Peer-to-Peer Inference Systems and (Non-)Conservative Extension of a KB AI Communications: The European Journal on AI, 2009

Nada Abdallah

François Goasdoué

Université Paris-Sud & CNRS (LRI/IASI) – INRIA (Saclay/GEMO)

Peer-to-peer inference system

Each peer has:

- a KB using its own symbols
- a set of mappings with other peers
- a copy of a decentralized reasoning algorithm

Is S a conservative extension of P_1 ?

No, in the general case.

S may provide extra knowledge about the own application domain/arera of expertise of P_1 , whether P_1 agrees with or not!

Conservative extension of a KB

Consequences of $\Sigma_1 \cup \Sigma_2$

 $\boldsymbol{\Sigma}_1 \cup \boldsymbol{\Sigma}_2$ is a conservative extension of $\boldsymbol{\Sigma}_1$ iff

 \forall f using the symbols of Σ_1 *only*

If $f \in \mbox{Consequences}$ of $\Sigma_1 \cup \Sigma_2$

Then $f \in Consequences of \Sigma_1$

 $\Sigma 1 \cup \Sigma 2$ does not have more knowledge in terms of the *own* symbols of $\Sigma 1$ than $\Sigma 1$ itself.

Peer-to-peer inference system

Each peer has:

- a KB using its own symbols
- a set of mappings with other peers
- a copy of a decentralized reasoning algorithm

Is S a conservative extension of P_1 ?

No, in the general case.

S may provide extra knowledge about the own application domain/arera of expertise of P_1 , whether P_1 agrees with or not!

Peer-to-peer inference system

Each peer has:

- a KB using its own symbols
- a set of mappings with other peers
- a copy of a decentralized reasoning algorithm

Is S a conservative extension of P_1 ?

No, in the general case.

S may provide extra knowledge about the own application domain/arera of expertise of P₁, whether P_1 agrees with or not!

Does it matter?

- \rightarrow Non-conservative extension of P₁ amounts to
 - 1. \rightarrow Knowledge corruption
 - P_1 has a complete description of its application domain : it is an expert.

Claim: it should be able to forbid the extra knowledge.

2. \rightarrow Possible knowledge corruption

 P_1 has an incomplete description of its application domain but it is an expert.

Claim: it should be able to forbid the inaccurate extra knowledge.

3. \rightarrow Knowledge to learn

- P_1 has an incomplete description of its application domain and it is not an expert.
- Claim: it should be able to get the extra knowledge.

P2PISs and Conservative Extension Checking

Contributions

We study two problems from a theoretical and a decentralized algorithmic perspectives:

1.Deciding whether a P2PIS is a conservative extension of a given peer

2.Computing the witnesses to non-conservativeness of a peer, together with their causes

Motivations

To allow a peer to forbid or to learn the extra knowledge that a P2PIS has wrt its application domain/area of expertise

Setting

Propositional P2PISs

 \rightarrow A good tradeoff between expressivity and scalability.

Applications in IA: Diagnosis

Applications in DB: Peer Data Management Systems for the Semantic Web

Peer-to-Peer Inference Systems

Reasoning Problems

Techniques

Conclusion

Propositional P2PISs

 $T(S) = T(P_1) \cup T(P_2) \cup T(P_3) \cup M(P_1) \cup M(P_2) \cup M(P_3)$

Peer-to-Peer Inference Systems

Q Reasoning Problems

Techniques

Decision problem: CE^{dec}

INSTANCE: Let S be a P2PIS, a peer of which is P. QUESTION: Is S a conservative extension of P?

Decentralized algorithms

Fonctional problem: CE^{fun}

INSTANCE: Let S be a P2PIS, a peer of which is P.

QUESTION: What are the witnesses to non-conservativeness of P within S?

Witness (i.e., a clausal counterexample to conservativeness)

Let S be a P2PIS, a peer of which is P. Let c be a clause of L(P). c is a witness to non-conservativeness of P within S iff T(S) \models c and T(P) $\not\models$ c.

Complexity (space/time)

- CE^{fun} is at least as hard as CE^{dec}: CE^{dec} is *true* whenever CE^{fun}≠{} and *false* otherwise.
- CE^{fun} is strictly harder than CE^{dec} for unrestricted clauses and (reverse-)Horn clauses.

Clauses	Space	Time	CE ^{dec}
Unrestricted	Ехр	Exp	\prod_2^{p} -complete
K _{>=3} -clauses	Р	Ехр	in Δ_2^p
(reverse-)Horn	Ехр	Ехр	in \prod_{1}^{p}
Krom	Ρ	Р	in P

Peer-to-Peer Inference Systems

Reasoning Problems

D Techniques

Conclusion

Techniques

S is a conservative extension of P: $\forall \mathbf{c} \in L(P), \text{ if } T(S) \models \mathbf{c} \text{ then } T(P) \models \mathbf{c}$

What is the *necessary* and *sufficient* subset of L(P) to answer CE^{dec} /CE^{fun}?

Exact characterization

The prime implicates of S that *necessarily* follow from a mapping of P: $\{c \mid c \in L(P) \text{ and } c \in PI(S) \text{ and } c \notin PI(S \setminus \{m\}) \text{ s.t. } m \in M(P)\}.$

S is a conservative extension of P: $\forall \mathbf{m} \in M(P)$, if T(S) $\models_{LR}^{m} \mathbf{c}$ s.t. $\mathbf{c} \in L(P)$ then T(P) U { $\neg \mathbf{c}$ } $\models_{R} \Box$ The Conservative Extension Checking Algorithm (CECA) CECA solves both CE^{dec} and CE^{fun}

S is a conservative extension of P:

 $\forall \mathbf{m} \in \mathcal{M}(\mathcal{P}), \text{ if } \mathcal{T}(\mathcal{S}) \mid_{L^{R}}^{m} \mathbf{c} \text{ s.t. } \mathbf{c} \in \mathcal{L}(\mathcal{P}) \text{ then } \mathcal{T}(\mathcal{P}) \cup \{\neg \mathbf{c}\} \mid_{R} \Box$

CECA running on P	
$\forall \mathbf{m} \in M(P),$ W={(c,m) T(S) $\mid_{LR}^{m} c \text{ s.t. } c \in L(P)$ } is computed	Decentralized linear deduction DECA _{LR} (m) A linear virant of DECA IJCAI'05 & JAIR (2006).
For $(c,m) \in W$, check whether $T(P) \cup \{\neg c\}_{R} \square$	Centralized refutation

 $CE^{fun} \rightarrow Witnesses and their causes$

CE^{dec}

CECA

Peer-to-Peer Inference Systems

Reasoning Problems

Techniques

Conclusion

Our work can be directly applied to

- Propositional P2PISs
- PDMSs for the Semantic Web that are built on top of Propositional P2PISs
 - SomeOWL (Journal of Artificial Intelligence Research, 2006)
 - SomeRDFS (Journal on Data Semantics, 2007)
 - SomeDL-lite (International Joint Conference on Artificial Intelligence, 2009)

It can be applied to inconsistency management

It can be applied to KB/ontology mapping

A user or an expert can decide whether a new mapping is acceptable or not

• The mapping being given by someone or being automatically discovered

It may be used in decentralized diagnosis

Does the logical model respect the specifications of the components?

- NO: Is there a modeling problem of the P2P application?
- NO: Can we find a more adequate (and cheaper) component?