
Simplified Influence Evaluation of Additional
Training on Deep Neural Networks

Naoto Sato, Hironobu Kuruma, Yuichiroh Nakagawa, and Hideto Ogawa
Research & Development Group, Hitachi, Ltd.

{naoto.sato.je, hironobu.kuruma.zg, yuichiroh.nakagawa.hk, hideto.ogawa.cp}@hitachi.com

Abstract—During operation of a system including a deep
neural network (DNN), new input values to the DNN that were
not included in the initial dataset retained during development
may be given. In such a case, the DNN may be additionally
trained with the new input values; however, that additional
training may reduce the accuracy of the DNN in regard to
the initial dataset. It is therefore necessary to evaluate the
influence of the additional training on the accuracy for the
initial dataset. However, evaluation by testing all the input values
included in the initial dataset takes time. In this paper, we newly
propose a method for quickly evaluating the influence on the
accuracy for the initial dataset. As for the proposed method,
the gradient of the parameter values (such as weight and bias)
for the initial dataset is extracted by running the DNN before
the additional training. Then, after the additional training, its
influence on the accuracy with respect to the initial dataset
is calculated from the gradient and update differences of the
parameter values. To show the feasibility of the proposed method,
results of experiments with the MNIST dataset are presented,
Accordingly, it is confirmed that the calculation amount of the
proposed method after the additional training depends on the
number of parameters; therefore, even if the number of input
values included in the initial dataset is enormous, the influence
of additional training can be evaluated quickly.

Index Terms—machine learning, neural networks, regression
analysis

I. I NTRODUCTION

In recent years, the introduction of machine-learning tech-
nologies in various industrial fields has been advancing.
Among those technologies, deep neural networks (DNNs)
are being popularly applied. In addition to replacing human
tasks, in some fields, DNNs are demonstrating better ability
than people. DNNs are trained with a dataset. A dataset
is composed of pairs of input values to DNNs and their
corresponding expected output values. Part of the dataset is
used as training dataset for training DNNs, and the rest of the
dataset is used as test dataset to evaluate the trained DNNs.
In the training of DNNs, when input values included in the
training dataset are input into DNNs, values of parameters
such as weights and bias are adjusted so that the possibility
of obtaining the expected output values increases. After the
training is completed, the test dataset is used to measure the
probability of obtaining the expected output value as expected.
This probability—called accuracy—is an indicator showing
the validity of the developed DNNs. However, the accuracy
measured during development is only that with respect to the
initial dataset retained at that time. That is to say, when input

values that are not included in the initial dataset are given, the
output values are not exclusively those expected; consequently,
the accuracy of the DNN during operation is lower than that
during its development.

When the accuracy of DNNs decreases, the DNNs may be
subjected to additional training during operation [1] [2]. As
for additional training, operating DNNs are trained by using
input values and their expected values newly acquired during
their operation. In this paper, a set of pairs of input values
used for additional training and their expected output values is
called anadditional dataset. By additional training, parameter
values (such as weight and bias) are adjusted so as to improve
the accuracy concerning the additional dataset. However, The
result of the adjustment also influences the accuracy of the
initial dataset. Accordingly, it is necessary to evaluate not only
the accuracy for the additional dataset but also the accuracy
for the initial dataset. As for the result of that evaluation, in
the case that the accuracy with respect to the initial dataset
decreases, either training hyperparameters are changed and
the additional training is repeated, or rollback to the DNNs
before additional training is executed. Since it is assumed that
additional training is performed during operation of DNNs, it
is preferable to be able to evaluate the results of the additional
training in as short a time as possible. To grasp the influence
of additional training on the accuracy for the initial dataset, it
is sufficient to run the DNNs additionally trained with all the
input values included in the initial dataset and acquire their
accuracy again. However, when the number of input values
in the initial dataset is huge, it takes a long time to execute
that test. In other words, the accuracy of the DNNs cannot be
evaluated quickly.

