart 1.0.19 1,017 1,091 10,343 22,827 15,412 4 1,881 18%
jMeter 2.1 1,048 1,328 8,680 19,721 12,672 95 424 5%
jRuby 1.4.0 970 2,063 14,163 10,599 7,809 16 275 2%
Squirrel 3.0.3 2,325 4,123 16,648 25,216 15,574 35 173 1%

and methods, number and percentage of methods containing
a design SATD. Some differences, e.g., number of classes,
methods or comments, could be observed when comparing
figures in Table I and those reported by Maldonado et al. [27].
We attribute these differences to the different tooling, tools
characteristics and processing. In our processing we did not
make a distinction between a class and its inner classes and the
total number of classes includes the interfaces. However, this
does not directly affect our work, as we were only interested
to trace method-level SATD.

As it can be seen from Table I, and as explained in
Section II, there is a clear prevalence of method-related SATD
than of class-level SATD. Table I also clearly shows that
the classification problem (SATD prone versus non SATD
prone) is highly unbalanced. As it can be noticed, besides
JFREECHART, where the percentage of design SATD methods
is 18%, in all other cases it is 5% or below.

To build the oracle, we started from the replication package
of Maldonado et al. [27]. Since the dataset reports SATD at file
level, we attributed SATD to methods by matching the SATD
string onto comments attached to methods. If the SATD is
matched onto a comment contained in a class, but not attached
to any method, then it is assigned to the class, while comments
outside the class are attached to the file. In any case, both file
and class-level SATD (a minority, as it can be noticed from
Table I) are not considered in our study.

B. Analysis Method

To address RQ1 we performed a 10-fold cross validation
for SATD of each project. Namely, we train every time the
approach on 9/10 of the project methods, and we test on the
remaining 1/10. To limit the effect of the randomness, the
process is repeated 10 times, and performance indicators are
averaged over the 10 iterations. For RQ2, instead, we train the
approach every time on 8 projects and test it on the remaining
one.

To assess the performance of TEDIOUS we use standard
metrics in automated classification, namely, precision, recall,
and F1 score computed for the SATD category, i.e., for
methods classified as SATD with respect to the true SATD
methods.

Precision (Pr) is defined as the percentage of methods
predicted as having SATDs that are correct with respect to
our oracle, i.e., Pr = TP/(TP + FP ), where TP and FP
are the number of true and false positives respectively. Recall

(Rc) is the percentage of SATD methods in the oracle that
the approach is able to retrieve, i.e., Rc = TP/(TP + FN).
Finally, the F1 score is the harmonic mean between precision
and recall: F1 = 2 · (Pr ·Rr)/(Pr +Rc).

Neither of the three metrics described above takes into
account true negatives (because they are computed for the
true SATD class only) therefore it is important to complement
the results’ evaluation using other metrics, namely, accuracy,
Matthews Correlation Coefficient (MCC) [30] and the Area
under the Receiving Operating Characteristics (ROC) Curve
(AUC).

Accuracy (Acc) is the percentage of methods correctly
predicted among the total number of methods analyzed: Acc =
(TP + TN)/(TP + TN + FP + FN).

The MCC is a measure used in machine learning to assess
the quality of a two-class classifier especially when the classes
are unbalanced [30]. It ranges between -1 an 1 (0 means that
the approach performs like a random classifier). It is defined
as:

MCC =
TP · TN � FP · FNp

(TP + FP )(FN + TN)(FP + TN)(TP + FN)

As for other correlation measures, MCC < 0.2 indicates a
low correlation, 0.2  MCC < 0.4 a fair, 0.4  MCC < 0.6
a moderate, 0.6  MCC < 0.8 a strong, and MCC � 0.8 a
very strong correlation [12].

The ROC [36] curve represents the true positive rate against
the false positive rate at various classifier thresholds. The
higher the area below the ROC, the more the classifier will be
better than a random classifier, which has an AUC=0.5.

Intuitively, we prefer a balancing between both precision
and recall, as in practical settings we want an approach that
is able to alert developers whenever in their code they omit
to admit a TD. Moreover, we cannot use only the F1 score
as an indicator since we want to reduce the possibility of
classifications that occurred by chance, and for this reason
we also report and discuss MCC and AUC values.

In addition to the aforementioned performance indicators,
we provide indications about the importance of the considered
metrics. In our case we use a specific technique implemented
by Weka for Random Forests (which in our study outper-
form the other classifiers) named Mean Decrease Impurity
(MDI) [25], which measures the importance of variables on
an ensemble of randomized trees.

