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An	internal	model	is	constructed	by	learning	from	
environment	and	interac8on	with	other	systems.			
The	model	is	used	for	choosing	the	next	ac8on.			



The	effect/result	of	an	ac8on	affects	the	
environment	and	updates	8me-series	data,	
history,	experience	and	goals.		Then	the	
model	is	updated	accordingly.			
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The	agent	also	interacts	
with	other	agents,	and	its	
internal	model	is	refined	
by	such	interac8ons．	 Ac@on	
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Ac@on	Dynamic	Transi8on	
Goal:	Develop	AI	techniques	that	
can	iden8fy	the	model	of	a	system	
in	dynamic	environments	and	can	
achieve	tasks	even	when	unknown	

situa8ons	are	encountered.		
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Ac@on	
Machine	Learning	

Dynamic	Transi8on	

The	Machine	Learning	Part	constructs	the	model	of	
the	agent	by	abduc8on	and	induc8on	from	the	goal,	
data,	history	and	background	knowledge.			

Decision	
Making	



Learning	From	Interpreta8on	Transi8on	(LFIT)	



Learning	Dynamical	and	Complex	Networks		
•  Learning	dynamic	systems	involving	posi8ve	and	nega8ve	feedbacks		
•  Learning	Boolean	networks	from	state	transi8on	diagrams	
•  Learning	Cellular	Automata	from	traces	of	configura8on	change		

Ø  Inoue,	K.,	Ribeiro,	T.,	Sakama,	C.:	“Learning	from	Interpreta8on	Transi8on”,		
Machine	Learning,	94(1):51-79,	2014.			

Ø  Völker,	M.,	Inoue,	K.:	“Logic	Programming	for	Cellular	Automata”,	ICLP	2015.			

current	pa\ern	 111	 110	 101	 100	 011	 010	 001	 000	
new	state	for	
center	cell	 0	 1	 1	 0	 1	 1	 1	 0	

•  c(x,t+1)	←	c(x-1,t)	∧	c(x,t)	∧	￢c(x+1,t).	
•  c(x,t+1)	←	c(x-1,t)	∧	￢c(x,t)	∧	c(x+1,t).	
•  c(x,t+1)	←	￢c(x-1,t)	∧	c(x,t)	∧	c(x+1,t).	
•  c(x,t+1)	←	￢c(x-1,t)	∧	c(x,t)	∧	￢c(x+1,t).	
•  c(x,t+1)	←	￢c(x-1,t)	∧	￢c(x,t)	∧	c(x+1,t).	
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Wolfram’s	Rule	110	(Turing-complete)			



Learning	Robust	Boolean	Networks	

Li,	F.	et	al.:	The	yeast	cell-cycle	network	is	
robustly	designed,	PNAS,	101(14),	2004.	

• Most	transi8ons	from	212		states	belong	
to	the	same	basin	of	a2racKon.			

•  From	this	state	transi8on,	LFIT	learned	
54	state	transi8on	rules	in	0.8	sec.			

•  An	improved	learning	algorithm	using	
BDD	learned	the	same	rules	in	0.18	sec.		

Ø  Inoue,	K.,	Ribeiro	T.,	Sakama,	C.:	“Learning	from	Interpreta8on	Transi8on”,		
Machine	Learning,	94(1):51-79,	2014.	

Ø  Ribeiro,	T.,	Inoue,	K.,	Sakama,	C.:	“A	BDD-Based	Algorithm	for	Learning	from	
Interpreta8on	Transi8on”,	Post-Proc.	ILP	2013,	LNAI,	Vol.8812,	pp.47-63,	2014.			



“Can	Machines	Learn	Logics?”		

Input																													Agent	A	(human/computer)													Output	
	

S:	formulas																										Logical	System	L																														T	(⊆Th(S	))	

	

	
																																															Machine	M	
			
(S	,	T)																													Learning	System	 C																																										K	

 
 

•  Given	input	(S,	T),	a	machine	M	produces	an	axioma8c	system	K.			
•  LFIT	can	learn	meta-level	one-step	deduc8on	rules,	e.g.,	MP.			The	scenario	

can	be	applied	to	learning	abduc8on	and	other	non-standard	logics.	
	
Ø  Sakama,	C.,	Inoue,	K.:	“Can	Machines	Learn	Logics?”,		AGI	2015,	LNAI,	Vol.9205,		pp.

341-351,	2015.						
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Revising	Plans	in	Adap8ve	Systems	

Environment	System	

Domain	
model	

action 

reaction 

model revision 

Behavioural	model	learning/revision	through	probabilis@c	rule	learning		

Ø  Sykes,	D.,	Corapi,	D.,	Magee,	J.,	Kramer,	J.,	Russo,	A.,	Inoue,	K.:	“Learning	
revised	models	for	planning	in	adap8ve	systems”,		ICSE	2013:	63-71.		