In this paper, a method for quickly evaluating the influence
of additional training on the accuracy for the initial dataset—
after completion of the additional training—is proposed. In
regard to the proposed method, the gradient of the parameter
values is extracted by executing the DNNs with input values
in the initial dataset before the additional training. Then,
after the additional training, its influence on the accuracy
for the initial dataset is calculated from the gradient and
the update differences of parameter values resulting from
the additional training. The results of experiments using the
proposed method with the MNIST dataset confirmed that the
amount of calculation to be performed after additional training
does not depend on the number of input values in the initial



dataset; instead, it depends on the number of parameters used
in the DNN. As a result, even if the number of input values in
the initial dataset is huge, applying the proposed method makes
it possible to evaluate the result of additional training quickly.
Moreover, the result of evaluating the influence of additional
training by the proposed method was compared with the result
of evaluating it by test execution. On the basis of the results of
that comparison, the utility of the proposed method was also
confirmed.

II. BACKGROUND

A. Deep Neural Networks

For an arbitrary DNN, denoted asN , handling a clas-
sification problem of classc(c > 1), I is taken as the
number of neurons making upN , and each neuron (in any
layer) is denoted asni(1 ≤ i ≤ I). Also, Ji is taken as
the number of parameters used to calculate the value ofni,
and the parameter itself is denoted as[wi,1, ..., wi,j , ..., wi,Ji ].
Note that if ni1 and ni1 are included in different layers,
Ji1 and Ji2 can be different. Then, a vector obtained by
combining the parameters of all the neurons is defined asW =
[w1,1, ..., w1,J1 , w2,1, ..., w2,J2 , ..., wI,1, ..., wI,JI

]. In the case
of a multilayer perceptron, for example, these parameters
correspond to weights and biases. Note that the formula for
calculating the value of each neuron by using these parameters
is not prescribed in this paper.

For an arbitrary input valuexm, the expected output value
corresponding toxm is expressed ast(xm). t(xm) repre-
sents the identifier of the classification class to whichxm

belongs. Moreover, whenxm is input toN , the output value
returned byN is expressed asy(xm), which corresponds to
the c-dimensional vector[ym1 , ..., ymk , ..., ymc ]. The ymk value
for each dimension represents the probability that the input
value xm belongs to classk. If ymk has the largest value in
[ym1 , ..., ymk , ..., ymc ], classk is denoted asfst(y(xm)). That
is, ∀ymk · ymk ≤ ymfst(y(xm)) holds. Whenfst(y(xm)) = t(xm)
holds, it is said thatN can correctly classifyxm. Likewise,
if ymk has the second-largest value, classk is denoted as
snd(y(xm)). That is, ∀ymk · ymk 6= ymfst(y(xm)) ⇒ ymk ≤
ymsnd(y(xm)) holds.

B. Additional Training

The flow of additional training assumed in this paper is
shown in Fig. 1.

In this flow, untrained DNNN−1 is trained first by using
the training dataset of initial dataset. The result of that training
is evaluated by using test dataset of the initial dataset. After
that, the resulting DNN,N0, starts to be used. During its use,
additional dataset 1 is newly acquired. Then,N0 is additionally
trained using the training dataset that is a subset of additional
dataset 1, and the result is evaluated in the same way using the
corresponding test dataset. The resulting DNN,N1, achieves
sufficient accuracy for additional dataset 1. However,N1 does
not always maintain sufficient accuracy for the initial dataset.
Accordingly, it is necessary to evaluate the influence of the
additional training on the accuracy for the initial dataset. That

Fig. 1. Flow of additional training

necessity holds for the following additional trainings. As for
additional trainings(1 ≤ s), if a dataset whose influence
should be evaluated is expressed asX̂s, X̂s is defined as
follows:

Definition 1:

X̂s =

{
ID (s = 1)

ID ∪
∪s−1

s′=1 ADs′ (otherwise)

whereID andADs′ represent the initial dataset and addi-
tional dataset of additional trainings′ respectively.

III. PROPOSEDMETHOD

Additional training 1 explained in Section II-B is used as a
running example.

