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Consequence Finding

Given an axiom set, the task of consequence finding
or theorem finding is to find out some theorems of
Interest.

Theorems to find out are not given in an explicit way,
but are characterized by some properties.

The task is clearly distinguished from proof finding or
theorem proving.

Theorem proving is a special case of consequence
finding.




Consequence-finding Problem

Resolution Principle:
* refutation complete [Robinson, 1965]
e deductively incomplete

Lee [1967]: completeness theorem
Given a set of clauses 3, for any clause D
that is a logical consequence of J,

RP can derive a clause C from }
such that C entails/subsumes D.

Slagle, Chan & Lee [1969]: semantic resolution
 Minicozzi & Reiter [1972]: linear resolution




However, consequence finding
has a problem ...

The set of theorems is generally infinite, even if they are
restricted to be minimal wrt subsumption.

U
[Siegel, 88], [Inoue, 90-92]

How to find only interesting conclusions?

Solutions: Restricted Consequence Finding

Production field and characteristic clauses




Production Field

* Production field: P=<L, Cond >
— L: the set of literals to be collected
— Cond : the condition to be satisfied (e.g. length)

* Thy(Z) : the clauses entailed by X which belong to P.

P1 = <{ans}*, none>:
» {ans}*is the set of positive literals with the predicate ans.
» Thpy (2) is the set of all positive clauses of the form
ans(t,) V ... V ans(t.) which are derivable from J.
P2 =<L", length is fewer than k >:
L™ is the set of negative literals.
» Thp,(2) is the set of all negative clauses derivable from S consisting of

fewer than k literals.



Characteristic Clauses

* Characteristic clause of 2 (wrt P ):
A clause C such that
- C belongs to Thp(2);
- no other clause in Thpy(2) subsumes C.

® carc(s, P) = UThp(z),

I”
L]

where W represents “subsumption-minima

* New characteristic clause of C wrt2 (and P) :

A char. clause of >AC which is not a char. clause of Z.

® NewCarc(5,C,P) = u[Tho(XAC) —Th ()]
= Carc(>/\C, P) — Carc(s, P) .



Example: Group theory [Lee, 1967/]

2 = { p(eIXIX)I p(i(X)lee)l
_‘p(XIYIU)V_'p(YIZIV)
V_‘p(UIZIW)V p(XIVIW)}

C = _‘p(XIYIU)V_'p(YIZIV)
\4 _'p(XIVIW) \4 p(UIZIV)

P ={{p}", length = 1 and term depth < 1)

N ={ p(X,i(X),e), p(X,e, X), p(e, e, i(e)),
pli(X), X,i(e)), p(i(e), X, X), p(i(e),i(e), e) }




Computing Characteristic Clauses

 NewCarc(2,C,P) (C: clause)

can be directly realized by sound & complete
consequence-finding procedures such as

— SOL resolution [Inoue, 1992]
— SFK resolution [del Val, 1999]

 NewCarc(2,FP) (F:CNF formula)
and Carc(Z, P) can also be computed.



SOL Resolution [Inoue, 1991; 1992]

(Skipping Ordered Linear resolution)

* Model Elimination + Skip rule
e Skip, Resolve, Reduce rules

* complete for consequence-finding in
C-ordered linear resolution (or ME) format
* complete for finding (new) characteristic clauses
* suitable for restricted consequence finding
e connection tableau format
[lwanuma, Inoue & Satoh, 2000]




Connection Tableau [Letz et al., 1994]

Clausal tableau whose every non-leaf node
has an immediate successor labeled with
the complementary literal.

T T~

p(X) r(X)
T

—p(X) q(X)



SOL Resolution, Skip Rule

« SKkip --- When the selected literal L and already
skipped literals belong to the production field,
L is marked “skipped” and the branch is closed.

Note: No substitution is applied.

When all branches in the tableau is closed,
all the skipped literals represent a logical
consequence that belongs to the production field.



SOL Resolution, Skip-factor Rule

« Reduce (factoring/merge) ---When the selected
literal L is unifiable with a leaf node in another branch,
the branch is closed, and the substitution is applied.

This rule is only necessary for the skipped literals.

T~ _ T
p(X) q(x) faoring 5, xy g(x)
— ‘ —~

—p(X) q(Y) —p(X) g(X)

*  skipped * skipped



SOL Resolution, Resolve Rule

* Resolve (extension) --- When the selected literal
L is unifiable with the complement K of a literal in a
clause from the axiom set, the clause is put under L,
the branch with the complement K is closed, and
the mqgu substitution is applied in the whole tableau.

T~
p(X)v s(X) p@)  sta)
—p(a)v q(Y) —
g(Y) v s(a) —|p*(a) q(Y) Yo,



SOL Resolution, Reduce Rule

« Reduce (ancestry) --- When the selected literal L
IS unifiable with its ancestor, the branch is closed,
and the mgu substitution is applied.

T~ T~
PO SO p(a) s(a)
T = T

—p(X) q(v) ) g(Y)
* T * T

—q(Y) —p(a) —q(Y) —p(a)



Example: New Characteristic Clauses

miomset: 3 = {—p(X) v g(X), —5(X),
—p(X) v —g(X) v r(X) }
Input clause:  C = p(X) v s(X)

Production field: p _ { positive literals, length=2 }

New characteristic clauses: 1

N:{p(X)I Q(X)l F(X)}




SOL Resolution, Example (1)

T~
p(X) s(X)

Start clause: C = p(X) v s(X)



SOL Resolution, Example (2)

T~
p(X) s(X)
T~

—p(X) q(X)

K

Resolve with  —p(X) Vv q(X)



SOL Resolution, Example (3)

T~
p(X) s(X)
T
—p(X) q(X)
* T
—p(X) ~q(X) r(X)
Resolve with —p(X) Vv —q(X) Vv r(X)



SOL Resolution, Example (4)

T
p(X) s(X)
T
—p(X) q(X)
* T~
—p(X) =q(X) r(X)
Reduce(ancestry)



SOL Resolution, Example (5)

T~
p(X) s(X)
T~
—p(X) q(X)
* T~
—p(X) —q(X) r(X)

* * skipped

Skipped = {r(X)}



SOL Resolution, Example (6)

/\
p(X) s(X) Resolve with
—p(X) q(X) ﬁfk(X )
i /I\
—p(X) =q(X) r(X)
* k skipped
Skipped = { r(X) }



Soundness and Completeness

1. If aclause S is derived by an SOL
deduction from 2+C and P, then
S belongs to Th(2 U{C}) and P.

2. If a clause F does not belong to Th(Z)
but belongs to Th(2 U{C}) and P, then
there is an SOL deduction of a clause S
from 2+C and P such that S subsumes F.




Duplicated Computation

/\

p(X) q(X)
B2 YR AN
—p(X) r(X) ﬂq(X) p(X)

—r(X) —p(X) r(X)
\_ * % |
—r(X)

\_ *




Pruning Methods in SOL Calculi
[lwanuma, Inoue & Satoh, 2000]

e Mandatory Rules
m lemma matching (unit/2-literals/folding-up)
m merge with skipped literals
m ancestry with empty substitution
m C-reduction with empty substitution

e Cutting-off rules
« regularity
« tautology-freeness
+ complement-freeness
+ Skip as local failure pruning



Folding-up

q(X)

—p(X)

X

| —p(X) v —q(X)v—r(X) ]|

T

(—q (X)),
p(X) s(X)

r(X) —p(X) t(X )

X K
— T angestry

/I\*

—q(X) |=r(X)] g

X

X

X



SOLAR [Nabeshima, Iwanuma & Inoue,
TABLEAUX 2003]

* Fast implementation of SOL Tableaux
* Java implementation

* Various pruning methods and constraints

* High performance as a theorem prover

— Among 1,921 problems without the equality in
TPTP v2.5.0, 52% Problems are solved by SOLAR
within 5 min CPU time for each.

— C.f. 50% are solved by OTTER 3.2 (C).



SOLAR 2.0

g An efficient implementation of

consequence finding procedure SOL
. (Nabeshima et al., 2008-2009) |

© Full checking of various pruning methods [Iwanuma et al., 2000]
© Implementation based on disequation constraints [Letz & Stenz, 2001]
© Term indexing mechanisms

© Perfect discrimination trees for term retrieval [McCune, 1992]

© Feature vector indexing for clause-subsumption checking [Schulz, 2004]
© Compact term data structure with flat representation and variable offset
© Non-recursive functions with stacks which store the minimum essentials



Applications

Nonmonotonic Reasoning

Prime Implicants/Implicates, Knowledge Compilation
Diagnosis, Design

Problem Solving, Query answering, Planning
Multi-Agent Systems

Abduction

Induction

Scientific Discovery

Skill Science



Flexible Query answering

« QA under incomplete information

* QA under incomplete communication
environments

* QA in multi-agent systems

» We formalize FQA in logic:
— Nonmonotonic reasoning
— Default reasoning
— Abductive reasoning



Communication under Incomplete Information

Under incomplete communication environments,
communication between agents is not guaranteed.
Messages between agents might be lost or delayed.