Ø  Marpnez,	D.,	Ribeiro,	T.,	Inoue,	K.,	Alenyà,	G.,	Torras,	C.:	“Learning	
Probabilis8c	Ac8on	Models	from	Interpreta8on	Transi8ons”,	ICLP	2015.			
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Cell	cycle	with	cyclin-dependent	kinases	(Schneider	et	al.,	2002)	

Pathway	Comple8on	by	Meta-Level	Abduc8on		

Ø  Inoue,	K.,	Doncescu,	A.,	Nabeshima,	H.:	“Comple8ng	causal	networks	by	meta-level	
abduc8on,	Machine	Learning,	91(2):239-277,	2013.	



Comple8ng	SBGN	Networks	with	Gene	Expression	
Data	(collabora8on	with	LRI/Paris-Sud	&	INRA-CNRS)	

Biological	phenomena	 Formal	system	

Gene	expression	data	 SBGN-AF	network	
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Ø  Yamamoto,	Y.,	Rougny,	A.,	Nabeshima,	H.,	Inoue,	K.,	Moriya,	H.,	Froidevaux,	C.,	
Iwanuma,	K.:	“Comple8ng	SBGN-AF	Networks	by	Logic-Based	Hypothesis	Finding”,		
FMMB	2014,	LNBI,	Vol.8738,	pp.165-179,	2014.			

•  SBGN-AF:	Systems	Biology	
Graphical	Nota8on	Ac8vity	Flow	

• Applica8ons:	FSHR-induced	
signaling	networks	
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The	Decision	Making	Part	chooses	the	best	next	
ac8on	by	solving	constraint	sa8sfac8on	problems	
(CSP)	and	constraint	op8miza8on	problems	(COP).		



Dynamic	Constraint	Op8miza8on	Problems	

•  Most	real	life	problems	are	dynamic,	e.g.,	
transporta8on,	team	forma8on,	scheduling.		

•  Those	models	can	be	represented	as	(dynamic)	
(hard	&	sou)	constraint	networks.			

•  Goal:	Minimize	penalty	and	maximize	reward.			
•  Requires	fast	computa8on	of	new	solu8ons,	yet	

some	quality	guarantees	should	be	provided.		



Dynamic	COP:	Applica8ons	and	Approaches	

•  Team	formaKon:	Making	robust	teams	of	agents.		
•  Nurse	rerostering:	When	a	nurse	is	absent,	build	a	new	schedule	with	

minimal	and	fair	changes.		
•  Timetabling:	Reconstruct	8metables	according	to	situa8on	changes.		

Ø  Okimoto,	T.,	Schwind,	N.,	Clement,	M.,	Ribeiro,	T.,	Inoue,	K.,	Marquis,	P.:	“How	to	
Form	a	Task-Oriented	Robust	Team”,		AAMAS	2015:	395-403.	

Ø  Clement,	M.,	Okimoto,	T.,	Schwind,	N.,	Inoue,	K.:	“Finding	Resilient	Solu8ons	for	
Dynamic	Mul8-Objec8ve	Constraint	Op8miza8on	Problems”,		ICAART	2015:	509-516.			

Two	different	approaches:	
•  ProacKve:	we	prepare	and	take	ac8ons	before	

changes	happen.			
•  ReacKve:	we	do	not	know	what	will	happen	

and	can	only	react	to	the	changes.	



Task	Oriented	Robust	Team	Forma8on	
•  Goal:	Make	a	team	to	achieve	a	given	set	of	tasks	

such	that	it	can	be	effec8ve	even	if	some	agents	
break	down.			

•  A	team	is	k-robust	if	it	can	s8ll	perform	all	tasks	
auer	losing	any	k	agents.		

•  Robustness	is	a	proac8ve	solu8on	to	prepare	for	
unpredictable	changes	(the	loss	of	some	agents).			

•  TORTF	does	not	prove	more	computa8onally	
demanding	than	the	task-efficient	team	forma8on	
problem,	i.e.,	robustness	is	for	free.	

Ø  Okimoto,	T.,	Schwind,	N.,	Clement,	M.,	Ribeiro,	T.,	Inoue,	K.,	Marquis,	P.:	
“How	to	Form	a	Task-Oriented	Robust	Team”,		AAMAS	2015:	395-403.	



Cyber	Security	Trade-Off	Problem	
•  “You	can't	have	100	percent	security	and	then	also	have	100	percent	privacy	

and	zero	inconvenience.”	(Barack	Obama,	2013)	
•  Intercep8on	and	communica8ons	data	reten8on	measures,	even	if	the	

purpose	is	social	security,	are	under	the	difficult	trade-off	between	security,	
privacy	and	cost.”		

•  How	to	solve	this	trade-off	and	build	the	societal	consensus?	
•  We	used	MulK-ObjecKve	Constraint	OpKmizaKon	(MO-COP)	techniques.			