To address RQ3 we compute and report the performance
of a smell detector, namely DECOR [32], in classifying as

SUBJECT SYSTEMS



TABLE II
AVERAGE PERFORMANCE OF DIFFERENT MACHINE LEARNERS FOR

WITHIN-PROJECT PREDICTION.

Without Balancing

ML Pr Rc F1 Acc MCC AUC

Random Forests 49.97 52.19 47.15 93.32 0.47 0.92
Bagging 51.91 48.45 45.97 93.35 0.45 0.92
Bayesian 24.29 78.77 34.18 89.01 0.38 0.93
j48 34.86 54.42 39.54 94.18 0.39 0.82
Random Trees 23.09 52.49 29.96 90.35 0.30 0.73

With Balancing

ML Pr Rc F1 Acc MCC AUC

Random Forests 26.56 68.26 36.04 90.45 0.37 0.92
Bagging 18.4 75.12 28.24 85.58 0.31 0.90
Bayesian 4.00 94.07 7.55 15.66 0.04 0.72
j48 16.95 77.76 26.45 84.04 0.30 0.85
Random Trees 16.03 63.22 24.49 85.34 0.26 0.75

TD methods labeled as SATD. Most of the smells defined by
DECOR (and by most of the existing smell detectors) are at
class level, therefore we limit the attention to method-level
smells, namely Long Method and Long Parameter List. The
rules DECOR uses for identifying a Long Method or a Long
Parameter List are LOC> th1 and ParNbr> th2, where th1

and th2 are two thresholds on the LOC and on the number
of parameters respectively. In our study, we consider th1 and
th2 varying along different percentiles of LOC and number
of parameters, belonging in the range [0.5 � 0.95]. Also, we
consider DECOR’s default thresholds, namely percentile 0.75
for LOC and outlier for long parameter list, i.e., third quartile
+1.5 · IQR (interquartile range).

Finally, we qualitatively discuss some examples of false pos-
itives and false negatives, explaining to what extent TEDIOUS
is limited in its capability to recommend any kind of design
TD.

IV. STUDY RESULTS

This section reports the study results, addressing the re-
search questions formulated in Section III.

A. How does TEDIOUS work for recommending SATD
within-project?

Table II highlights the average performance computed by
executing 10 times the 10-fold cross validation for each system
in our dataset, using different machine learners’ algorithms,
and with or without balancing the training set with SMOTE.

The Random Forest classifiers executed on an unbalanced
dataset achieve the best balancing between average precision
(49.97%) and average recall (52.19%), with an average F1

score of 47.15%. The accuracy (which keeps into account
the classification of negatives) is 93.13%, and it is in all
cases (except for Bayesian classifiers with balancing) above
80%. Moreover, MCC has an average value > 0.4 (moderate
correlation), and the AUC in three cases (Random Forests,
Bagging and Bayesian) is > 0.9, while for j48 and Random
Trees it is > 0.7.

When using a balanced training set, as expected, we have
a decrease in terms of precision and an increase of the
recall. Random Forest classifiers are the ones that work better

TABLE III
WITHIN-PROJECT PREDICTION: RESULTS OF RANDOM FORESTS FOR

EACH SYSTEM, WITHOUT AND WITH SMOTE BALANCING.

Without Balancing

System Pr Rc F1 Acc MCC AUC

Ant 0.91 16.39 1.73 84.59 0.00 0.77
ArgoUML 85.19 38.10 52.65 93.25 0.54 0.91
Columba 36.40 65.94 46.91 96.02 0.47 0.94
Hibernate 53.44 65.22 58.74 96.80 0.57 0.97
jEdit 5.24 25.71 8.71 85.51 0.06 0.81
jFreeChart 84.58 82.52 83.54 98.91 0.83 0.99
jMeter 53.38 47.37 52.30 96.69 0.51 0.94
jRuby 52.27 84.02 64.45 94.21 0.64 0.97
Squirrel 73.33 44.44 55.35 99.51 0.57 0.97