> [Satoh, Inoue, Iwanuma & Sakama, ICMAS-2000]
proposed a method of speculative computation for
reasoning/question-answering under incomplete
communication environments in MAS.




Speculative Computation

[Satoh, Inoue, Iwanuma & Sakama, ICMAS 2000]

* Master-slave Multi-Agent System

* Master makes planning with default answers for
slaves.

€ - Reduce suspended processes
® - Reduce the risk

* When responses comes from slaves,

M if the answer is the same as the default, keep the
current computation process;

B otherwise, recompute a plan.



SOL-based Speculative Computation

[Inoue, Kawaguchi & Haneda, CLIMA 2001]
[lIwanuma & Inoue, CLIMA 2002]
[Inoue & Iwanuma, AMAI 2004]

® Define a logical framework of MAS with speculative
computation
» default logic [Reiter, 80]

® Data-driven approach and bottom-up computation (reactive
behavior)
» consequence-finding procedure (SOL)
» avoidance of duplicate computation (History)

® Implementation in a distributed environment with delayed
inputs
» Servlet/Java-RMI and emails



Query answering

Def: program > : a satisfiable set of clauses
query <Q : aconjunction of literals

Def: Let 8, ..., 8, be substitutions.

Q6, V... VQ8,is a correct answer of 3 if

> |=v(©Q6,v-v08,)



Completeness of SOL for Computing
Correct answers

Theorem: 1fQ61 V... VQ6n is a correct answer of 3,
then there is an SOL deduction D from § s.t.

(1) the top clauseis —Q (X) V ans(X) [Green, 1969]
(2) the production field is P = <{ans}*{}>

(3) D derives a clause
ans(X)6, V ... V ans(X)5,
which subsumes ans(X)0, V...V ans(X)6



Answer Completeness
[lIwanuma & Inoue, JELIA-2002]

* The completeness of SOL resolution implies the
answer completeness.

* In particular, SOL resolution is complete for finding
the minimal (length) answers.

e Currently, SOL is the only known complete calculus
in the ME family.

C.f. P Baumgartner, U. Furbach and F. Stolzenburg:
Computing answers with Model Elimination,
Artificial Intelligence, 90 (1997) pp.135-176.
Not all answers in condensed form can be computed.




Consequence Finding
in Default Theories

Katsumi Inoue
National Institute of Informatics

Koji lwanuma
Hidetomo Nabeshima
University of Yamanashi



SOL Tableaux [Iwanuma, Inoue & Satoh, 00]-
Connection Tableaux + Skip

Complete calculus for deriving logical consequences

2: (1) °AV=Q (2) PAVTR  (3) QV—R

2 ‘:_IR /(1)\

5k/p

{_'Rl Q : TR

\ .......

cl osed SKi gp-edk \clo~sed T skipped

merging to
a skipped literal



Default Theory

prerequisite-free normal default theory [Reiter, 80]

(D P):
@D : default set: a set of ground literals.
® P : a set of first-order clauses, called a program,

such that, if a clause in P contains a literal L
whose predicate appears in D, L must be ground.

(D, Py corresponds to Reiter’s default theory (D* P), where

D* ={i‘LeD}
/



Consequence-finding in Default Logic

* Theorem [Reiter, 87]:

E is an extension of a default theory {D, P) iff
E=Th(P U A),

where A is a maximal subset of D such that
P U A is consistent.

 Aiscalled the generating defaults for E.

» Extensions can be computed by consequence-finding
from P U A if A can be computed in some way.



A Paper Review Problem

There are 3 reviewers: #1, #2, #3.

#2 and #3 usually accepts a paper, but #1 has no default.
The editor asks each reviewer if the paper can be accepted.
If all reviewers accepts the paper, it is ACCEPTED.

If only 2 reviewers agrees to accept the paper, it is
ACCEPTED WITH REVISONS.

If neither #1 nor #2 accepts the paper, it is REJECTED,
because they are key persons.

€ Suppose that the editor gets a positive answer from #2 but
no answers from #1 and #3 although the deadline has passed.

What should/can the editor decide in this situation?



Example: Paper Review

S ={1, 2, 3} : set of reviewer agents

D, = {accept(2), accept(3) }: defaults| % No default for #1

D, = {accept(1), —accept(1), accept(2), accept(3) }: defaults II
% Two defaults for #2 which are complementary

P . program

—accept(1) V —accept(2)V —accept(3) V rank(A, [1,2,3]).

—accept(1) V —accept(2) V accept(3) V rank(B, [1,2]).
accept(1) V —accept(2)V —accept(3) V rank(B, [2,3]).
—accept(1) V accept(2)V —accept(3) V rank(B, [1,3]).
accept(1) V accept(2) V rank(C, []).



Example: Paper Review

D, ={a(2), a(3) }: defaults |
D, ={a(1), —a(1), a(2), a(3) }: defaults II

P : program
—a(1) V—a(2)V—a(3) V r (A, [1,23]).
—a(1) V—a(2)Va(3) V r (B, [1,2]).
a(1) V—a(2)V—a(3) V r(B,[23]).
—a(1) Va(2)V—a(3) V r (B, [1,3]).
a(1) Va(2) V r(C,[]).

@ (D,, P) has 1 extension, but {D,, P) has 2 extensions.
® r(a,(1,23]) Vri(b 23]
is a consequence of both {D,, P} and {D,, P).



15t Step: Consequence-finding with Defaults in SOL
with answer literals

Theorem: Suppose that 4 is a maximal subset of D such that

P UA is consistent. If QX)0,V... VAX)6, is a correct
answer to the query < Q(X) relativeto P U A,

then there is an SOL-deduction S from P U A such that:
(1) the top clause is = QLX) V ans( X). _
(2) the production field is P = <{ans }*,{}>.
(3) S generates a clause ans(X) o, V... Vans(X)o,

which subsumes ans(X)0,V... Vans(X)6,
Note: A must be computed in advance.




Conditional answers

Query «— 0(X): Q(X) is a conjunction of literals

Conditional answer to «— Q(X) relativeto2and P :
A clause of the form:
A V..VA VOX)0,V..VQOX)8,
st. (1)2 |=A,V..VA_ VO(X)b,V.. VOX)H,_,
2)% |2A,V..VA_, 3)A,V..VA_belongstoP.

Conditional ans-clause (CA-clause) relative to 2 and P :
A clause in the form of
A V.VA Vans(X)0,V... Vans(X)6,_

s.t. A;V..VA_ satisfies the same 3 conditions as above.



Computing Default Consequences as
Conditional answers

Conditional answer format explicitly represents:

which defaults are used to derive the conclusion.

The dependency representation is valuable for
avoiding duplicated computations when there are
multiple extensions sharing common defaults.

» SOL tableaux can reduce redundant computation
which derives irrational conclusions in the conditional

answer format by means of the skip-regularity and
TCS-freeness constraints.




Constraint: Skip-Regularity

Any complementary literals of skipped literals can be
forbidden to appear in an SOL tableau, without losing

the completeness.




Irrational answers Violating
Skip-Regularity

The tableau violates the skip-regularity wrt a( 7).

/\

S_k|p"je9U|ar|ty . [FaD ~a(2) ~a(3) rA,[1,2,3])
V|O|at|0n ’, -~ skipped skipped skipped
/
/
I
| ~a(l) a(2) ~a(3) ¥(B,[1,3])
I closed skipped skipped
I
v /‘\
a(l) a(2) r(C.[])
o closed skipped

ADAN&3) — (A[1,23]) V (5[1,3]) V nCl])




Constraint: TCS (Tableau Clause

Subsumption)-Freeness

Any tableau clause C (a disjunction of sibling literals
in a tableau) is not subsumed by any clause in 3 other
than origin clauses of C.

L, L,

Ln

_/

Y

a tableau clause C

>+ a set of clauses
as an axiom theory



Irrational answers Violating
TCS-Freeness

The lower tableau clause is subsumed by newly added

default a(%\

~a(l) ~a(2) ~af3) r(4,(1,2,3])
skipped skipped skipped
%\ Skip-regular but
not
~a(l) | a2)| ~a(3) r(B,J13]) TCS-free for the
skipped closed skipped skipped new underlying

theory
aADANA3) — r(AlL23]) V r
(8[1,3])




Rational answers Satisfying
Skip-Regularity and TCS-Freeness

PTANN

~a(l) ~af2) ~a(3) wr(4,[1,2,3])
skipped skipped skipped
a(2)
closed

A1) N &3 — r(AlL23)



2"d step: Consequence-finding with Defaults in
Conditional answer Format

Theorem: Suppose that 4 is a maximal subset of D such that

PUA

is consistent. If A X)8,V... VAX)6, is a correct

answer to the query < Q(X) relativeto P U A,

then t
(1)t

here is an SOL-deduction S from P such that:
ne top clause is 7 Q(X)V ans( X).