A. Positive and Negative Gradients

As for the proposed method, prior to additional training
1, preprocessing is performed on DNNN0. It is supposed
that N0 deals with a classification problem with classc(c >
1). Hereafter, as for the expected output valuet(xm) for an
arbitrary input valuexm to N0, positive supervisorps(t(xm))
andnegative supervisorns(t(xm)) are defined as follows:

Definition 2:

ps(t(xm)) = t(xm)

ns(t(xm)) =

{
snd(y(xm)) (fst(y(xm)) = t(xm))

fst(y(xm)) (otherwise)

where y(xm) represents the output value returned byN0

whenxm is input toN0. At that time, as for all input values
included in arbitrary-input-value setX1 ⊆ X̂1, positive loss
that is loss under the assumption that positive supervisor is
the supervisory signal of the training, andnegative lossthat is
loss under the assumption that negative supervisor is the super-
visory signal of the training are calculated. Average positive
loss forX1 is denoted asPL(X1). Similarly, average negative
loss is denoted asNL(X1). For an arbitrary loss function
expressed asL(y(xm), t(xm)), PL(X1) and NL(X1) are
defined as follows:



Definition 3:

PL(X1) =
1

M

X1∑
xm

L(y(xm), ps(t(xm)))

NL(X1) =
1

M

X1∑
xm

L(y(xm), ns(t(xm)))

where M represents the number of input values in-
cluded in X1. Next, the gradient of parameterW0 =
[w1,1, ..., wi,j , ..., wI,JI

] of N0 with respect toPL(X1) (ob-
tained as previously described) is calculated. The gradient of
PL(X1), calledpositive gradient, is expressed by∇PL(X1).
Similarly, the gradient ofNL(X1), callednegative gradient,
is expressed by∇NL(X1). ∇PL(X1) and ∇NL(X1) are
defined as follows:

Definition 4:

∇PL(X1) =

[
∂PL(X1)

∂w1,1
, ...,

∂PL(X1)

∂wi,j
, ...,

∂PL(X1)

∂wI,JI

]
∇NL(X1) =

[
∂NL(X1)

∂w1,1
, ...,

∂NL(X1)

∂wi,j
, ...,

∂NL(X1)

∂wI,JI

]

B. Influence of Additional Training

After ∇PL(X1) and ∇NL(X1) are created forN0, ad-
ditional training 1 is executed, and DNNN1 is created.
ParameterW1 of N1 is compared with parameterW0 of N0,
and the update difference of the parameter∆W = W1 −W0,
is acquired. Then, positive influencePI(X1,∆W ) and neg-
ative influenceNI(X1,∆W ) given to X1 by updating the
parameter is calculated as follows:

Definition 5:

PI(X1,∆W ) = (−∇PL(X1)) · (∆W )

NI(X1,∆W ) = (−∇NL(X1)) · (∆W )

PI(X1,∆W ) approximates the amount by whichPL(X1)
is decreased by updating parameterW0 to W1. Like-
wise, NI(X1,∆W ) corresponds to the approximate value
of the decrease inNL(X1). If ∆W is denoted as
[∆w1,1, ...,∆wi,j , ...,∆wI,JI ], PI(X1,∆W ) corresponds to∑

i,j

(
−∂PL(X1)

∂wi,j
×∆wi,j

)
. For example, in the case that loss

functionL is cross entropy, the relation between the value of
the decrease of inPL(X1) due to updatingwi,j by ∆wi,j , and
its approximate value−∂PL(X1)

∂wi,j
×∆wi,j is shown in Fig. 2.

Here, it is assumed thatL is the loss function used for the
initial training to createN0 from N−1. The initial training
aims to reduce the loss calculated based onL (called training
loss hereafter), in which the expected output value is the
supervisory signal of the training. As a result, it is assumed that
the accuracy of the DNN in regard toX1 is improved. In that
case, the value of the decrease in training loss is considered
to be an index for evaluating the change of accuracy with
respect toX1. According to Definition 2, since the positive
supervisor is the same as the expected output value,PL(X1)
coincides with the training loss. It can therefore be assumed

Fig. 2. Decrease inPL(X1) and its approximate value

that PI(X1,∆W ), which is an approximate value of the
decrease inPL(X1), can be taken as an index for evaluating
the change in accuracy with respect toX1.

