Finding a Steady State on a Pathway via Translation into SAT Problem.

Takehide Soh*1

Katsumi Inoue ${ }^{* 2, * 1}$
*1 The Graduate University for Advanced Studies (SOKENDAI)
*2 National Institute of Informatics

$$
\begin{gathered}
\text { 2009.9.29 } \\
\text { Workshop@LRI }
\end{gathered}
$$

My previous and current research.

Translation

Two-dimensional strip packing problem (2SPP)

Definition of 2SPP

Input. A set $\boldsymbol{R}=\left\{\boldsymbol{r}_{1}, \ldots, r_{n}\right\}$ of \boldsymbol{n} rectangles. Each rectangle $\boldsymbol{r}_{\boldsymbol{i}} \in \boldsymbol{R}$ has a width $\boldsymbol{w}_{\boldsymbol{i}}$ and a height $\boldsymbol{h}_{\boldsymbol{i}}\left(\boldsymbol{w}_{\boldsymbol{i}}, \boldsymbol{h}_{\boldsymbol{i}} \in \mathbb{N}\right)$. A Strip of width $\boldsymbol{W} \in \mathbb{N}$.

Constraints. Each rectangle cannot overlap with the others and the edges of the strip and parallel to the horizontal and the vertical axis.

Question. What is the minimum height such that the set of rectangles can be packed in the given strip?

Two-dimensional orthogonal packing problem (20PP)

Definition of 2OPP

Input. A set $\boldsymbol{R}=\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{\boldsymbol{n}}\right\}$ of \boldsymbol{n} rectangles. Each rectangle $\boldsymbol{r}_{\boldsymbol{i}} \in \boldsymbol{R}$ has width $\boldsymbol{w}_{\boldsymbol{i}}$ and height $\boldsymbol{h}_{\boldsymbol{i}}\left(\boldsymbol{w}_{\boldsymbol{i}}, \boldsymbol{h}_{\boldsymbol{i}} \in \mathbb{N}\right)$. A Strip of width \boldsymbol{W} and height $\boldsymbol{H}(\boldsymbol{W}, \boldsymbol{H} \in \mathbb{N})$.

Constraints. Each rectangle cannot overlap with the others and the edges of the strip and parallel to the horizontal and the vertical axis.

Question. Can the set of rectangles be packed in the given strip?

Ex. A result of 2SPP (HT08)

My previous and current research.

Translation

KEGG (http://www.genome.jp/kegg/) Pathway Data

Previous Approaches

- A method which uses Weighted Max-SAT problem to find a steady states of a given pathway.
- A. Tiwari, C. Talcott, M. Knapp, P. Lincoln, and K. Laderoute, "Analyzing Pathways using SAT-based Approaches", AB 2007.
- Pathway complement with Answer Set Programming
- O. Ray and K. Whelan and R. King, "A nonmonotonic logical approach for modelling and revising metabolic network", CISIS, 2008.
- T. Schaub and S. Thiele, "Metabolic Network Expansion with Answer Set Programming", ICLP 2009.
- Pathfinding method with a graph search.
- D. Croes, F. Couche, S. J. Wodak and J. V. Helden, "Inferring Meaninguful Pathways in Weighted Metabolic Networks", J. Molecualr Biology, 2006.

Previous Approaches

- A method which uses Weighted Max-SAT problem to find a steady states of a given pathway.
- A. Tiwari, C. Talcott, M. Knapp, P. Lincoln, and K. Laderoute, "Analyzing Pathways using SAT-based Approaches", AB 2007.

Goa

- To find steady states which consume input compounds and provide target compounds.

Tiwari et al. 2007

[Tiwari et al. 2007]

- Each propositional variable represents whether the reaction is "activated" or "inactivated".
- Translate a given pathway into a Weighted Max-SAT problem.
- All translation rules are given by soft constraints. Sometimes it makes wrong ordering of outputs.