PRIVACY	

SECURITY	 COST	

Ø  Okimoto,	T.,	Ikegai,	N.,	Ribeiro,	T.,	Inoue,	K.,	Okada,	H.,	Maruyama,	H.:	
Cyber	Security	Problem	Based	on	Mul8-Objec8ve	Distributed	Constraint	
Op8miza8on	Technique,	WSR	2013.				



Selected	Solu8ons	for	Mul8-Objec8ve	Problems	
•  Mo8va8on:	Product	Configura8on	Example	

→	Many	(some8mes,	thousands	of)	choices	are	given	to	the	user.			
→	Each	alterna8ve	involves	many	criteria	(e.g.,	for	a	car,	price,	life8me,	
safety,	brand	reputa8on).			
→	Impossible	for	users	to	choose	their	preferred	product!	

	
	
•  Characteriza8on	of	representaKve	soluKons	(Figure	b)	/	Efficient	

approxima8on	procedures	(Figure	c)	
•  Interes8ng	benefits	for	an	itera8ve	use,	for	large-scale	problems.		
Ø  Schwind,	N.,	Okimoto,	T.,	Konieczny,	S.,	M.,	Inoue,	K.:	to	appear,	2016.		
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The	Model	Checking	Part	verifies	that	the	agent	works	correctly		by	
predic8ng	future	results	in	dynamic	environments.			

Model	Checking	



Resilience	of	Constraint-Based	Dynamic	Systems	

Ø  Schwind,	N.,	Okimoto,	T.,	Inoue,	K.,	Chan,	H.,	Ribeiro,	T.,	Minami,	K.,	Maruyama,	H.:	“Systems	Resilience:	A	
Challenge	Problem	for	Dynamic	Constraint-Based	Agent	Systems”,	AAMAS	2013,	pp.785-788.			

Ø  Received	The	3rd	Prize	of	Best	Challenges	and	Visions	Papers.			

•  Formaliza8on	of	generic	systems	through	COP		
  variables:	components	of	the	system	
  constraints:	interac8ons	between	these	components	
  opKmizaKon	funcKon:	evaluates	the	quality	of	a	configura8on	of	the	system	

•  Resistance	+	Recoverability	+	Func8onality	=	Resilience	



Belief	Propaga8on	in	Mul8-Agent	Systems	

•  We	want	to	predict	the	propaga8on	of	fallacious	beliefs	in	social	
networks	(brand	crisis	management,	e.g.,	Domino’s	Pizza	crisis	in	April	
2009)	

•  We	want	to		track	the	truth	when	several	agents	describe	the	same	
situa8on	but	have	conflic8ng	beliefs	



Ø  Schwind,	N.,	Inoue,	K.,	Bourgne,	G.,	Konieczny,	S.,	Marquis,	P.:	“Belief	Revision	
Games”,	AAAI-15:	1590-1596,	2015.			

•  Formaliza8on	of	the	framework,	named	"Belief	Revision	Games"	
•  Set	of	appealing	proper8es:		

–  3	Preserva8on	proper8es:		
	Convergence,	Responsiveness,	Monotonicity		

–  6	agents’	revision	policies	(ranging	from	credulous	to	
skep8cal	ones)		

•  Inves8ga8on	of	the	extent	to	which	these	proper8es	are	
sa8sfied	by	the	revision	policies		

•  Robust	framework,	consistent	with	natural	expecta8ons:	
→	credulous	agents	are	more	responsive	than	skep8cal	ones.		
→	with	skep8cal	agents,	convergence	is	guaranteed.			

Belief	Propaga8on	in	Mul8-Agent	Systems	



Resilience	Proper8es	in	Oscillatory	Biological	Systems	

Comet, et	al.,	“Simplified models for the mammalian circadian
 clock“,	Evry Spring school on Modelling complex biological
 systems in the context of genomics, pp.85-106, 2012.	

•  Use	parametric	Kme	Petri	nets	in	order	to	analyze	precisely	the	dynamic	
behavior	of	biological	oscillatory	systems,	e.g.,	the	mammalian	circadian	clock.			

•  Analyze	resilience	proper8es	that	endorse	major	changes	in	their	environment,	
e.g.	jet-lags,	day-night	alterna8ng	work-8me.		

Ø  Andreychenko,	A.,	Magnin,	M.,	Inoue,	K.:	“Modeling	of	Resilience	Proper8es	in	
Oscillatory	Biological	Systems	Using	Parametric	Time	Petri	Nets”,	CMSB	2015:	239-250.	
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Inference	and	Learning	in	Dynamic	Environments	

AI	techniques	that	can	iden8fy	the	model	of	a	system	in	
dynamic	environments	and	can	achieve	tasks	even	when	

unknown	situa8ons	are	encountered.		

Modeling		
(Machine	Learning)	

Decision	Making		
(Constraint	Op(miza(on)	

Predic@on/Verifica@on	
(Model	Checking)	

Resilient	Systems	
Robustness/Sustainability	

Dynamic	Scheduling	
Cyber	Security	

Opinion	Construc8on	
Mul8-Agent	Learning	


