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The Cell
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1 Transcription

2 Post-transcription

3 Migration of the mRNA

4 Translation

5 Post-transl./Folding

6 Binding of an effector
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Metabolic Pathways

A metabolic pathway: Glucolysis and

Pentose Phosphate of Escherichia Coli

Graphs of interconnected

reactions

Glucose entersATP ⇒ADP G6P

Chain of reactions to take

energy and store it in

ATP/NADH (2 per molecule of

Glucose)

Acetyl CoA is at the origin of

the Krebs cycle (part of cellular

respiration)
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Abduction & Induction

ILP strength lies in the fact that learnt rules/clauses are directly

useable in a logical program.

Induction & Abduction

From Background Knowledge ∧ Examples

� Find Hypotheses satisfying B ∧H |= E and B ∪H 2 ⊥
Abduction: ground (or ∃ quant.) formulaes, direct causes of

observations that are called explanations.

Induction: universally (∀) quantified formulaes (small B), more

general hypotheses.

R. J. Mooney: Integrating abduction and induction in machine learning.

IJCAI97 Workshop on Abduction and Induction in AI, 37–42 (1997).

Flach P. A., Kakas A. C.: Abduction and induction: Essays on their

relation and integration. Kluwer (2000).
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Inverse Entailment (Consequence Finding)

ILP is interested in the formulas derived from B ∧ ¬E that are not

derived from B alone.

Inverse Entailment

The previous definition is equivalent to B ∧ ¬E |= ¬H and

B 2 ¬H.

We can then use a consequence finding procedure (resolution,
tableaux) to find ¬H. In Inoue’s lab, it is now done with SOLAR.

Inoue, K.: Linear resolution for consequence finding. Artificial

Intelligence 56:301-353 (1992).

Inoue K.: Induction as consequence finding. Machine Learning,

55:109–135 (2004).

Nabeshima H., Iwanuma K., and Inoue K.: SOLAR: A Consequence

Finding System for Advanced Reasoning. TABLEAUX 2003, LNAI, Vol.

2796, pp. 257-263, Springer (2003).
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Previous Works

Why? Inhibitionary effects of toxins on chemical reactions.

How? Metabolic flux analysis through induction with rules that

explain the concentration changes (up or down) between 2

experiments, with and w/o toxin.

Doncescu, A., Inoue K., Yamamoto Y.: Knowledge Based Discovery in

Systems Biology Using CF-Induction. LNCS N.4570, pages 395-404

(2007).

King R.D., Whelan K.E., Jones F.M., Reiser P.G.K., Bryant C.H.,

Muggleton S.H., Kell D.B. & Oliver S.G.: Functional genomic hypothesis

generation and experimentation by a robot scientist. Nature 427,

247-252 (2004).
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Limits of The Previous Models

No models for dynamic transitions

Not enough information to be precise enough:
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Dealing With More Knowledge
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Precision - Generality Trade-off
Kinetic Modeling

Be More Precise, Avoid Overfitting

Generalization

Learning

Complexity of the Hypothesis space

Errors

currently

evolution
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Precision - Generality Trade-off
Kinetic Modeling

Chemical Kinetic and Michaelis-Menten Equation

Speed of a one-way reaction

v = #{reactions per second catalyzed per mole of the enzyme}
sS → pP ⇒ v = −1

s
d [S]
dt = 1

p
d [P]
dt
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Simplification of Michaelis-Menten Equation

E + S 
k1
k−1
ES →k2 E + P

Michaelis−Menten equation :
d [P]

dt
= Vm

[S ]

[S ] + Km
(1)

d [P]

dt
−→disc.time

[P]T+timestep − [P]T
(T + timestep)− T (2)

(1) and (2) =⇒ Vm
[S ]T

[S ]T + Km
≈

[P]T+timestep − [P]T
(T + timestep)− T

We chose to work with a constant timestep :

=⇒ [P]T+1 = Vm
[S ]T

[S ]T + Km
+ [P]T (3)
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My Work

Michaelis-Menten
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Data
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HUP: HMM Utility Program

A work from Yoshitaka Kameya.

Clustering method that uses Continuous

Hidden Markov Model + Bayesian Score: Discretization

KEGG

Experimental
Data

kegg2symb
Symbolic
pathway

py-tsdisc

HUP 

SOLAR 

Discretized
data

Rules, here a
kinetic model

BDD-EM 

Hypotheses

Ranked
hypotheses

Conversion

: append

# time, value
 0, 10
 0.1, 4
 0.2, 1

HUP
### levels

2
1
0
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“prepare.py” - Wrapping HUP

