Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Framework
Knowledge
representation

Consistency

FIOLOCC

Conclusion

Distributed Hypotheses Finding using SOLAR

Gauvain Bourgne, Nicolas Maudet, Katsumi Inoue

Workshop on Hypotheses Finding and its Application - Orsay

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introductio

Framework Knowledge

representation Consistency

Protoco

- 1 Introduction
- 2 A framework for hypothesis formation in a society of agents
 - Knowledge representation
 - Coherence and Completeness
- 3 Protoco
- 4 Conclusion

Context

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Frameworl
Knowledge

representation Consistency

Protocc

Conclusior

Making hypotheses

- Background theory
- Observations
- "Adequate" Hypothesis

Distribution

- How are data distributed?
- What knowledge about system?
- Communication constraints
- Local reasoning

Learner-Critic Approach

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Framework
Knowledge
representation
Consistency

Protoco

- Based on general framework abstracting away from local reasoning
 - Consistency relation (at different level)
 - Local Hypothesis Formation and Critic processes
- Principles
 - Propose
 - Counter-exemple
 - Accept
- With n agents
 - Static (complete graph)
 - Static with propagation(connected graph)
 - Rumor-like propagation

Conditions

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Framework
Knowledge
representation

Consistency

Protoco

■ But...

only works for a compositional consistency relation :

$$Cons(h, K_1) \wedge Cons(h, K_2)$$
 iff $Cons(h, K_1 \cup K_2)$

- Not realistic in some applications (especially with abduction)
- Simple problem where no compositionality
 - Cover set abduction with distributed background theory
 - First step : Horn Clause with observations as heads

Distributed Diagnosis

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Framework
Knowledge
representation
Consistency

Protoco

Conclusion

Distributed sources of informations

- Different part of a global theory
- Observes locally
- Make hypotheses (diagnoses locally)
- Aim : solve such a system without centralizing everything
 - No recognized authorities
 - Better practicability (get only useful informations)
 - Privacy concern?
- Context of this work
 - Global consistency of theories and observations
 - Each entity is autonomous

Distributed Diagnosis

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Framework
Knowledge
representation
Consistency

rotoco

- Distributed sources of informations
 - Different part of a global theory
 - Observes locally
 - Make hypotheses (diagnoses locally)
- Aim : solve such a system without centralizing everything
 - No recognized authorities
 - Better practicability (get only useful informations)
 - Privacy concern?
- Context of this work
 - Global consistency of theories and observations
 - Each entity is autonomous

Distributed Diagnosis

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Framework
Knowledge
representation
Consistency

rotoco

- Distributed sources of informations
 - Different part of a global theory
 - Observes locally
 - Make hypotheses (diagnoses locally)
- Aim : solve such a system without centralizing everything
 - No recognized authorities
 - Better practicability (get only useful informations)
 - Privacy concern?
- Context of this work
 - Global consistency of theories and observations
 - Each entity is autonomous

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

ntroduction

Framework
Knowledge
representation
Consistency

Protoco

- 1 Introduction
- 2 A framework for hypothesis formation in a society of agents
 - Knowledge representation
 - Coherence and Completeness
- 3 Protocol
- 4 Conclusion

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

ntroductio

Framewor

Knowledge representation

_ .

Conclusion

1 Introduction

- 2 A framework for hypothesis formation in a society of agents
 - Knowledge representation
 - Coherence and Completeness
- 3 Protocol
- 4 Conclusion

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introductio

Framewor

Knowledge

representation Consistency

Protoco

- 1 Introduction
- 2 A framework for hypothesis formation in a society of agents
 - Knowledge representation
 - Coherence and Completeness
- 3 Protocol
- 4 Conclusion

Agents knowledge

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introductio

Frameworl

Knowledge

Condition

Protoco

Conclusion

Here we consider only Individual knowledge (no explicit common information).

- Non-revisable knowledge : individual informations
 - Individual Theory \mathcal{T}_i^I : individual knowledge
 - Observation set O_i : acquired factual knowledge Manifestation set $M_i \subseteq O_i$: non self-explanatory
- Revisable knowledge : hypotheses.
 - set of Hypotheses *H_i*
 - favorite hypothesis h_i

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

ntroductio

Framework Knowledge representation

Consistency

FIUIUCU

- 1 Introduction
- 2 A framework for hypothesis formation in a society of agents
 - Knowledge representation
 - Coherence and Completeness
- 3 Protocol
- 4 Conclusion

Coherence and Completeness

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introductio

Framewor Knowledge representation

D.