It can be said that the value of the decrease inPL(X1)
functions as an index indicating ”How close the output value
is to the expected output value.” However, after training has
progressed to a certain extent and the output value sufficiently
approaches the expected output value, it is considered that
not only ”How close the output value is to the expected
output value” but also ”How far it has deviated from an
erroneous output value” will influence accuracy. Accordingly,
as for the proposed method, the ”dimension with the maximum
value except for the dimension indicated by the expected
output value” among the elements ofy(xm) (which is the
output value ofN0) is focused on. Therefore, the output value
indicating that dimension is defined as negative supervisor.
Since the lossNL(X1) is calculated based on the negative
supervisor, the decrease in the lossNL(X1) represents ”how
close the output value is to the erroneous output value.”
Hence,NL(X1) is considered to be related to the decrease in
accuracy. SinceNI(X1,∆W ) corresponds to the approximate
value of the decrease inNL(X1), it can therefore be assumed
that NI(X1,∆W ) also serves as an index for evaluating
the change in accuracy. Based on the above considerations,
the following INF (X1,∆W ) can be used as an index for
evaluating change in accuracy with respect toX1.

Definition 6:

INF (X1,∆W ) = PI(X1,∆W )−NI(X1,∆W )

Among the formulas in Definitions 2 to 6 for determining
INF (X1,∆W ), the formulas in Definitions 2 to 4 are calcu-
lated after the end of the initial training and before the start
of additional training 1. Although the formulas in Definitions
5 and 6 are calculated after additional training 1, since the
amount of calculation depends on the number of elements
of W0 (not the number of input values contained inX1),
even if the size ofX1 is enormous, change in accuracy can
be evaluated in a short time. In the case of a multilayer



perceptron, since the number of elements ofW0 is given as
O(I2) for number of neuronsI constitutingN0, the calculation
order of the proposed method after additional training 1 is
given asO(I2).

IV. EXPERIMENT

The results of experimentally applying the proposed method
to the MNIST dataset [3] (which is a handwritten dataset
containing the digits 0 to 9) are presented in the following.
In the following sections, arguments concerningINF , etc.
are omitted as long as there is no misunderstanding .

A. Setup

In this experiment, it is assumed that 50 additional trainings
will be conducted after the initial training. It is also assumed
that 46,666 image data, which equals two-thirds of the 70,000
image data provided as the MNIST dataset, are retained as
initial dataset. It is supposed that the remaining 23,334 data
are acquired equally between additional trainings. Namely,
the number of data in each additional dataset is given by
23, 334/50 ; 466. Moreover, the ratio of the training dataset
to the test dataset in each dataset (initial, additional 1, and so
on) is set to 6:1 (as in the MNIST dataset). The DNN used is
a multilayer perceptron with two hidden layers (composed of
1,000 neurons each) in addition to the input and output layers.

We evaluate the influence of additional training for each
classification class in this experiment. Accordingly, in addi-
tional training s(1 ≤ s ≤ 50), a set of input values with
the same classification classk(0 ≤ k ≤ 9) is created from
X̂s asXk

s . The proposed method is then applied for eachXk
s

andINF (Xk
s ,∆W ) was calculated. Moreover, to evaluate the

effectiveness ofINF , the difference value of actual accuracy
in regard to Xk

s between before and after the additional
training is measured. Furthermore, the following times were
calculated: (i) the time taken to evaluate the influence by
applying the proposed method and (ii) the time taken to
evaluate the influence by executing the DNN with all the input
values included inX̂s. Note that in the case of the proposed
method, the formulas to be calculated after the additional
training are those in Definitions 5 and 6. In the initial training
and all subsequent additional trainings, cross entropy is used as
loss functionL. The experiment was performed on a Windows
10® PC equipped with two Intel® Core™ i7-8700 3.2-GHz
processor with 6 cores, 16-GB memory.