(2) t

he production field is P= < D~ U {ans }*, {}>.

(3) S generates a CA-clause of the form

B, V..V BV angX)o, V... Vans(X)o,:
each B, is the negation of a defaultin D.
ans(X)o, V... V ans(X)o, subsumes

ans(X)0,V... VansX)8, .



Problems Unsolved Yet

Exclusion of the generating defaults from the axiom set
implies that these literals cannot be regarded as unit
clauses that are newly added to the axiom set.

1. Resolve with default literals becomes impossible.

= Skip-preference rule

2. TCS-freeness constraint by default literals becomes
inapplicable to tableaux. Then, many irrational
tableaux cannot be pruned.

= [-subsumption rule



Irrational Tableaux Example

Default literal: a(2).

™

~r(C,[]) Ans(C,[])
/‘\Skinpm
afl) af2) riC.J/f])

skip ped/\closed

a(l) —a(2) ~a(3) r(B,[2,3])

skipped closed skipped /\

~r(B,[2,3]) Ans(B,[2,3])
closed skipped

—a A& -
ans(G[])V ans(5[2,3])

A g

~r(B,[1,3]) Ans(B,[1,3])

/\EH -

~a(l) a(2) ~a(3) r(B,[1,3])

skipped skipped  closed

~a(l) —a(2) ~a(3) r(4.[1,2,3])

skipped closed skipped /\

~r(A4,[1,2,3]) Ans{4,[1,2,3])
closed skipped

ANNA3) —
ans(A,[1,2,3])V ans B[ 1,3])



SOL-S(I) calculus:
SOL + Skip-preference + -subsumption

1. Skip-preference:
Apply Skip as much as possible by ignoring the possibility
of other inference rules. The extension (Resolve) with
default literals in I' can completely be simulated.

2. [-subsumption checking:
Check if a selected subgoal belongs to a set I of default
literals, and if so the tableau is pruned.
This check cannot simulate the complete TCS-subsumption,
but is enough for consequence-finding with defaults.




4 Survived Rational Tableaux in SOL-S(I)
(from 3,184 original SOL Tableaux)
e N

~r(A.f1.2.3]) Ans(A[f1.2.3]) ~(B.[2.3])  Ans(B.[2.3])

skipped skipped

~afil) ~af2} ~a(3) rid. f1.2.3]) afl) ~a(2) ~a(3) (B [2.3])
skipped skipped  skipped ciosed skipped skipped skipped closed

(a) (b)

={—a(2), —a(3)}
il Pt

~plA 12370 AnsCA f1.2.37) ~r(B. 23]}  Ans(B.[2. 3]}
TN TN
H-a'f"}__j' -'hﬂf.-?_,} ---.!:I'fﬂ'.l rfﬂ,ff__..?,jfj af’J_J “—'HI'E_J Hﬂ'fj__.i ?’I'.B.f?..jj__.i'

skipped skipped closed

N skipped closed /\

afd ) ~af2) ~af 3} B30 ~aafd) a2} ~ea(3) A fI 2 3])

closed skipped shlp-pecl/\ closed  skipped EH:IPFE-I:I/\
~r(B.[2.3])  Ans(B.[2.3]) ~r(A[1.2.3])  Ans(d f1.23])
closed skipped closed eklppead

(c) (d)



3" step: Consequence-finding with Defaults in SOL-

S(I) calculus

Theorem: Suppose that 4 is a maximal subset of D such that

PUA

is consistent. If A X)8,V... VAX)6, is a correct

answer to the query < Q(X) relativeto P U A4, and

M=

then t
(1)t

—[€ D~ | —L appears nowhere in Card A<D~ {}>)},

nere is an SOL-S(IN) deduction S from P such that:
ne top clause is QX)) V ans( X).

(2) t

he production field is P= < D~ U {ans }*, {}>.

(3) S generates a CA-clause of the form

B, V..V B,V angX)o, V... Vans X)o,:
each B, is the negation of a defaultin D.

ans(X)o, V... V ans(X)o, subsumes
ans(X)e, V... Vans(X)6, .



Experimental Result

SOL # of Char. Time
Deductions| Clauses (ms)
Original 3184 3 8225
SOL
SOL with 1270 3 2937
Skip-Reguil.
SOL-S(I) 4 3 34




4th step: Consistency of SOL(-S) calculus for
consequence-finding with defaults

Theorem: Let (D, P) be a default theory, and — Q(X) a query.

If there is an SOL(-S(I")) deduction S from P such that

(1) the top clause is = QA X)V ans( X).
(2) the production field is P= < D~ U {ans }*, {}>.

(3) S generates B V...V BV andX)o, V... Vans(X)o,:
e each B, is the negation of a defaultin D.
e B V..VBA isnot subsumed by any clause
in Card B<D~,{}>),
then there is an extension £ of (D,P) such that
® {—B,..,7B }=A, where 4is the generating defaults of £
® £ contains the correct answer A X)o, V... VAX)o,.




Summary

Consequence-finding in default logic is considered.

Default computation is verified by consequence-finding from
the axioms with the generating defaults.

A sound and complete answer extraction technique can be
provided with SOL tableaux.

Conditional answer format is useful for representing
dependencies between consequences and defaults, thereby
providing consequence-finding without computing the
generating defaults.

Skip-preference and -subsumption prevents generating
irrational consequences under defaults.

The framework can be applied to speculative computation in
multi-agent systems.



Three modes of inference
(C.S. Peirce)

deduction —
A
C
S )
4 - C
abduction A > C Sreney Ue
C Business
%




Abduction and Induction:
Logical Framework

Input:
— B background theory

— E: (positive) examples ./ observations
Output:
® H: hypothesis satisfying that

- B AH EE
— B A H isconsistent.



Abduction and Induction:
Logical Framework

- B AH EE
— B A H isconsistent.

The logical framework is exactly the same.

A different formalism exists for induction, e.g., descriptive
induction, but can be unified with the above framework
[Inoue & Saito, ILP'04].

Induction often gets negative examples, but abduction can be
extended too [Inoue & Sakama, [JCAI-95].

Theoretical results for one can be easily transferred to the
other. E.g., The notion of equivalence is explored for
abduction [Inoue & Sakama, MBR'04; IJCAI-05] and for
induction [Sakama & Inoue, ILP'05].

Computation can also be unified.



Inverse Entailment

Given that

B AH FE,
computing a hypothesis H can be done by

B AN —E E —H.

I.e., —H deductively follows from B A —E.



Inverse Entailment

B: Human(Socrates),
E: Mortal(Socrates),
H: Vx(Human(x) O Mortal(x) )
satisfies that:

B AH FE.

In fact,
B A —E = Human(Socrates) /A —Mortal(Socrates)

= 3x(Human(x) A —Mortal(x)) = —H .



|IE for Abduction [Inoue, 1992]

B AN—F E—H

Computation through consequence finding

* F: conjunction of (existentially-quantified) literals
 H: conjunctions of literals

B : (full) clausal theory (non-Horn clauses)

Note: Both —E and —H are clauses.

sound and complete



|E for ILP [Muggleton, 1995]

BN —F FE —H

Use consequence-finding procedures twice
[Yamamoto 1997]

B : Horn clausal theory

E : single Horn clause

H : single (non-)Horn clause

Note: Neither —E nor —H is a single clause, and both
contain existentially quantified variables.



IE with L -clause: Incompleteness

Approach: Compute the _L-clause:

1(B,E)={—L | Lisaliteralst.B A —E F L}
Hypothesis H is constructed by generalizing L -clause:

H E L(B,E).

Sound but incomplete for recursive clauses [Yamamoto,
1997]

« Sufficient conditions for completeness
[Furukawa et al., 1997; Yamamoto, 1997;1999]

* Incompleteness due to single-clause hypotheses [Ray, 2003]



Complete Calculus for IE

BN —F FE —H

CF-Induction [Inoue, 2001]

Compute the characteristic clauses of B A\ —E
Use any consequence-finding procedure.

Use any generalizer.

Includes the bottom method and abductive computation.