With Balancing

System Pr Rc F1 Acc MCC AUC

Ant 2.46 44.26 4.67 85.02 0.08 0.83
ArgoUML 47.03 65.39 54.71 89.34 0.50 0.90
Columba 15.35 74.64 25.46 88.35 0.30 0.94
Hibernate 19.85 89.13 32.47 87.04 0.38 0.95
jEdit 7.74 34.29 12.63 87.25 0.11 0.86
jFreeChart 62.98 92.68 75.00 97.94 0.75 0.99
jMeter 32.03 64.47 42.79 93.4 0.42 0.92
jRuby 32.75 91.91 48.29 87.72 0.50 0.92
Squirrel 18.81 57.58 28.36 98.02 0.32 0.96

also using a balanced dataset (as shown in the bottom part
of Table II). It exhibits an average F1 score of 36.04% with
a moderate correlation (MCC=0.47) regarding the predicted
instances and AUC=0.92. The Bayesian classifiers are the
ones which exhibit the worst performance if used on a
completely balanced dataset. Indeed, the MCC value is ' 0
which means that the predictions are perfectly in-line with a
random classifier. The other classifiers we considered have a
precision that ranges in the interval [16.03%�51.91%], an Rc
2 [52.49% � 78.77%], with an F1 score ' 30%. Moreover,
the MCC coefficient is always above 0.30, and AUC> 0.7,
meaning that our predictions reach a fair to moderate correla-
tion and perform better than a random classifier (which would
have MCC=0 and AUC=0.5).

Table III reports detailed results per system, considering
Random Forest classifiers only, i.e., the best performing
machine learner. The top part of the table reports results
without balancing. First of all, it is important to highlight
that, except for JFREECHART for which we have a percentage
of methods with SATD in the oracle that is 18%, for the
other eight systems we have very few methods containing
SATD compared to the total number of methods analyzed
( 5%). In particular, for ANT we have 0.5% of methods
with SATD in the dataset. This explains the low prediction
performances achieved for this system (without balancing we
obtain a precision of 0.91% and a recall of 16.39%), and
even balancing does not help so much (precision 2.46% and
recall 44.26%), because data from the few SATDs is not even
able to act as a seed for an artificial training set. To some
extent, the same happens on JEDIT (precision 5.24% and recall
25.71%). For such systems, even if the AUC is > 0.7, we
obtain a very low MCC, close to zero (random classifier).
At the same time, TEDIOUS works quite well on the other
systems. We can note that for JFREECHART, we obtain high

Traditional machine learning classifiers within 
project



CNN  128 filters3,4,5 
Embeddings 150



"50

TIME AND MEMORY



WHAT IF WE ADD MEMORY
CNN - LSTM .. and cleanup the data





CONFIGURATION MATTERS

10% left out RMSE False Recall True Recall Precision FMeasure

Pool_size: 3 & Kernel_size: 4 0.158 99.696 63.928 93.294 87.144

COMMENTS



INCREMENTAL TRANSFER

10% left out RMSE False Recall True Recall Precision FMeasure

Pool_size: 3 & Kernel_size: 4 0.158 99.696 63.928 93.294 87.144

One project

All  projects



RANDOM EXTERNAL GITHUB 
PROJECT

• Train on the  9 projects and predict satd comments of a 
completely new project

• Precision : 100.0, Recall : 58.33, F1 : 73.68

• But “should never be here” is it an SATD ? OK remove it 
Precision : 100.0, Recall : 87.5, F1 : 93.33

• the model never encountered “should never be here” in 
the training material!



ARCHITECTURE AND DATA

• The architecture matters

• The data processing 
matters

• The data set quality is vital

• Different ML approaches 
requires substantially 
different  resources



SOFTWARE ENGINEERING 
CRUX

• Traditional focus processes

• Root causes analysis focus on code or processes

• Data have seldom if ever been the focus

• COTS have been part of hour culture but

•  most COTS do not fall in the pseudo-oracle category

• think to an ASR or  implementing  a chat boot 



EDA SCALABILITY
Non testable program with too large output space or input 

domains are simply not suitable  for  manual validation 



DATA: THE NEW GOLD
• Code is no longer relevant

• Data are the key

• A ML/AI component will be 
integrated into an environment

• Training data must reflect the 
deployment environment

• If training data do not 
represent context X we cannot 
expect the “right” behaviour 



HOW MANY ROSES?