B. Results

Time taken to apply the proposed method and time taken
to run the DNN with all the input values contained in̂Xs are
plotted in Fig. 3.

Fig. 3 indicates that calculation time of test execution
increases as number of additional training since the number
of input values inX̂s increases. On the contrary, in the case
of the proposed method, it is confirmed that the evaluation
can be performed in almost the same time regardless of the
increase in number of data. It is evident from the fact that
the calculation order of the formulas in Definitions 5 and 6 is

Fig. 3. Calculation times

given asO(I2) as mentioned in Section III-B. The amount of
calculation corresponding to the formulas in Definitions 2 to
4 increases in accordance with number of data; even so, those
calculations are carried out before additional training, so their
results are not included in the time for evaluating the results
of additional training.

Values ofINF obtained as a result of the experiment (on
the left y-axis) and the difference value of actual accuracy
(right) in regard toXk

s between before and after the additional
training are plotted in Fig. 4.

It is clear from Fig. 4 that theINF value and the difference
value of actual accuracy have similar waveforms. In other
words, it can be said that when theINF value increases or
decreases as compared with its previous value, it is highly
likely that the difference value of accuracy also increases
or decreases as compared with its previous time. It can be
supposed from this result that it is possible to utilizeINF as
an index for evaluating the change in accuracy. For example,
for the graphs withk = 0, the value of the secondINF
acquired in the additional training is smaller than that of the
first additional training. In that case, it can be predicted that
the difference value of the accuracy of the second additional
training becomes smaller than that of the first additional
training. (However, whether it increases by a smaller value
than the first additional training or it turns into a decrease
cannot be predicted.) For all classification classes, relative
change (increase or decrease) ofINF was compared with
relative change (increase or decrease) of difference value of
accuracy, and they agreed with a probability of about 89.2%.

V. EVALUATION AND RELATED WORK

According to the above-presented experimental results, the
feasibility of the proposed method is confirmed. Since it is
confirmed that the proposed method does not depend on the
number of retained input values, the more the number of
retained input values is, the more useful the proposed method



Fig. 4. INF value for each classification class and difference value of actual
accuracy between before and after the additional training

is to evaluate the results of additional training than testing all
the retained input values.

As for the proposed method, by examining whetherINF
increases or decreases compared with its previous value, it is
possible to evaluate whether the difference value of accuracy
also increases or decreases compared with its previous value.
Moreover, becauseINF value and the difference value of
actual accuracy have similar waveforms, how much accuracy
changes after additional training can be roughly predicted
from the waveform ofINF . For example, ifINF increases

more than it previously increased, the difference value of
accuracy will also increase more than it previously increased.
However, the result of the evaluation by the proposed method
is not always accurate. Also, with the proposed method, it is
not possible to evaluate the precise value of accuracy after
additional training.

In view of these advantages and disadvantages, it is thought
that the proposed method will be useful in a system that repeats
additional training of DNNs to find a better DNN during
operation. In the case of such a system, it should be promptly
decided whether the system adopts the DNN additionally
trained, tries another additional training, or performs rollback
to DNNs before the additional training. Examples of such
systems include rescue robots and stock trading systems. These
systems tend to prefer adapting to changes in the environment
as soon as possible by repeating additional training not to lose
opportunities to save people or gain profits. Otherwise, even if
the precise value of accuracy is evaluated by running on all the
data, using the proposed method in advance is advantageous
in that ”triage” becomes possible. For example, it is possible
to execute tests with input values from classification classes
that are highly likely to degrade accuracy.

Because the number of layers, neurons, and parameters are
generalized in the definition of DNNs and types of activation
functions are not specified, the proposed method can be ap-
plied to any neural networks of multilayer perceptron topology.
For the same reason, it is thought that the proposed method
gives similar results when applied to a convolutional neural
network.