B : full clausal theory (non-Horn clauses)
E : full clausal theory (non-Horn clauses)
H : full clausal theory (non-Horn clauses)

Sound and complete



CF-Induction: Principle

B ANH EE
<S> B AN —E FE—H

<> B A —E FE Carc(BA\ —E, P) E CC(B,E) E —H
<> CC(B,E) € Carc(B/\ —FE, P),

—CC(BLE) = F H E F (whereF is CNF)



CF-Induction: Algorithm

Compute Carc(B/\ —E, P).
Construct CC(B,E) such that
 CC(B,E) S Carc(BN\ —E, P) ;

* CC(B,E) N NewCarc(B, —E, P) # .
Convert —1CC(B,E) into CNF F.
Generalize F to H such that

e BAH is consistent.



CF-Induction: Generalizers

Given a CNF formula F, find a CNF formula H

such that
H EF

— inverse Skolemization

— anti-instantiation

— anti-subsumption (dropping literals from clauses)
— anti-weakening (addition of clauses)

— inverse resolution

— Plotkin’s least generalization



CF-Induction: Buntine’s Example

B: cat(x) DO pet(x),
small(x) Afluffy(x) Apet(x) O cuddly pet(x).
E: fluffy(x) Acat(x) D cuddly pet(x).

NewCarc(B, —E, P):

fluffy(s,), cat(s,), —cuddly_pet (s,),
pet(s,), —small(s,)

CC(B,E) = NewCarc(B,—E, P)

H: fluffy(x) Acat(x) Apet(x) D cuddly pet(x) Vsmall(x)



CF-Induction: Yamamoto’s Example

B: even(0),
odd(x) O even(s(x)).
E: odd(s(s(s(0)))).

NewCarc(B, —E, P): —odd(s(s(s(0)))).
CC(B,E) : even(0), odd(s(0)) Deven(s(s(0))), —odd(s(s(s(0)))).

CNF( —CC(B,E) ):

even(0) D odd(s(0)) Vodd(s(s(s(0)))),
even(0) A even(s(s(0))) O odd(s(s(s(0)))).

H: even(x) O odd(s(x)).



Induction v.s. Abduction

CF-induction is realized by abductive proc.
CF-induction includes abduction.

Abduction comprises of computing

NewcCarc(B, —E, P) only.

Induction often requires formulas in

Carc(B/\ —E, P) —NewCarc(B, —E, P). Namely,
background knowledge is associated with
observations.




Yamamoto & Fronhéfer’s Example

B: dog(x) A small(x) D pet(x).
E: pet(c).

NewCarc(B, —E, P): —met(c), —dog(c) V —small(c).
CC(B,E) = NewCarc(B, —E, P).

—ICC(B,E) : pet(c) V (dog(c) A small(c)).

CNF(—CC(B,E)): pet(c) V dog(c), pet(c) V small(c).

H: pet(x) V dog(x), pet(x) V small(x).



Muggleton’s Example

B: white(swanl).
E: —black(swanl).

NewCarc(B, —E, P): black(swanl).
CC(B,E) : white(swanl), black(swanl).

—ICC(B,E) : —white(swanl) V' —black(swanl).

H: —white(x) V' —black(x).



Automated biological discovery

= “Robot Scientist”

o King, R.D. et al., “Functional Genomic Hypothesis Generation and

Experimentation by a Robot Scientist”, Nature, 427, 2004.

o King, R.D. et al., “The Automation of Science”, Science, 324, 2009.

= “Chemical Turing Machine”

o Muggleton, S.D., “Exceeding Human Limits”. Nature, 440, 2006.

CHANGES TO TRADITIONAL SCIENCE WITH AUTOMATION

Traditional science Automated science

Hypotheses Machine-encoded logical hypotheses
Chemical knowledge Machine-encoded chemical algebra
Experiments Chemical Turing machine programs

Experimental design Decision theory




Modeling Biological

« EXxplain and predict
metabolic pathways.

— Generic Model:

» Saccharomyces
Cerevisiae

e E-coli




Inductive Learning Approaches

= Goals
— Finding inhibitions in a metabolic pathway.

— Discovering causal rules which augment an incomplete
background theory.

— Predicting changes of concentration in intracellular fluxes.

= Previous Work

— Using an abductive logic programming technique on the

problem of inhibitions of metabolic pathways at steady states
(Tamaddoni—Nezdah et al., 2006)

= New Approach (Yamamoto, Inoue & Doncescu, 2007)
* Integration of abduction and induction.
* Not only steady states but also dynamic models.



Prediction of Intracellular Fluxes

| Goals
- Predicting concentration changes in intracellular metabolites
- Discovering causal laws augmenting an incomplete background theory

./. h b - - 4

® Approaches
Inverse Entailment for induction (CF-induction)

® Examples £
changes (up/down) of concentrations of extracelluar metabolites

e Background theory B

- chemical reactions in a metabolic networks
- clauses concerning known inhibitory effects

® Hypothesis H :

- a clausal theory which consists of both literals whose predicate is
“inhibition” and clauses corresponding to causal laws



Metabolite Balancing

* Intracellular fluxes are determined as a function of the measurable extracellular
fluxes using a stoichiometric model for major intracellular reactions and
applying a mass balance around each intracellular metabolite.

rD
A y D — ( vi=—rA
r vl

—> A— lvg, v2=vl-a

v;\V3+ v rE v4d =rC-a
<
C'_E‘_> v5 =vi-rD-a
lrc v =rE+rC-a

a=[v3+)-(3-)

vl, v2, v3+, v3-, v4: unknown fluxes at the steady stat
A, rC rD, rE: metabolite extracellular accumulation rat



Example: Unobservable Metabolite

concentration(a, up). L, A -

reaction(a, b). reaction(b, d). \:34 vo

reaction(d, €). reaction(e, c) V;\ v4 -
.9) ) CEg>

reaction(c, b). reaction(b, c). i y

—concentration(X, up) < concentration(X, down). rC

concentration(X, down) <«
reaction(Y, X), —inhibited(Y, X), concentration(Y, down).

|@®o-®|

concentration(X, up) < concentration(Y, up), reaction(Y, X), reaction(X, Z),
—inhibited(Y, X), inhibited(X, Z).

: @@ @

concentration(d, up). concentration(e, down). concentration(c, down).



Example: Outputs of CF-induction

H . rD
1 y D —
—inhibited(a, b). inhibited(b, c). rA I A z B /é/ \i\
—inhibited(e, ¢). inhibited(d, ¢). %”’C HE
—inhibited(b, d). I

concentration(e, down) < inhibited(d, €), —inhibited(e, ¢).

@O <@

_.»n>
H,: L'JA \f
—inhibited(a, b). inhibited(b, c). VM C
—inhibited(b, d). inhibited(d, e). 1( Ar
concentration(X, down) <«— concentration(Y, up), inhibited(Y, )(.:

1@ ®)|



Example: Metabolic Pathway (Pyruvate)

B B: I
] Glucose
reaction(pyruvate, acetylcoa).
reaction(pyruvate, acetaldehide). |
reaction(glucose, glucosep). Glucose-P
reaction(glucosep, pyruvate).
reaction(acetaldehide, acetate). v EC4.1.1.1 EC1.1.1.1
Pyruvate —> Acetaldehide —+E#hanol

reaction(acetate, acetylcoa).
reaction(acetaldehide, ethanol). zey54; l I

l EC 1.2.1.10
concentration(glucose, up).

Acetylcoa <+ Acetate

terminal(ethanol).
blocked(X) « reaction(X,Y), inhibited(X,Y).

blocked(X) « terminal(X). @ B @
concentration(X,up) « reaction(Y,X), —inhibited(Y,X), bloc@t)(').—‘

E . concentration(ethanol,up). concentration(pyruvate, up).



Example: Outputs of CF-induction

" H:
—Inhibited(glucosep, pyruvate).

—inhibited(acetaldehide, ethanol).

inhibited(pyruvate, acetylcoa).

Glucose T

Glucose-P

Pyruvate =~ — Acetaldehide =&Benol T

' | !

Acetylcoa <+ Acetate

Ho:
—inhibited(glucose, glucosep)
—Inhibited(glucosep, pyruvate).
—inhibited(acetaldehide, ethanol).
—inhibited(pyruvate, acetaldehide).
concentration(Y, up) «
—inhibited(X, Y), concentration(X, up).
Glucose, T
|
v
GIucose_-P

I
¥

Pyruvate —-—==> Acetaldehide =&==>Ethanol T

|l | |

Acetylcoa +— Acetate



Abduction: Logical Framework

Input:
® B: background theory

® G : observations
® [: possible causes (abducibles)

M: f/_ Abduc_:tive
H : hypothesis satisfying that engine

-B ANH G H |
— B A H is consistent

— H is a set of instances of literals from T.

