

distributed consistency-based diagnosis

Vincent Armant, Philippe Dague, Laurent Simon

{vincent.armant, dague, simon}@lri.fr

Road Map

- Consistency based diagnosis
- System description compilation
- Dealing with privacy and useless knowledge
- Our distributed, incremental, algorithm
- Conclusion and Perspectives

Three times web-payment certification

Modeling the behaviors

Distinguish shared and local knowledge

Modeling the behaviors

Global model: set of observations and local system descriptions

$$SD_{global} = \Lambda SD_{i} \Lambda OBS$$

Minimal conflicts

Minimal Conflict:

are components that are together inconsistent with observations

s.t.
$$\forall$$
 C' conflict, if C' \Rightarrow C then C' = C

$$C \subseteq F, F = \{ab1, ..., abn\}$$

Example:

$$Ab(Bank) \lor Ab(eShop)$$
 $Ab(LoanAg) \lor Ab(eShop)$

Minimal diagnoses

Minimal Diagnosis Δ :

Is a minimal explanation which cover all minimal conflicts

$$\wedge$$
 SD \wedge OBS \wedge Δ \wedge $\overline{F}\backslash \Delta$ $\not\models$ \bot s.t. \forall Δ ' diagnosis, if Δ ' \Rightarrow Δ then Δ ' = Δ

$$\Delta \subseteq F, F = \{ab1, ..., abn \}$$

Example:

Challenge of distributed diagnosis

- Context : Distributed Algorithm
 - □ Each peer performs the same algorithm
 - □ The network incrementally returns diagnoses
 - The network topology is imposed
- Challenge: Global reasoning with local knowledge
 - □ A peer only know :
 - Its acquaintance
 - Its own description
 - □ A peer does not want to share some private knowledge
 - But must share any local knowledge that is "interesting" for the task

v

Distributed Diagnosis: related work

- Distributed model Based diagnosis
 - A model based diagnosis Framewor k for distributed System [Provan 02], [Kurien 02],...
 - Takes advantage and rearranges o the network topology

Minimal cardinality [Biteus 06]

- Subset of minimal diagnosis
- Decentralized Diagnosis
 - Scalable Jointree Algorithm for diagnosability [Shumann, Huang 08]
 - Local Consistency and Junction Tree for Diagnosis of DES [Pr Kan John, A Grastien 08],
 - A Framework for Decentralized Qualitative Model-Based Diagnosis[Lucas Console 07]
 - □ A. Beneviste, E. Fabre, et al 01],...
 - □ Suppose a supervisor, no private knowledge
- DCSP, DCOP

Asynchronous weak commitment, ...

[Makoto Yokoo, Edmund H. D et al, 98], ...

□ Look for conflicts first
Workshop NII-Inoue Lab , Distributed consistency-based
LRI/INRIA diagnosis

Road Map

- Consistency based diagnosis
- System description compilation
- Dealing with privacy and useless knowledge
- Our distributed, incremental, algorithm
- Conclusion and Perspectives

Diagnosis by conflicts

Compiling system description

v

Online diagnosis

v

Online diagnosis

Let I be an implicant of SD Λ OBS

٧.

Online diagnosis

Online diagnosis

Online diagnosis

Online diagnosis

Our problem reformulated

Hypothesis:

- We can rewrite peer's observed description on the fly or offline
- We can consider the global theory as a conjunction of local DNF

Problem

□ Find all minimal sets on a target language witch are consistent with the global observed system

But this first approach does not respect the privacy constraint

Road Map

- Consistency based diagnosis
- System description compilation
- Dealing with privacy and useless knowledge
- Our distributed, incremental, algorithm
- Conclusion and Perspectives

Keeping local knowledge local

Private knowledge: peer's system description and local variables

First Restrict peer's SD on shared and mode variables then distribute is equivalent to restrict the global DNF representing the whole system

[Armant Dague Simon 08]

Removing useless variables

Shared Variable

Remark

A Shared variable can be considered as a local variable of the set peers in which it appears

Removing Shared variables only appearing in Sdi, SDj, after their distribution does not affect the global consistency