In the graphs fork = 0 shown in Fig. 4, as for the 4th and
8th additional trainings, accuracy drops due to the additional
training. In that case, it is considered thatPL increases, so
INF representing the decrease inPL should be a negative
value. However, as shown in Fig. 4,INF may have a positive
value, the reason for which is explained below. As explained
in Section III-B, PI is an approximate value of decrease in
PL. First, it is supposed that∆wi,j is added towi,j (which
is an element of parameterW ) and that the decrement value
of PL in that case is represented by∆PL. When∆wi,j > 0,
PI > 0 and∆PL > 0; however, due to the property of the
cross entropy function used asL, ∆PL < PI holds. On the
contrary, if ∆wi,j < 0, althoughPI < 0 and ∆PL < 0,
for the same reason,∆PL < PI. That is, regardless of the
updating direction of∆wi,j , PI becomes larger than∆PL.
For the above reasons, the value ofPI tends to be greater
than the actual value of the decrease inPL. Similar errors in
NI also occur. However, the additional training is conducted
so thatPL decreases, so it is conceivable that decrease inPL
tends to be larger than that inNL in many cases. In that case,
the error caused byPI is larger than that caused byNI. As
a result, the value ofINF tends to be larger than the actual
value of the decrease inPL.

To the author’s knowledge, no research results on a method
for evaluating additional training results have been published.
However, in a similar manner to our research presented in
this paper, Kirkpatrick et al. [4] have focused on decrease



in accuracy in multitask learning [5] [6]. For example, when
training for task 2 is carried out after training for task 1, it
is a problem that the performance of the previously trained
task (task 1) is catastrophically reduced. In response to that
problem, they proposed a method of identifying the parameters
(weights and biases) important in regard to task 1, and training
task 2 in a manner that change those parameters (important
in regard to task 1) as little as possible. Accordingly, it is
possible that their method can be applied to additional training
by associating the dataset of task 1 with datasetX̂s and
making the dataset of task 2 correspond to additional dataset
s. However, even by applying this method, it is difficult to
completely eliminate the influence of additional training on
the accuracy for the initial dataset. Therefore, even when their
method is applied, the proposed method is still useful.

VI. CONCLUSION

Regarding the problem that the accuracy of the initial dataset
is decreased by the additional training of DNNs, a method
for quickly evaluating the influence of additional training
is proposed. The computational complexity of the proposed
method depends on the number of parameters of DNNs (such
as weight and bias), namely, not on the amount of data in the
initial dataset. Therefore, even if the amount of data included
in the initial dataset is enormous, applying the proposed
method makes it possible to evaluate the result of additional
training quickly. Moreover, it is clear from the results of
an experiment with the MNIST dataset that the method is
useful in the case of a system that requires quickness—
rather than accuracy—of evaluation, such as when additional
training of DNNs is performed during operation of the system
and further additional training is performed according to the
evaluation results. As for future work, the proposed method
will be evaluated using datasets other than MNIST. Moreover,
improving the means of creatingINF will help in the search
for more accurate evaluation.

REFERENCES

[1] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li, Z. Zhang, M. J. Franklin,
A. Ghodsi, and M. I. Jordan: The Missing Piece in Complex Analytics:
Low Latency, Scalable Model Management and Serving with Velox,
Conference on Innovative Data Systems Research (2015).

[2] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang: Error-driven
incremental learning in deep convolutional neural network for large-
scale image classification, In Proceedings of the 22nd ACM international
conference on Multimedia, pp.177-186 (2014).

[3] Y. LeCun, C. Cortes, and C. J. C. Burges. The MNIST database of
handwritten digits. http://yann.lecun.com/exdb/mnist/.

[4] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell: Overcoming
catastrophic forgetting in neural networks, Proceedings of National
Academy of Sciences (PNAS) (2017).

[5] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirk-
patrick, R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell: Policy
distillation, arXiv preprint arXiv:1511.06295 (2015).

[6] E. Parisotto, J. L. Ba, and R. Salakhutdinov: Actor-mimic:
Deep multitask and transfer reinforcement learning, arXiv preprint
arXiv:1511.06342 (2015).