Miller, G. A. (1956). "The magical number 
seven, plus or minus two: Some limits on 
our capacity for processing information". 
Psychological Review. 63 (2): 81–97. doi:
10.1037/h0043158

https://en.wikipedia.org/wiki/George_Armitage_Miller
http://psychclassics.yorku.ca/Miller/
http://psychclassics.yorku.ca/Miller/
http://psychclassics.yorku.ca/Miller/
http://psychclassics.yorku.ca/Miller/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1037%2Fh0043158


HOW MANY TIMBERS



FACTS

• The IRIS dataset has 150 observations — four 
measured variables

• The SATD problem has between 80,000  and 
100,000 methods and we have no clue what 
features DNN extracts

• EDA does not scale up



ML/AI CURSE OF 
DIMENSIONALITY 

• What if we have  a lot of observations but with few 
data — SATD and most common source code 
metrics

• What if we have a lot of observation and a highly 
dimensional space — SATD and we model code aka 
variable, identifiers, code structure

• this dataset is likely to be sparse



PROPERTY INVARIANT BASED 
VALIDATION

• If the problem has a clear understanding  and we are 
able to define invariants and property that should be 
always valid let’s use this knowledge

• The speed of a mechanical controller must be always 
in a safe zone

• The approximation of a function may have a known 
boundary e.g.                 cos(x) in [0,1]x ∈ [0,2π]



EXPLOIT WEAKNESSES
• To build more robust ML/AI components exploit known/

understood weaknesses

• We can adapt/transform  input data to search for corner cases

• What kind of transformation operator perform the best ?

• Does in vitro results represent in vivo results?

• We need a deep understanding of the problem and weaknesses 
(e.g., effect of snow, rain or fog on images)



DEEPEXPLORE
• A clever application  of  Weyuker way to solve the pseudo-oracle problem 

• use two or more program instances for the same problem, then check the 
output for differences

• In essence very similar to back to back testing

• Two (or more) ML/DNN-components are tested together “forcing” one (or more) 
to behave differently

• Automatic transformation of the input to jointly maximize neurons coverage and 
decision difference

•  generate new inout test data where components disagree



LATE 90S - METAMORPHIC 
TESTING 

• If we use supervised ML the pseudo-oracle 
problem  can be lessened

• If we have labelled data it imply we know the 
answer for a subset of the data

• Why do not leveraging such knowledge ?



LATE 90S - METAMORPHIC 
TESTING - CONT

• Very promising approach

• Circumvent the oracle/pseudo-oracle problem

• We have some labelled data for which we know the answer 

• Define metamorphic relations that holds true between input and 
output:

• if we multiply a dataset by two the variance of the new dataset 
is also multiplied by 2 



SHIFTING THE FOCUS

• We no longer need the oracle

• We need the metamorphic relations

• It may not ensure “corner” cases  aka catastrophic 
events will never happen 



DEEPTEST
• Clever use of a set of “reasonable” image transformation:

• add rain, fog, lens distortion, blur

• Greedy combination of transformation to  increase neurons coverage

• Enforce metamorphic relations

• “recycle” the labels but change the data

• rain or snow the road stretch is the same output should be the same 
but different people drive differently thus impose output are just 
very close (!)



DEEPROAD
• Improve over DeepTest use  more realistic image transformation via a 

generative adversarial network and autoencoders:

• add rain, fog, lens distortion, blur, …

• Enforce relaxed metamorphic relations

• “recycle” the labels but change the data

• rain or snow the road stretch is the same output should be the 
same but different people drive differently thus impose output are 
just very close (!)



CONCLUSIONS

• Although the horizon is changing fast the problem 
was know long ago

• We have initial and promising QA tools but more 
efficient and cost effective approaches/tools are 
needed

• We are shifting in direction of data driven sw eng



CONCLUSIONS - CONT

• There is a urgent need to address the data quality 
and data management issues

• SW eng and data eng should work together with 
data scientists

• We need to bridge the rift between domains



CONCLUSIONS - CONT

• Be aware of the risk and the need to make the 
user aware of the risks

• Investigate the sociological impact of the new 
types of systems where ML/AI play a major role



CONCLUSIONS - CONT
• How to avoid the gap between those that have knowledge and 

data and those that have not

• How to:

• have better hardware and software training tools

• better tool to introspect and understand the ML/AI output to 
feed the loop

• move from DevOps to DataOps 



CONCLUSIONS - END

… 

geometrica ideo demonstramus, quia facimus, physica si demonstrare 
possemus, faceremus… G. Vico 1708. Lib. Methaph. Chap III

… Wir müssen wissen — wir werden wissen! … Hilbert 1930

They were wrong: the system cannot demonstrate its own consistency …  
Goedel 1931

•Please read Parnas paper:
• The Real Risks of Artificial Intelligence



THANKS FOR YOUR 
ATTENTION 