Inverse Entailment (1E)

Computing a hypothesis /# can be done deductively by:
BN—G F —H
We use a consequence finding techniqgue for IE computation.




Consequence Finding

Input:
® B : first-order (clausal) theory

® C: “new” clausal theory
® P: language restriction (“production field”)

Output:
® S: the (subsumption-minimal) “new” consequences satisfying that

-BANC F S B )
_ B |=/=5 | — Conseq. | || g
Finder
— S belongs to P. . __—
C

e SOL-resolution (Inoue, JCAI-91) ~—
e SOLAR (Nabeshima, Iwanuma & Inoue, TABLEAUX'03)

B For Theorem Proving, C is the negation of the target theorem
and S is the empty clause (generalization of proof-finding).
m Forlnverse Entailment, C=—G, S=—H, and P =—T.



Inverse Entailment for Abduction

SOLAR Example: graph completion problem — pathway finding

Find an arc which enables a path from A to D.

Background theory:
path(X,Y) < node(X) A node(Y) A arc(X)Y).
path(X,Z) <— node(X) A node(Y) A node(Z) A arc(X)Y) A path(Y,2).
node(a). node(b). node(c). node(d). arc(a,b). arc(c,d).
Negated observation:
—path(a,d).

Production field:
literal form = [—arc(_, )] & clause length <1.

Output of SOLAR:

1. —arc(a, d). 2. —arc(a, c). 3. —arc(b, c). 4. —arc(b, d).



Abductive Inference (Naive Formalization)

given

B theory (set of clauses)

E goal (set of literals)

A abducibles (set of possible assumptions)
find

HcA explanation (set of assumptions)

o answer (variable bindings)
where

BAH|=Eo

Implicitly: B 1s a universally quantified conjunction and
E 1s an existentially quantified conjunction.



Metabolic Pathway (Ray & Inoue, DS'07)

pathway( X ,Z ) < reaction( X,Y ) A pathway(Y,Z )
pathway( X,Z ) < reaction( X ,Z )

reaction(a,b )\ reaction(a,c)

oy
1

reaction(b,d ) v reaction(c,d )

\—reaction(c,b)



Metabolic Pathway (Ray & Inoue, DS'07)

N

pathway(X,Z) < reaction(X,Y) A pathway(Y,Z)
pathway(X,Z) < reaction(X,Z)
reaction(a,b) v reaction(a,c) @

reaction(b,d) v reaction(c,d)

7
. 4 \
\—reaction(c,b) J S
4 \
\ 4
\ 4
\ 4
\ 4
\ U4



Metabolic Pathway (Ray & Inoue, DS'07)

pathway(X,Z) < reaction(X,Y) A pathway(Y,Z)
pathway(X,Z) < reaction(X,Z)
B =<reaction(a,b) v reaction(a,c) @

reaction(b,d) v reaction(c,d)

// \\
\—reaction(c,b) J N
/4 \
K \
E = \pathway(U,d) @""X"@
\\ ,/
\ U4
\ /4
\ /4

A

{reaction(V, W)} éﬁ)



Metabolic Pathway (Ray & Inoue, DS'07)

pathway( X, Z ) < reaction( X,Y ) A pathway(Y,Z )
pathway( X,Z ) < reaction( X,Z )

T =< reaction(a,b) v reaction(a,c) @

reaction(b,d ) v reaction(c,d )

7 N\
\—reaction(c,b) /' \\
/4 \
|74 \
E ={pathway(U,d )} @6“)("@
% (from which U) is there a path to d? \\ ,/
\ /4

A = {reaction(V ,W )} T4
% assuming reactions from some V to W



Metabolic Pathway: A Solution

pathway(X,Z) < reaction(X,Y) A pathway(Y,Z)
pathway(X,Z) < reaction(X,Z)
reaction(a,b) v reaction(a,c) @

reaction(b,d) v reaction(c,d)

oo
I

\—reaction(c,D)

Eo = {pathway(b, d)}

% there is a path from b to d AN /s

H = {reaction(b, c)} A4
% assuming a reaction from b to c



Metabolic Pathway: MORE Solutions

/@\ /@\ A X
AV s

(i) (i) (i)

e—p @ @\ta cf
© €]
(V) (vi) (V“) (V|||)

Problem:  want to express non-ground answers like (i11),

and disjunctive answers such as (vi1).




Abductive Inference (Revisited)

given

B theory (set of clauses)

E goal (set of literals)

A abducibles (set of possible assumptions)
find

HcA explanation (set of assumptions)

o answer (variable bindings)
where

BAH|FEo

However:  No interaction between variables in H and E
and no way to return disjunctive answers in o.



Abductive Inference (Ray & Inoue, DS‘07)

given

B theory (background knowledge)

E goal (set of given observations)

A abducibles (set of possible assumptions)
find

HcA explanation (set of assumptions)

@ answer (SET of variable bindings)
where

B = VY|AL > \JEo

LeH oc@



Abductive Inference (Ray & Inoue, DS‘07)

given

B theory (background knowledge)

E goal (set of given observations)

A abducibles (set of possible assumptions)
find

HcA explanation (set of assumptions)

@ answer (SET of variable bindings)
where

Bl= VAL > \JEo

LeH oc@

% the conjunction of assumptions H implies the disjunction
of answers @,



Metabolic Pathway: Another Solution

pathway( X, Z ) < reaction( X,Y ) A pathway(Y,Z )
pathway( X,Z ) < reaction( X,Z )

reaction(a,b ) v reaction(a,c )

oo
I

reaction(b,d ) reaction(c,d )

\—reaction(c,b)

0= {{U/bhiUs X)) ()

% there is a path from b or X to d AN /

H = {reaction( X,Y ),reaction(Y,c )} \\if'

% assuming reactions from X to Y and from Y to



Evaluating Abductive Hypotheses
using an EM Algorithms on BDDs

Katsumi Inouel?, Taisuke Sato?1,
Masakazu Ishihata?, Yoshitaka Kameya?,
Hidetomo Nabeshima3

! National Institute of Informatics
2 Tokyo Institute of Technology
3 University of Yamanashi

Thanks to: Yoshitaka Yamamoto, Koji lwanuma, Andrei Doncescu,
Stephen Muggleton, Oliver Ray, Takehide Soh, JST and JSPS.

adapted from presentation at [JCAI-09



Abduction and discovery

Application of abduction to scientific discovery

— (Zupan et al., Bioinformatics 2003), (King et al., Nature
2004; Science 2009), (Muggleton, Nature 2006), etc.

Knowledge is structured as a network
Knowledge and data bases are incomplete

— Constraints are often very weak, so there exist a large
number of logically possible hypotheses

Hypotheses are composed for multiple observations

— 20 metabolites, 10 explanations for each — 10%°

Hypothesis evaluation is indispensable, but how?



An abductive system architecture

Background Knowledge Biological Model

_ Biological Data
Observations

Hypotheses
Hypothesis Finder

Hypothesis Evaluator

Biological
Best Hypotheses Analysis



The current abductive system

Background Knowledge

Observations

Hypotheses

Hypothesis Finder (Conj.unctions
SOLAR of literals)

Hypothesis Evaluator

Best Hypotheses




The current abductive system

Background Knowledge

Observations

Hypotheses
(conjunctions
of literals)

Hypothesis Evaluator
BDD-EM

Best Hypotheses




BDD-EM algorithm

® Learning probabilities of a model described by a Boolean
formula of propositions and their probabilities from the
observations.

® BDD-EM algorithm (Ishihata et al., 2008)
e The EM algorithm: maximum likelihood estimation

» Binary decision diagrams (BDDs): compact expression of
Boolean formulas.

BDD-EM algorithm = BDD + EM algorithm



Problem setting

Example: F<=>X1V (X2 A —X3)

F :observable variable
Xi : basic variable (unobservable)
X1, X2 A—X3 : hypotheses (or constraints)

© We can observe a value f (€{0,1}) of F,
@ but cannot observe values of X1, X2 and X3.

® What we want to know is the most probable
hypothesis that account for the observation F.




Probabilities of hypotheses

Probability of a hypothesis is computed as the product

of probabilities of basic variables X1, X2 and X3.

Maximum likelihood estimation (MLE):

Find &,,., 6,,.,and &,,_,
maximizing the likelihood P(F=f) of the observation.




EM algorithm (Dempster et al., 1977)

Iterative MLE method from incomplete data in which values
of basic variables are unknown.

Iterate E- & M-steps until the likelihood saturates.



Binary decision diagrams (BDDs)
compressed expressions of Boolean formulas.