Adapts the entry file (concentration, speed,

acceleration) and feed it to HUP with the

right options, calculates subsets for time

discretization and then write the solar-like file.
Discretization

KEGG

Experimental
Data

kegg2symb
Symbolic
pathway

py-tsdisc

HUP 

SOLAR 

Discretized
data

Rules, here a
kinetic model

BDD-EM 

Hypotheses

Ranked
hypotheses

Conversion

: append

HUP

prepare
# time, C(A), C(B)
 0, 10, 2
 0.1, 6, 4
 0.2, 5, 5

conc(A, 3, 0)
conc(B, 1, 0)
conc(A, 2, 1)
conc(B, 2, 1)

options12 metabolites

30
00

 ti
m

e 
sa

m
pl

es

12 metabolites

3 tim
e steps

12*3 =  36 "conc" predicates

For the presented results on E.Coli, I remarked that the values of Km

and concentration were very sparse ⇒ we took the log.
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Logic Kinetic Modeling

If we make the approximations for extreme values in:

[P]T+1 = Vm
[S]T

[S]T + Km
+ [P]T

Michaelis-Menten

KEGG

Experimental
Data

kegg2symb
Symbolic
pathway

py-tsdisc

HUP 

SOLAR 

Discretized
data

Rules, here a
kinetic model

BDD-EM 

Hypotheses

Ranked
hypotheses

Conversion

: append

With only 3 levels, as we have in our discretization of E.Coli experiments, we

will get the following simple rules:

[S]� Km
reaction(S, P, Km) ∧ concentration(S, 0, 0) ∧ concentration (Km,
2, 0) ∧ concentration(P, L, 0) → concentration(P, L, 1)

[S] ' Km
reaction(S, P, Km) ∧ concentration(S, 1, 0) ∧ concentration(Km,
1, 0) ∧ concentration(P, L, 0) → concentration(P, L, 1)

[S]� Km
reaction(S, P, Km) ∧ concentration(S, 2, 0) ∧ concentration(Km,
0, 0) → concentration(P, 2, 1)
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The Whole Process

Michaelis-Menten

Discretization

KEGG

Experimental
Data

kegg2symb
Symbolic
pathway

py-tsdisc

HUP 

SOLAR 

Discretized
data

Rules, here a
kinetic model

BDD-EM 
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Ranked
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Conversion

: append
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Ranking the hypotheses with BDD-EM

Hyp. no. Probability Abducted concentrations levels at T=0

H130 ≈ 1.0 pg3: 2, adp: 0

H392 4.879.E−1 sed7p: 0, e4p: 2, f6p: 0, pg3: 2, adp: 0

H216 7.567.E−2 pg3: 2, adp: 0, pep: 0, atp: 2, pyr: 2

H196 6.930.E−2 fdp: 0, dhap: 2, gap: 0, pg3: 2, adp: 0

H356 5.621.E−2 pg3: 2, adp: 0, g6p: 1, nadph: 1

H94 3.692.E−2 sed7p: 0, e4p: 2, f6p: 0, pg3: 2, adp: 0,

pep: 0, atp: 2, pyr: 2

H251 3.497.E−2 glucose: 2, adp: 0, pg3: 2

H286 3.382.E−2 sed7p: 0, e4p: 2, f6p: 0, fdp: 0, dhap: 2,

gap: 0, pg3: 2, adp: 0

H405 2.796.E−2 pg3: 2, adp: 0, pep: 2, atp: 0

H167 2.743.E−2 sed7p: 0, e4p: 2, f6p: 0, pg3: 2, adp: 0,

. g6p: 1, nadph: 1

.

H378 1.974.E−8 glucose: 2, adp: 0, sed7p: 0, e4p: 2, f6p: 0,

fdp: 0, dhap: 2, gap: 0, pg3: 2, pep: 0, atp: 2,

pyr: 2, g6p: 0, nadph: 2, pg6: 1

KEGG

Experimental
Data

kegg2symb
Symbolic
pathway

py-tsdisc

HUP 

SOLAR 

Discretized
data

Rules, here a
kinetic model

BDD-EM 

Hypotheses

Ranked
hypotheses

Conversion

: append
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possible 
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Databases
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Generator
(SOLAR)

Hypotheses Evaluator 
(BDD-EM)

Background 
knowledge

Observations

Most probable 
hypotheses

Discretization

Automated

Enhancer
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Conclusion: What’s left?

To be able to deal with any pathways for which we would have

concentrations and michaelis-menten constants. 2 problems:

1 more than 3 levels

A proof of concept has been made with a compute predicate

working in the Java part of SOLAR

Kinetic rules can be automatically generated

2 reactions with more than “1 substrate - 1 product”

kegg2symb already deals with all kind of reactions

Allosteric kinetics

1 accepted poster @ ILP’09 (Leuven), 6 pages

1 submission (rejected) @ DS’09 (Porto), 14 pages
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Thanks

Many thanks go to shuffle(thanks):

(>’-’)> (Katsumi Inoue, Andrei Doncescu, Taisuke Sato, Pierre

Bessière, Yoshitaka Kameya, Yoshitaka Yamamoto, Takehide

Soh, Nicolas Dumazet, Elsa Prieto, (all my friends)).

Thank you for your attention.

Arigato gozaimasu.
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Any questions?

Any questions?
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