Conclusio

Need to capture consistency, or adequation, of an hypothesis H with non-revisable knowledge \mathcal{T} .

Coherence

- Cannot derive contradictions from (H, T): $(H, T) \not\models \bot$
- Needed to ensure soundness of subsequent reasoning
- No coherent hypothesis if $T \models \bot$

Completeness

- Can non-trivially derive all manifestations M from hypothesis and theory : $(H \cup T) \setminus M \models M$
- if only a subset of *M* is derived : partial hypothesis (complete with unexplainedManif)

Coherence and Completeness (2)

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Framewor Knowledge representation Consistency

Protoc

Conclusio

Need to capture consistency, or adequation, of an hypothesis H with non-revisable knowledge \mathcal{T} .

- Individual aspect
 - Internal coherence/completeness
 - lacksquare \mathcal{T} is the full individual theory $\mathcal{T}_i \cup \mathcal{O}_i$
- Within groups
 - Group coherence/completeness
 - H should be coherent/complete with the union of the individual theories T_i.

Example

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

ntroduction

Framewor Knowledge representation Consistency

Protoco

Conclusio

Horn Clause, with observations as heads and abducibles as body.

Theory

```
[hasSymptom(fever), -hasDisease(flu)]
[hasSymptom(throatache), -hasDisease(angina)]
[hasSymptom(fever), -hasDisease(angina)]
[hasSymptom(mucus), -hasDisease(flu)]
[hasSymptom(mucus), -hasDisease(rhino)]
```

Observations

```
[hasSymptom(fever)]
[-hasSymptom(mucus)]
[hasSymptom(throatache)]
```

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

ntroductio

Framework Knowledge

representation Consistency

Protoco

1 Introduction

- 2 A framework for hypothesis formation in a society of agents
 - Knowledge representation
 - Coherence and Completeness
- 3 Protocol
- 4 Conclusion

Distributed
Hypotheses
Finding using
SOLAR

G. Bourgne, N. Maudet, K. Inoue

ntroductio

Framewor

Knowledge representation

Dunton

Canaluaiaa

1 (Learner) Compute hypothesis (h_i consistent for (\mathcal{T}_i, O_i)).

Distributed
Hypotheses
Finding using
SOLAR

G. Bourgne, N. Maudet, K. Inoue

Introduction

Framewor

Knowledge representation

Protoco

- 1 (Learner) Compute hypothesis (h_i consistent for (\mathcal{T}_i, O_i)).
- 2 (Learner) Check external coherence (h_i coherent for (\mathcal{T}_i, O_i))

Distributed
Hypotheses
Finding using
SOLAR

G. Bourgne, N. Maudet, K. Inoue

miroduction

Knowledge

representation

Protoco

- 1 (Learner) Compute hypothesis (h_i consistent for (T_i, O_i)).
- 2 (Learner) Check external coherence (h_i coherent for (T_i, O_j))
- 3 (Critic) Check coherence (h_i coherent for (T_j, O_j))

Distributed
Hypotheses
Finding using
SOLAR

G. Bourgne, N. Maudet, K. Inoue

Introduction

Knowledge representation

Protoco

- 1 (Learner) Compute hypothesis (h_i consistent for (\mathcal{T}_i, O_i)).
- 2 (Learner) Check external coherence (h_i coherent for (\mathcal{T}_i , O_i))
- 3 (Critic) Check coherence (h_i coherent for (\mathcal{T}_j , O_j))
- 4 (Critic) Check completeness ($(h_i \text{ complete for } (\mathcal{T}_j, O_j))$

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Knowledge representation

Protoco

- 1 (Learner) Compute hypothesis (h_i consistent for (\mathcal{T}_i, O_i)).
- 2 (Learner) Check external coherence (h_i coherent for (\mathcal{T}_i , O_j))
- 3 (Critic) Check coherence (h_i coherent for (\mathcal{T}_j , O_j))
- 4 (Critic) Check completeness ($(h_i \text{ complete for } (\mathcal{T}_j, O_j))$
- **5** (Critic) Check external coherence (h_i coherent for (\mathcal{T}_i, O_i))

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Knowledge representation

Protoco

- 1 (Learner) Compute hypothesis (h_i consistent for (\mathcal{T}_i , O_i)).
- 2 (Learner) Check external coherence (h_i coherent for (T_i , O_j))
- 3 (Critic) Check coherence (h_i coherent for (T_j, O_j))
- 4 (Critic) Check completeness ($(h_i \text{ complete for } (\mathcal{T}_j, O_j))$
- 5 (Critic) Check external coherence (h_i coherent for (\mathcal{T}_j , O_i))
- 6 (Critic) Check minimality

