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Logic: rules

• Default: nothing  connected
• Unless connected by axioms

Probability：uncertainty

• Default: everything  connected
• Unless independence assumed

Real world

• Constraint-based
probabilistic modeling

• Independent random variables 
+ constraints
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We combine
probability distribution P(X1=x1,..,Xn=xn)  and
logical constraints KB over {X1,..,Xn} 

as a CBPM (constraint-based probabilistic model)
Pc (“X1=x1”,..,“Xn=xn” | KB)  where {“X1=x1”,..,“Xn=xn” } 
are independent boolean variables w.r.t. Pc s.t.
“X1=x1” is true if-and-only-if X1=x1

CBPMs logically unify MRFs, BNs and PCFGs:
P(X1=x1,..,Xn=xn) = Pc (“X1=x1”,..,“Xn=xn” | KB) 

We apply CBPMs to abduction and propose a new
EM algorithm for parameter learning



• MRF
• CRF
• Ising model
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Graphical models and CBPMs

Directed graphs Undirected graphs

• Bayes net
• HMM
• Naïve Bayes

D C

A BA

C

B D C

A B

Triangulated
graphs

Every P(x) = Z-1Πi Fi(xi) has an equivalent CBPM

Graphical models
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Defines a generation process of an output in a sample space
Bayesian approach such as LDA

prior distribution p(θ|α) distribution p(D|θ) data D
Given D, predict x by 

Probabilistic grammars such as PCFGs
Rules are chosen probabilistically in the derivation
Prob. of sentence  s :

Defining distributions by programs 
PHA[Poole’93], PRISM[Sato et al.’95,97], 
SLPs[Muggleton’96,Cussens’01], P-log[Baral et al.’04], 
LPAD[Vennekens et al.’04], ProbLog[De Raedt et al.’07]…
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p(τ)



PR I S M

Tool for generative modeling 
in machine learning

Probabilistic  extension of 
Prolog for complex data
(beyond  traditional tabular 
data)

has a probabilistic possible 
worlds semantics named 
“distribution semantics”

Top-events

Clauses
(If-then, recursion)

Simple events by dice throwing
with statistical parameters θ

Programming
(Sampling)

EM learning of θ
(Search)
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has unified probability 
computation/parameter learning 
mechanisms based on PPC

Equal time complexity guaranteed 
for BNs, HMMs and PCFGs

Advanced mechanisms such as 
VB and DAEM available
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General:  graphical/rule-based models are CBPMs
Uniform:  every variable is boolean

all variables are independent
Pc() exists for infinitely many variables
sum-product  computation (on BDDs) possible

Expressive:
φ, KB in Pc(φ | KB)  can be first-order (infinite domain)
value-wise dependency (CSI in BNs, etc) 
Maybe less efficient  in known models (BNs,PCFGs,..)

We apply CBPMs to statistical abduction, which 
statistically infers the best explanation E for observation O, 
using KB such that  E ∧KB is consistent and E∧KB |- O
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Observation: metabolite concentration (20 observations)
concentration(‘1-2-aminoadipate’,up,8),
concentration(‘succinate’,down,8) ,…

KB: what we know about the network
reaction(‘1-2-aminoadipate’,2.6.1.39’,’2-oxo-glutarate’),…
concentration(Y,up,T) 

reaction(X,Enz,Y) ∧￢inhibited(Enz,X,Y,T),…
Cyclic dependencies (loops in the network)

Explanation: conjunction of abducibles (inhibition states)
24 abducibles (inhibited atoms) assumed, 66 explanations found  

(each is a conjunction of 15 abducibles)  by SOLAR such that 
Et ∧KB |- O1 ∧ … ∧ O20

E1 = inhibited(2.6.1.39,’l-2-aminoadipate’,’2-oxo-glutarate’,8) ∧…
E2 ,…,E66
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We wish to select the best explanation from multiple 
explanations E1,...,EN : Eh ∧KB |- O

Assume Pc(・|θ) that makes all atoms independent  
with probabilities θ

Select  Ebest = argmaxE Pc(E|KB∧O,θ)

Learning θ from O in machine learning
When correct answer Eh  is known (supervised):

θ∗ = argmaxθ Pc(Eh |KB∧O,θ)
Correct answer unknown (unsupervised):

θ∗ = argmaxθ Pc(O|KB,θ)
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Unsupervised learning :
O(t) : observations (1 ≤ t ≤T)
E(t) : disjunction of explanations abduced from KB(t)

and O(t), i.e. E(t) = E1
(t) v...v EN

(t) s.t. for h (1 ≤ h ≤ N)

Eh
(t) ∧ KB(t) |- O(t)

KB(t) : set of clauses in KB used in the proof above

We learn parameters θ by MLE applied to the O(t)’s

L(θ)  = Πt Pc(E(t) |KB(t),θ)
θ∗ = argmaxθ L(θ)

using the EMC (EM with constraints) algorithm
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Repeat
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EMC is applicable to log-linear models in general
Abduction infers the best explanation E for observation 

O, using KB s.t. E ∧ KB |-* O  and E ∧ KB consistent
EMC provides a generic parameter learning algorithm for 

statistical abduction

EMC applicable
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L ⇔ A∨ (B ∧ C)
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KB:
rich(X) smart(X) ∨

∃Y (friend(X,Y) ∧ rich(Y) ∧ generous(Y))
friend(a,b) 
friend(b,c) 
generous(b) 
friend(X,Y) friend(Y,X)  

Smart people are rich
People are rich  iff they have a rich and generous friend
“b” is generous,  “a” and “b” are friends and so are “b” and “c”
but we don’t  know about “a” and “c”

The state of rich(a) and rich(c) observed several times like a(yes:20 / no:10), 
c(yes:1 0/ no:20)  from which we wish to know if “b” is rich
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KB:  rich(X) smart(X) ∨
∃Y (friend(X,Y) ∧ rich(Y) ∧ generous(Y))

friend(a,b) 
friend(b,c) 
generous(b) 
friend(X,Y) friend(Y,X)  

Notice  KB |- rich(a) rich(b)
Hence,   Pc(rich(a) rich(b) | KB) = 1
So  Pc(rich(a) | KB) >= Pc(rich(b) | KB)
Similarly Pc(rich(c) | KB) >= Pc(rich(b) | KB)
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CBPMs (constraint-based probabilistic models)
Pc (φ | KB) are proposed in which independent boolean
variables are constrained by KB

They cover both graphical models (BNs,MRFs) 
and generative models (PCFGs,PRISM)

The EMC (EM with constraints) algorithm is proposed 
for the parameter learning of CBPMs

EMC works for log-linear models in general
Unlike the double-loop IM algorithm for PCLP 

[Riezler’98], EMC is a single-loop algorithm 
For efficiency, it is implemented on BDDs (binary 

decision diagrams) as the BDD-EMC algorithm
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