Fe X1V (X2A—X3)

4

X1 X2 X3

= B = B O O O O
Fa O ) = . O 0
o - O ~r O +r O

1 1

Truth table Binary decision tree



Probability computation on BDDs

On the truth table for F

Sum of prob. of rows representing
F=1 in the truth table for F.

X1 X2 X3

0 0 0
0 1

1 0

1 1
00

1 0 1
1 1 0
1 1 1

P P 21k O P O O™

P(F=1)

Q QO QX

o

+ + +

O x1-0 @ x2-1 O x3-0

o

~

o

o

N R~

Q QX

~
NS

X2=0

N

On the BDD for F

Sum of prob. of paths representing
F=1 in the truth table for F.




Expectation computation on BDDs

Computation of expectations E[Xi=1,F=f] is carried out
by forward and backward probabilities for each nodes.

1. Forward probabilities F g[Xi]
Sum of probabilities of paths
from the root node to Xi.

2. Backward probabilities B g[Xi]
Sum of probabilities of paths from
Xi to the terminal 1.




Forward and backward probabilities

Forward probabilities Backward probabilities

FIXI] =1 X1

FAX2] =6,y | X2

F 9[)(3] =5X1=0‘9X2=1 X3‘

F 9[ 1] = HX] =]
+6y1-00x2-19x3-0




Forward and backward probabilities

Forward probabilities Backward probabilities
B X1] = Oy;_;
FadX1] = 1 +Ox3-00x2-10x1-0

Bl
““‘? 4
b.

FdX2] = By, @

-\

F9[X3] = 9)(1 =0<9)(2= 1 | '
Fd1] = By, 0 %

BAX2] = Ox3-p0xz-1

BH[X3] — ‘9)(3:0
Blll=1
+6y1-00x2-19x3-0 all




BDD-EM algorithm

E-step : Compute conditional expectations

E(Xi=x|F=f] := E[Xi=x,F=f] / P(F=f)
P(F=f) = B[X1]

4
E[X1=1,F=f] = F p[X1=1] 67)(1:1 B 5[1] N\

E[X1=0,F=f] = F ,[X1=0] &,,_,B 5[X2]

M-step: Update probabilities
E[X1=1,F=f]

8., =

E[X1=1,F=f] + E[X1=0,F=f]




The current abductive system

Background Knowledge

Hypotheses

(conjunctions

SOLAR of literals)

BDD-EM

Best Hypotheses



Hypothesis evaluation

B Given a numerous number of hypotheses,
m Which hypotheses are most likely?
m Statistical hypothesis selection

® Probabilistic model specifying a distribution of
hypotheses

® Evaluation by the BDD-EM algorithm

® Initial experiments for inhibitory effects using
datasets for (Tamaddoni-Nezda et al., 2006)



Selecting the best explanations

B Many explanations: HY, H@2) . H(66)

BAH) |= O, A0, A ...
© All hypotheses logically explain the observations but
we wish to choose the best one.

B \We give probabilities to those atoms appearing in
H) and B, and select H') that maximizes P(B A HW)

B We learn probabilities (= parameters 6) from the
disjunction of explanations as well as B, i.e.,

0" = argmax, P((HY v...v HK)y A B | 6)



Proof-theoretic approximation

B Ground instances of B is infinite.
MO : observations
BHU : an explanation abduced from B and O
BBl : subset of B relevant to H) and O, i.e., proof:

BOA HI) | O

B We learn probabilities (= parameters 6) from the
disjunction of explanations and their proofs, i.e.,

0" = argmax, P((HY v...v HX) A ( BY) A...ABW) | 6)



Experiments

Pathway Model
(Qualitative)
Pathway Data

Observations (KEGG / NMR)

Background Knowledge

Hypotheses
(conjunctions
of literals)

BDD-EM

Best Hypotheses



Prediction of inhibitory effects of a toxin
(Tamaddoni-Nezda et al., Machine Learning 2006)

@ Goal: Find inhibitions in a metabolic pathway
B Approach: Abduction (Inverse Entailment by SOLAR)

® Background Theory B

- Causal rules (4) and Integrity constraints (4)
- Chemical reactions (76) in a metabolic network from KEGG

® Observations (Input) E:

- Changes (up/down) of metabolites’ concentrations (20*5=100)

® Hypothesis (Output) H:

- A set (conjunction) of literals whose predicate is “inhibited”



Logical modeling of Inhibition
(Tamaddoni-Nezda et al, Machine Learning 2006)

Toxi

A\

Fnz concentration(P, down) <— reaction(S, Enz, P), inhibited(Enz, S, P).

. concentration(S, up) < reaction(S, Enz, P), inhibited(Enz, S, P).
st - pl (s, up) ( ) ( )

OXI

Enz concentration(P, down) <— reaction(S, Enz, P),
\L . \l, —inhibited(Enz, S, P), concentration(S, down).
P

TOXi
‘gﬁ concentration(P, up) <~ reaction(S, Enz, P),
Enz —inhibited(Enz, S, P), concentration(S, up).

TS > PT




Metabolic pathway representation

m Enzyme Reactions: 76
m Metabolites: 30

— Extracellular: 20
— Intracellular: 10

[-2-aminocadipate T ----------------------------------------- |-lysine
2-oxe-glutarate l *************** ISOCILIAtE . eeeecceeeemnnany
e citrate-f..... trans aconitateT
i succinate i ~~~~~~~~~~~~~~ fumaratel taurlneT """"""""" .
- hiPphratel nmndr |1na e |- 4 ----- cH:ruIIlne
formatel arglnlne """""" ornlthlne
urea
formaldehyde ----------- sarcosing creatlne T
T T methylamme creatining .
glucose acetate | : R
: e i tmao
E— N acryloyl coa -----oeee Iact_ateT
Pyruvate ......................:............... emmmmmemmsmmmm——— i :
bEta alanlne?::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::...............i



An output by SOLAR

Observation
conc. up:| 1 |
, ﬁ-DXE‘: :g| utarate --f----ceeeeveeenn Is0C i-i:rate

conc. dowr: :
Hyvpothesis N S ———— “ei trans_mnitmT

I_l_aminoadipate ...T ......................................... |_|¥5inE

i succinate i .............. fumaratel taurlneT ------------ .
: hleuratel nmncT rina Treneee |- 4 ----- c|trullme
formatel arglnlne """""" Qr'l'llthll'IE
urea
formaldehyde ------------- sarcosing ~ creatine T
T T methylamme creatini
glucose | acetate |l :
: tmao
geensmsnsnsssnnnnennens a-n:r}rlo}rl-cna |act_ateT

F_F!:uvate ..................................... T .....................E

beta-alanine [ et



Another output by SOLAR

Observation
conc. up:| ] o~ o isocitrate

conc. down: | ;
HVDOthESIS _. ................................................... cig_ratei...h_h_ trans-aconitateT

I_l_aminnadipate ...$ ......................................... |-|}F5iI'IE

i succinate i -------------- fumaratel taurlnET """""""" :
hlppuratel nmncT r1na o N— _4 ..... cmrullme
formatel arglnlne """""" nrnlthlne
" urea : :
for maldeh}!de sarcnsin_e e CFEALINE T
T T meth}rlamme creatini
glucose | acetatel :
: tmao
gressesssssssnnnennanns ahryloyl-coa |act_ateT

F_yruvate S —————— | R ——— .......................E : F
beta-alanine?::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::...............i



There are much more ...

® SOLAR found 66 minimal explanations for 20
observations in Time = 8 hrs (and 5,145 minimal
explanations in Time = 96 hrs).

® BDD-EM ranked all hypotheses according to
their probabilities.

® The top 7 in Time = 8 hrs satisfy two desirable
properties suggested by biologists.

® The worst 22 do not satisfy them.