Tiwari et al. 2007

- Models of a propositional formula can be represented by a set of propositional variables.
- Each model is represented by the set of propositional variables to which it assigns true.
- Each propositional variable represents whether the reaction is "activated" or "inactivated".
- Translate a given pathway into a Weighted Max-SAT problem.
- All translation rules are given by soft constraints. Sometimes it makes wrong ordering of output paths.

The Method of Tiwari et al.

Example

The Method of Tiwari et al.

- Obtained path:
- $b_{1}, b_{2}, b_{4}, b_{5}(74)$
- $b_{1}, b_{3}, b_{4}, b_{5}$ (74)
- b_{1}, b_{2}, b_{5} (73)
- b_{1}, b_{3}, b_{5} (73)
- $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}(70)$

The Method of Tiwari et al.

- Obtained path:
- $b_{1}, b_{2}, b_{4}, b_{5}$ (74)
- $b_{1}, b_{3}, b_{4}, b_{5}(74)$
- b_{1}, b_{2}, b_{5} (73)
- b_{1}, b_{3}, b_{5} (73)
- $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}(70)$

The Method of Tiwari et al.

- Obtained path:
- $b_{1}, b_{2}, b_{4}, b_{5}$ (74)
- $b_{1}, b_{3}, b_{4}, b_{5}$ (74)
- b_{1}, b_{2}, b_{5} (73)
- b_{1}, b_{3}, b_{5} (73)
- $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}(70)$

The Method of Tiwari et al.

- Obtained path:
- $b_{1}, b_{2}, b_{4}, b_{5}$ (74)
- $b_{1}, b_{3}, b_{4}, b_{5}$ (74)
- b_{1}, b_{2}, b_{5} (73)
- b_{1}, b_{3}, b_{5} (73)
- $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}(70)$

$$
\xrightarrow[b_{3}]{b_{1}}{ }_{\mathrm{c}}^{b_{2}} \stackrel{\mathrm{~b}}{b_{4}} \stackrel{b_{5}}{ } \mathrm{e}
$$

The Method of Tiwari et al.

- Obtained path:
- $b_{1}, b_{2}, b_{4}, b_{5}$ (74)
- $b_{1}, b_{3}, b_{4}, b_{5}$ (74)
- b_{1}, b_{2}, b_{5} (73)
- b_{1}, b_{3}, b_{5} (73)
- $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}(70)$

Proposal

- Obtained Model
- $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$

Preliminaries

- If a reaction $\mathbf{r}_{\mathbf{i}} \in \mathbf{R}$ is activated (or inactivated), then propositional variable $\mathbf{b}_{\mathbf{i}} \in \mathbf{B}$ is True (or False).
- $R\left(r_{i}\right)$ is a mapping from a reaction r_{i} to the set of chemical compounds which are needed to activate the reaction r_{i}.
- $P\left(r_{i}\right)$ is a mapping from a reaction r_{i} to the set of chemical compounds which are provided by the reaction r_{i}.
- $R^{-1}(s)$ is a mapping from a chemical compound s to the set of reactions which consume the chemical compound s as a reactant.
- $P^{-1}(s)$ is a mapping from a chemical compound s, to the set of reactions which provide the chemical compound s as a product.
- Let F be a mapping such that F : B \rightarrow \{true, false $\}$.

Rules for the Translation

F is called a valid assignment if it satisfies the following Rules:

- Rule 1

$$
s \in R\left(r_{i}\right) r_{j} \in P^{-1}(s)
$$

- Rule 2
$\bigwedge_{s \in R\left(r_{i}\right)}\left(\bigvee_{r_{j} \in P^{-1}(s)} b_{j} \wedge \bigwedge_{r_{j} \in R^{-1}(s), j \neq i} \neg b_{j}\right) \Rightarrow b_{i}$
- Input compound
- Target compound

Finding a steady state on a given pathway with SAT

- Let $r_{\text {in }} \in \mathbf{R}$ be a reaction which consumes the input compound, $r_{\text {out }} \in \mathbf{R}$ be a reaction which provide the target compound.
- Let Ψ be a conjunction of a formula obtained by the rule 1, 2 and an unit clause $b_{\text {in }}$.

$$
\Psi=\Psi_{1} \wedge \Psi_{2} \wedge b_{i n}
$$

- We can find the steady state which consume $b_{\text {in }}$ and provide $b_{\text {out }}$ by the following procedure:

1. To find minimal models which satisfy the formula Ψ.
2. To pick up the model which include the propositional variable which corresponds to $b_{\text {out }}$.