[Armant Dague Simon 08]

Road Map

- Consistency based diagnosis
- System description compilation
- Dealing with privacy and useless knowledge
- Our distributed, incremental, algorithm
- Conclusion and Perspectives

Top-down bottom-up algorithm

Top down phase: construction of a distributed tree

Initially a given peer broadcasts a request of diagnosis to its neighborhood When a peer has received its 1st request of diagnosis It chooses the sender as parent Starts computation of its local Rimplicants When a peer receives at least 1 msg from it neighborhood It sends its restricted implicants to its

```
3: case: regDiag
     /*A distributed tree is built*/
       if parent is not set then /* Flooding alg.*/
          parent \leftarrow p'
          send to all p neighborhood \backslash p': msg [reqDiag]
       else /* p' is not a direct child */
          NotChild \leftarrow NotChild \cup \{p'\}
       end if
       /* Flushes all stored implicants when the subtree is known */
       if \{parent\} \cup Child \cup NotChild = Neighborhood
          \Pi \leftarrow flush(T_p^{\vee}, TChild, Desc)
          for all I \in \Pi
            send to parent msg [respDiag, I, Desc \cup \{p\}]
          end for
       end if
       /* p' is either the parent or not a direct child*/
       checkEnd(waitEnd, p')
```


Top-down bottom-up algorithm

Bottom-up phase: compose diagnoses of sub tree

```
    □ when a peer receives a Rimplicant
    □ it composes R implicants from its sub trees
    If it receives at least 1 msg from its neighborhood
    □ it sends to its father R-Implicants built from its restricted on useful vocabulary
```

```
21: case: respDiag
        /* Stores the diag, or extends and propagates it */
        Child \leftarrow Child \cup \{p'\}
        Desc \leftarrow Desc \cup msq.Desc
24:
25:
        TChild[p'] \leftarrow TChild[p'] \cup msg.rImpl
        /* Extends msg.rImpl only if the subtree is already known */
        if \{parent\} \cup Child \cup NotChild = Neighborhood
28:
            \Pi \leftarrow extends(msg.rImpl, T_p^{\vee}, TChild, Desc)
            for all I \in \Pi
             send to parent msg [respDiag,I,Desc \cup \{p\}]
30:
31:
            end for
            Tresult \leftarrow min \subset (Tresult \cup \Pi)
33:
        end if
```


- □ The peer "Valid Order" starts the diagnosis task
 - it sends a request of diagnosis
 - it begins the computation of its own implicants

- □ When "eShopping service" has received the request of diagnosis
 - it chooses "Order Validation" as parent
 - it starts the computation of its local implicants :

Bk_Approval \(\) hire_Purch

- it Forwards the request to Bank and to the Loan Agency

v

- □ When Loan Agency has received a msg from all its neighbours
 - it sends his restricted Implicants agaptvl to its parent

- □ Valid Credit Card has received a msg from all its neighbours
 - it sends his restricted Implicants ccValid to its parent
- □ Loan Agency continuously sends new restricted implicants to its parents

- ☐ When The peer eShop has received from all its neighbors,
- It can build the consistent conjunction : Bk_Apprvl ^ ccValid ^ Ab(eShop) ^ hPurch
- It removes useless variables by restricting the new conjunction on shared and mode variable
- It sends the result Ab(eShop) A hPurch to Order Validation Service
- ☐ Order Validation Service gets its first diagnosis Ab(eShop)

Road Map

- Consistency based diagnosis
- System description compilation
- Dealing with privacy and useless knowledge
- Our distributed, incremental, algorithm
- Conclusion and Perspectives

Conclusion

- Incremental computation of global diagnoses
- At the termination the peer starter is informed of all minimal diagnoses
- Local descriptions of peers are never communicate
- The entire DNF of the systems is never built
- Experimentation
 - □ (is going on)

Perspectives

- Privacy
 - Communicate neither the local description of peer nor the healthy variables
- Dynamic system
 - □ Arrival and departure of peers
 - ☐ Asynchronous arrival of observations