Ranking of 66 hypotheses

9.00E-01

7.00E-01

5.00E-01

3.00E-01

1.00E-01

-1.00E-01
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Statistics

=8 T=24 | T=48 T=72 T=96

df 5 -len 15 66 0 0 22 0
-df 5 -len 16 - 0 0 - 0
-df 5 -len 17 - 1638 3738 - 5145
SOLAR time 6m| 2h34m 3h 5m 5h
SOLAR best #13| #255| #1274 #10 #967
its prob 0.85 0.94 1.0- 1 1.0-
Progol best #12 #14| #1043 #13 #865
its ranking 13 296 3713 20 862
its prob 0.16| 0.003 0 0 0
ROBDD size 384 678| 6226 335 2224
BDDEM time oh49m | 14h40m| 134h7m 4h1im| >50h48m




Related work

* PRISM (Sato & Kameya) — statistical abduction with EM
* ProblLog (De Raedt et al., 2007) — prob comp on BDD

e (Simon & del Val, 2001) — consequence finding on
/BDDs

* (Hsuetal., 2007) — EM for finding a solution in CSP

* Abduction in Systems Biology: (Zupan et al., 2003),
(King et al., 2004), (Tran et al., 2005) — incomplete
hypothesis finding, no statistical evaluation of
hypotheses



Yet another system

(Propositional)
Background Knowledge

Hypotheses

SAT/ASP "

BDD-EM

Best Hypotheses




Conclusion

* A novel abductive architecture with

— complete hypothesis generation (SOLAR)

— statistical hypothesis evaluation (BDD-EM)

e Allows full clausal theories for background knowledge
— cyclic dependencies

— disjunctions

* An alternative way to select best hypotheses: BDD-EM
with conditional distribution (Sato et al., ILP 2009)

* Application to hypothesis finding in Systems Biology



Automated hypothesis-finding

in Systems Biology
(Synnaeve et al., 2009)

Background Knowledge

Observations

Pathway Model
(Qualitative / Kinetic)

Pathway Data
(from lab + KEGG)

: Hypotheses
Hypothesis Finder

SOLAR

Hypothesis Evaluator

BAH =0

hypothesis ranking

Best Hypotheses

Pathway
Analysis
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In this talk

We propose a method to abduce rules, which enables
us to infer hypotheses

— representing multiple missing causal relations,

— accounting for multiple observations simultaneously,

— containing new predicates.

The method provides a new way of induction based on
full-clausal abduction.

Combination of rule abduction and fact abduction is
possible by way of conditional query answering.
A motivating example is taken from cognitive modeling, but

the method can be applied to scientific discovery from
network data, e.g., biochemical pathways.



Motivation

Prof. F experienced sudden skill improvement of cello playing
after his final lecture concert.

It was brought by simply keeping his right arm shut, that is, to
keep his elbow close to the body side.

This devise has increased the sound volume. Moreover, it
keeps the bowing stable and maximum bow usage.

But, any finding cannot be applied unless it is explained.

Reproduction of good skill also requires explanation, which
makes the skill tolerant to situation changes.

The process of explanation will further lead to another
important finding. This is the same as scientific discovery.

Prof. F calls this “knack discovery”, and tried to formulate it.



Explaining skill improvement (1)

F’s skill improvement was brought by
keeping his arm close to the body side,
which resulted in increase of the
sound volume.

Background knowledge:
To increase_sound volume, we need
bow_close to_the bridge.

To keep bow vibration, we need (1)
stable bow movement, and (2)
smooth_bow_direction_change,
which needs flexible wrist.

increase_sound__
volume

bow close
to the
bridge

smooth bow
direction
change




Explaining skill improvement (2)

Increase_sound__

volume
The goal is increase _sound volume.
. . . . bow close
This goal has been empirically achieved to_the_
. bridge
by the stimulus

With the background knowledge,
should cause two
states: (1) stable bow movement and

smooth_bow __
direction__
change

(2) flexible wrist.

However, these relations do not directly
hold. Instead, introduction of the hidden
attention:
increase_upper_arm_impedence

can fill the gap of inference. Keep_one's.
arm_close




Logical Representation

increase_sound_volume & bow_close_to bridge.

bow_close to bridge < stable bow _movement A
smooth_bow_direction_change.

smooth_bow_direction_change &flexible wrist.

stable_bow_movement &
increase_upper_arm_impedance.

flexible wrist € increase_upper_arm_impedance.

increase_upper_arm_impedance ¢




Filling the gap of proofs

* In this program, the goal:

?- increase_sound_volume.
will give the proof in the right.

e The | |partisaugmented by
introducing the hidden
attention .

* The gap filling is the task of
abduction.

Increase_sound__
volume

bow close
to_the
bridge

smooth_bow __
direction__
change

keep_one’s__
arm_close




Causality

® To explain empirical rules, we need causal chains.
® (Causality can be represented in first-order predicate logic.
® Two predicates:

1. connected(X,Y): event X is directly caused by event Y.

2. caused(X,Y): there is a causal chain from event Y to event X.

caused(X,Y) €< connected(X,Y).
caused(X,Y) €& connected(X,Z) A caused(Z)Y).




Object and meta level representation

® Object domain (object level) increase_sound_
volume
increase_sound_volume < bow_close_to_bridge.
bow_close_to _bridge < E[JSV\t/hcellose
stable_bow_movement A e

smooth_bow_direction_change.

smooth bow
direction
change

Causal relations (meta level)
connected(increase_sound _volume,
bow_close_to_bridge).

connected(bow close_to_bridge,
stable_bow_movement).

increase_sound__

volume
connected(bow close_to_bridge, connected
smooth_bow_direction_change). bow close
to the
bridge

Each literal in the object level is connected
represented as a term in the meta level. co smooth bow

: directi
* No “AND” connective here... C.erﬁg'é’”




Abductive Reasoning

* Abduction augments sufficient conditions missing in

the premises (or background knowledge) to enable a
derivation of the observation.

* This fills the gap in a proof of the observation from the
premises.

* Inferred conditions are called hypotheses or
explanations.



Problem setting

1. Rule abduction:

To fill the gap between
keep_one’s_arm_close and
increase_sound_volume,

we augment the rule:

increase_sound__
volume

bow close
to_the_
bridge

smooth_bow _
direction__
change

inrease_upper_arm_impedence ¢
keep_one’s_arm_close.

keep _one’s
arm_close




Formalizing rule abduction

® g:agoal, s:aninput, r: a (hidden) node

B: connected(qg, r).
& connected(q, s).

That is, g is directly caused by r, but g is not
directly caused by s.

® g is not directly caused by s, but we know that
there is a causal chainto g froms. Thisis
given by an observation:

G: caused(g, s).

® SOLAR computes a hypothesis

H: connected(r, s),

given the abducibles {connected(_, )}.



V11

Representing logical connectives

connected(qg, s).

—connected(qg, s).

OR ) @ connected(g, s) V connected(h, s)

¥

@

AND connected(g, s) V connected(g, t)



Rule abduction example

B: connected(inc_sound, bow close to the_ bridge).

connected(bow_close to_the bridge, stable bow movement) V
connected(bow_close_to the bridge, smooth_bow direction_change).

connected(smooth_bow_direction_change, flexible_wrist).
connected(stable_bow_movement, increase_upper_arm_impedance).
connected(flexible wrist, increase _upper_arm_impedance).

& connected(inc_sound, keep_arm_close).

G: caused(inc_sound, keep_arm_close).
abducible: connected(_, ).

H: connected(increase upper _arm_impedance, keep _arm_close).



Obtained hypothesis

increase_sound_

volume
. bow _close_
H: to_the_
connected(increase_upper_arm_impedance, bridge

keep_arm_close).

smooth_bow _
direction__

* Inthe object level, this means: change

increase_upper_arm_impedance

& keep_arm_close.

e Therule:

keep _one’s__
arm_close

keep _one’s
N arm_close




Predicate invention

Predicate invention consists of the 2 steps:

Fill the gap in a proof of a causal chain by introducing
a new node = abduction by SOLAR producing
existentially quantified hypotheses

Give the meaning of the introduced node =»
identification of the new predicate



Formalizing node introduction

® g:agoal, s:aninput, r: a (hidden) node

B: < connected(g, s).
& connected(h, s).

That is, there are no direct causal relation
frOm s to g and frOm h to s, but there are @ ............................................

causal chains as the observations; O (s)

G: caused(qg, s).
caused(h, s).

® Given the abducibles {connected( , )},

SOLAR generates a hypothesis H: @ @ e

3 X. ( connected(g, X) \ connected(h, X) 6
/\ connected(X, s) ).

® Variable X represents a newly introduced node.



Representing different structures

B: <& connected(g, s).
& connected(h, s).

G: caused(qg, s).
caused(h, s).

Abducibles: {connected( , )}.
H with 2 intermediate nodes:

AX3Y. (connected(g, X) N\ connected(h, Y)

N connected(X, s) A\ connected(Y, s) ).

AX3Y. (connected(g, X) N\ connected(h, Y)

A connected(X, Y) A\ connected(Y, s) ).




Correctness of meta-level abduction

Lemma:

Let A(B) be the theory obtained by replacing every
connected(qg, s) appearing in B with the formula (g €< s).

If B F=rcaused(qg, s) then A(B) F=(g & s).

Theorem: Suppose the observation caused(q, s). If His an
abductive explanation of caused(g, s) with respect to B
and I, = {connected(_,_)}, then A(H) is a hypothesis s.t.

*A(B) U A(H) = (g < s), and
* A(B) U A(H) is consistent.