Finding minimal models with SAT solver [Koshimura et al. 2009]

- Models of a propositional formula can be represented by a set of propositional variables.
- Each model is represented by the set of propositional variables to which it assigns true.

Definition 1

Let P, M_{1} and M_{2} be sets of propositional variables. Then, M_{1} is said to be smaller than M_{2} with respect to P if $M_{1} \cap P$ is a proper subset of $M_{2} \cap P$.

Definition 2

Let A be a propositional formula, P be a set of propositional variables, and M be a model of A. Then, M is said to be a minimal model of A with respect to P when there is no model smaller than M with respect to P

Finding a steady state on a given pathway with SAT

- Let $r_{\text {in }}$ be a reaction which consumes the input compound, $r_{\text {out }}$ be a reaction which provide the target compound.
- Let Ψ be a conjunction of a formula obtained by the rule 1, 2 and an unit clause $b_{i n}$.

$$
\Psi=\Psi_{1} \wedge \Psi_{2} \wedge b_{i n}
$$

- We can find the steady state which consume $b_{\text {in }}$ and provide $b_{\text {out }}$ by the following procedure:

1. To find minimal models which satisfy the formula Ψ.
2. To pick up the model which include the propositional variable which corresponds to $b_{\text {out }}$.

Finding minimal models with SAT solver [Koshimura et al. 2009]

Theorem 1

Let A be a propositional formula, P be an atom set, and M be a model of A. Then, M is a minimal model of A with respect to P iffa formula:
$A \wedge \neg\left(a_{1} \wedge \ldots \wedge a_{m}\right) \wedge \neg b_{1} \wedge \ldots \wedge \neg b_{n}$
is unsatifiable,
where $\left\{a_{1}, \ldots, a_{m}\right\}=M \cap P,\left\{b_{1}, \ldots, b_{n}\right\}=\bar{M} \cap P$.
Ext.

$$
\begin{aligned}
& P=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}, M=\left\{p_{1}, p_{4}, c, d\right\} \text { are given, } \\
& A \wedge \neg\left(p_{1} \wedge p_{4}\right) \wedge \neg p_{2} \wedge \neg p_{3}
\end{aligned}
$$

Procedure for finding a objective model.

(1) begin
(2) while (solve(Ψ))
(3) $\quad \Psi_{\text {verify }}=\Psi \wedge F_{1} \wedge F_{2}$;
(4) if (!solve $\left.\left(\Psi_{\text {verify }}\right)\right)$
(5)
(5)
(6)
(8)
(9)
if $\left(\left\{b_{\text {out }}\right\} \subset M\right)$
Found objective model
end
end if
(10) end while
(11) end

Experiment (1)

- Our method generate 3 steady states which correspond to the result by [Schuster et al., 2000].

Experiment (2)

- Our method generate 3 steady states which correspond to the result by [Schuster et al., 2000].

Experiment (3)

- Our method generate 3 steady states which correspond to the result by [Schuster et al., 2000].

Experiment (4)

- Combining the method to the KEGG databese.
- To evaluate our method with a more large network.
- Result
- Found 4 steady states on "sce00010" which is available on KEGG Database.

Conclusion

- We found a steady state on glycolysis pathway via finding minimal models of the translated SAT problem.
- One advantage of this method is to be able to flexibly add a biological rules compared to other search methods (ex. graph search).
- To apply this SAT-based method to other pathway analysis such as path-finding, pathway completion.
\square