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Frameworl Knowledge representation

Protoco

- 1 (Learner) Compute hypothesis (h_i consistent for (\mathcal{T}_i , O_i)).
- 2 (Learner) Check external coherence (h_i coherent for (T_i , O_j))
- 3 (Critic) Check coherence (h_i coherent for (T_j, O_j))
- 4 (Critic) Check completeness ($(h_i \text{ complete for } (\mathcal{T}_j, O_j))$
- **5** (Critic) Check external coherence (h_i coherent for (T_j, O_i))
- 6 (Critic) Check minimality

CF tasks (1)

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Framework Knowledge representation

Protoco

- Computing hypothesis
 - $\blacksquare R \cup (O \setminus M) \cup \neg M \models \neg H$
 - Production field: hypothesis field (hasDisease(X))
- Extended Hypothesis
 - \blacksquare $R_{ext} \cup (O \setminus M) \cup \neg M \models \neg H$
 - Production field: extended hypothesis field (hasDisease(X), unexplainedManif()
- Computing context (external coherence and completeness):
 - \blacksquare $R_{\text{ext}} \cup O \cup H \models Ctx$
 - Production field : observation field (hasSymptom(X))

CF tasks (1)

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Framework Knowledge representation

Protoco

Conclusion

Computing hypothesis

 $\blacksquare R \cup (O \setminus M) \cup \neg M \models \neg H$

Production field: hypothesis field (hasDisease(X))

Extended Hypothesis

 \blacksquare $R_{ext} \cup (O \setminus M) \cup \neg M \models \neg H$

Production field: extended hypothesis field (hasDisease(X), unexplainedManif(X))

- Computing context (external coherence and completeness):
 - \blacksquare $R_{\text{ext}} \cup O \cup H \models Ctx$
 - Production field : observation field (hasSymptom(X))

CF tasks (1)

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Knowledge representation

Protoco

Conclusior

- Computing hypothesis
 - $\blacksquare R \cup (O \setminus M) \cup \neg M \models \neg H$
 - Production field: hypothesis field (hasDisease(X))
- Extended Hypothesis
 - \blacksquare $R_{ext} \cup (O \setminus M) \cup \neg M \models \neg H$
 - Production field: extended hypothesis field (hasDisease(X), unexplainedManif(X))
- Computing context (external coherence and completeness):
 - \blacksquare $R_{ext} \cup O \cup H \models Ctx$
 - Production field: observation field (hasSymptom(X))

CF tasks (2)

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Frameworl
Knowledge

representation Consistency

Protocc

Conclusion

Checking internal coherence

 \blacksquare $R_{\text{ext}} \cup O \cup H \models ...$

■ Production field : none (refutation seeking)

get proof

Arguing completeness

 \blacksquare $R_{\text{ext}} \cup O \cup H \models ...$

Production field: target manifestation (hasSymptom(ce))

get proof

CF tasks (2)

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Frameworl Knowledge representation

Protoco

Conclusior

Checking internal coherence

- \blacksquare $R_{\text{ext}} \cup O \cup H \models ...$
- Production field : none (refutation seeking)
- get proof
- Arguing completeness
 - \blacksquare $R_{ext} \cup O \cup H \models ...$
 - Production field : target manifestation (hasSymptom(ce))
 - get proof

Demo

Distributed
Hypotheses
Finding using
SOLAR

G. Bourgne, N. Maudet, K. Inoue

ntroductior

Framewor

Knowledge

Consister

Protoco

Conclusion

Demonstration

Properties

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introductio

Framewor Knowledge representation

Protoco

- Terminates and ensures peer-consistency
- Also ensures global consistency with n fully connected agents
- If agents are not fully connected, do not ensure global consistency
- Need to incorporate admissible context to hypotheses

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introductio

Framework Knowledge

representation Consistency

Protoco

- 1 Introduction
- 2 A framework for hypothesis formation in a society of agents
 - Knowledge representation
 - Coherence and Completeness
- 3 Protoco
- 4 Conclusion

Extensions and future work

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Knowledge representation

Protoco

- Base mechanism for studying fully distributed diagnosis
 - Experiments
 - Refinements (avoid redundant messages with memory)
- Heterogeneity
 - Specialized theories
 - Different role (diagnoser, critic only)
 - Observation source (with a cost?)
- Devise global protocol
- Minimal support

Thanks for your attention.

Distributed
Hypotheses
Finding using

G. Bourgne, N. Maudet, K. Inoue

Introduction

Framework

representat

Protoco

Conclusion

Any questions?