Correctness of meta-level abduction

Theorem:

Suppose the background knowledge K in the object level,
and let C(K) be the meta-theory representing the causal
graph associated with K, and define that

T(K) = C(K) U { caused(X,Y) & connected(X,Y).
caused(X,Y) & connected(X,Z) \ caused(Z)Y).}.
If g is reached from s in the causal graph of K by

augmenting a set E of direct causal relations, then C(E) is

an abductive explanation of caused(g, s) with respect to
t(K) and I,,.



Application to knack discovery

B: connected(inc_sound, bow close to the_ bridge).
connected(bow_close to_the bridge, stable bow movement) V
connected(bow_close_to the bridge, smooth_bow_direction_change).
connected(smooth_bow_direction_change, flexible_wrist).
& connected(inc_sound, keep_arm_close).
& connected(stable_bow_movement, keep_arm_close).
& connected(smooth _bow_direction_change, keep_arm_close).

G: caused(inc_sound, keep_arm_close).

® SOLAR generates 52 hypotheses when the maximum search depth is 15 and the
maximum length of produced clauses is 5. One of them is:

3 X. (connected(stable_bow_movement, X)
/A connected(flexible_wrist, X)
/A connected(X, keep_arm_close) ).



The obtained hypothesis

®

H: 3 X. (connected(stable_bow_movement, X)

A connected(flexible _wrist, X) @
/A connected(X, keep_arm_close) ).

keep_one’s_
arm_close

©)

increase_sound_
volume

bow close
to_the
bridge

smooth_bow _
direction__
change

keep_one’s_
arm_close




ldentifying new nodes

An obtained new node is meaningful if the direct
causal relations between this node and other
neighbors are conceivable.

A new node corresponds to a predicate in the object
level.

This new predicate may be unknown.

|dentification of a new predicate is nothing but
predicate discovery.



ldentifying new predicate

H: 3 X. (connected(stable_bow_movement, X)
A connected(flexible_wrist, X)
/A connected(X, keep_arm_close) ).

e What does this X mean?

* Anatomical clues are: armrest, wrist, forearm, elbow, upper
arm, brachial muscles (biceps, triceps) as parts of human body.

e Conditions associated with body parts are: positions and
postures of parts, activity of muscles, velocity and acceleration
of movement.

* Select a candidate from these, then substitute X with it, and
check its validity.

* The role of flash of inspiration



Abducing facts

New axioms:
caused(X, X) < abd(X). % for abducibles

caused(X, Y) & connected(X, Y).
caused(X, Y) & connected(X, Z) N\ caused(Z, Y).

The top clause:
& caused(g, X) N\ abd(X).
Note: abd plays the role of an answer predicate.

An integrity constraint that p and g cannot hold simultaneously:
& caused(p, X) N\ caused(q, Y) A\ abd(X) A\ abd(Y ).



Abducing facts and rules

* Abducing facts is nothing but answer extraction.

* Abducing facts and rules is then conditional query
answering.



Correspondence between object-level inference
and meta-level consequence finding

object-level inference top clause in SOLAR production field

proving rules —caused(q, s) none
abducing facts —caused(g,X)V —abd(X) —abd(f1), ..., —abd(fn)
predicting facts —caused(X, s) V ans(X) ans(_)
predicting rules none caused(_, )
abducing rules —caused(g, s) —connected(_,_)
abducing rules and facts —caused(g,X)V —abd(X) —connected(_,_)
—abd(f1), ..., —abd(fn)
predicting conditional facts —caused(X, s) V ans(X) —connected(_, ), ans(_)
predicting conditional rules none —iconnected(_, ),

caused(_, )



Physical skill discovery by abduction
(Furukawa & Kobayashi, 2008)

e Goals: Position shift with continuous vibrato

* Motion Integrity Constraints:

1. “Fixing the upper arm” and “Adduction/abduction of the
upper arm” contradict each other.

2. “Rapid movement” and “Big moment of inertia”
contradict each other.

e abducibles:

rapid_add_abd_of Shoulder,
active_upper_arm_mscls_strong,

in_exCyclo _of upper_arm, fix_upper_arm,
pronosupination_of Forearm, micro_add abd of Elbow



Scheme of Example Program

T




Object-level representation

% Causal rules

rapidPositionShift_with_vibrato & rapidPositionShift A vibrato.
rapidPositionShift < rapidAddAbdOfarm A flexExtOfElbow.
rapidPositionShift <& inExCycloOfUpperarm A pronosupinationOfForearm.
vibrato < fixUpperarm A microFlexExtOfElbow.
vibrato < pronosupinationOfForearm.
flexExtOfElbow & activelLeftUpperarmMsclsStrong.

% Integrity constraints
& pronosupinationOfForearm A activeLeftUpperarmMsclsStrong.

% Abducible predicates

abducible(rapidAddAbdOfarm). abducible(inExCycloOfUpperarm).
abducible(microFlexExtOfElbow). abducible(pronosupinationOfForearm).
abducible(fixUpperarm). abducible(activeLeftUpperarmMsclsStrong).



Meta-level representation

% Causal graph theory
connected(rapidPositionShift_with_vibrato, rapidPositionShift)

V connected(rapidPositionShift_with_vibrato, vibrato)
connected(rapidPositionShift, rapidAddAbdOfarm)

V connected(rapidPositionShift, flexExtOfElbow).
connected(rapidPositionShift, inExCycloOfUpperarm)

V connected(rapidPositionShift, pronosupinationOfForearm).
connected(vibrato, fixUpperarm) V connected(vibrato, microFlexExtOfElbow).
connected(vibrato, pronosupinationOfForearm).
connected(flexExtOfElbow, activelLeftUpperarmMsclsStrong).

% Integrity constraints
& caused(pronosupinationOfForearm, X) A abd(X)
A\ caused(activeLeftUpperarmMsclsStrong, Y) A abd(Y).

% Top clause: C1
& caused(rapidPositionShift_with_vibrato, X) A abd(X).



Production field
P1L=<-46d, |C|<5>

-Abd
— abd(rapidAddAbdOfarm). — abd(inExCycloOfUpperarm).
— abducible(microFlexExtOfElbow). — abd(pronosupinationOfForearm).
— abd(fixUpperarm). — abd(activeLeftUpperarmMsclsStrong).

The uniqgue new characteristic clause:

— abd(inExCycloOfUpperarm) V — abd(pronosupinationOfForearm).



Meta-level representation (modified)

% Causal graph theory
connected(rapidPositionShift_with_vibrato, rapidPositionShift)

V connected(rapidPositionShift_with_vibrato, vibrato)
connected(rapidPositionShift, rapidAddAbdOfarm)

V connected(rapidPositionShift, flexExtOfElbow).
connected(rapidPositionShift, inExCycloOfUpperarm)

V connected(rapidPositionShift, pronosupinationOfForearm).
connected(vibrato, fixUpperarm) V connected(vibrato, microFlexExtOfElbow).
%connected(vibrato, pronosupinationOfForearm).
connected(flexExtOfElbow, activelLeftUpperarmMsclsStrong).

% Integrity constraints
& caused(pronosupinationOfForearm, X) A abd(X)
A\ caused(activeLeftUpperarmMsclsStrong, Y) A abd(Y).

% Top clause: C1
& caused(rapidPositionShift_with_vibrato, X) A abd(X).



Production field

Po=<-4bd U {—connected(_, )}, |C| £5and |CN{—connected( , )}| £1>

-Abd
— abd(rapidAddAbdOfarm). — abd(inExCycloOfUpperarm).
— abducible(microFlexExtOfElbow). — abd(pronosupinationOfForearm).
— abd(fixUpperarm). — abd(activeLeftUpperarmMsclsStrong).

40 new characteristic clause including

— connected(vibrato, pronosupinationOfForearm) V
— abd(inExCycloOfUpperarm) V — abd(pronosupinationOfForearm).



Related Work

* Theorist (Poole, 1988) — rule abducibles (strong bias)

 metabolic graphs in Robot Scientist (Reiser et al., 2001) —
complicated style of “AND” handling:

G = (VE)

edge(X,Y) < reaction(A,B), ASX, Y=XUB.
path(X,Y) < edge(X,Y).
path(X,Y) < edge(X,Z), path(Z,Y).

* (Ray & Inoue, 2007) — no “AND” handling

* CF-induction (Yamamoto, Inoue & Doncescu, 2009) — predicate
invention is only realized by inverse resolution



Summary

Simple and powerful method for rule abduction.
Multiple observations are explained at once.

Allows full clausal theories for background knowledge.
“AND” connective can be dealt with disjunction.
Empirical rules are explained by hidden rules.

Predicate invention is realized as existentially quantified
hypotheses.

Induction is realized by meta-level abduction — SOLAR as an
inductive inference engine

Application to skill science as well as systems biology —
Future work: cancer diagnosis & therapy.
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