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An internal model is constructed by learning from
=iy environment and interaction with other systems.

Data The model is used for choosing the next action.
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: The effect/result of an action affects the
: I' environment and updates time-series data,
\\ I history, experience and goals. Then the
\‘:\ model is updated accordingly.
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The agent also interacts Internal
with other agents, and its State
internal model is refined
by such interactions.

Time-Series [ Other Agents
Data

NG

Dynamic Environments



Background
Mod¢l

Knowledge
Internal Action

History/ - State

5

Goal: Develop Al techniques that

1%; can identify the model of a system
in dynamic environments and can

achieve tasks even when unknown
ata . .
situations are encountered.

A\
N —

N,
DS
- ~ Dynamic Environments
e

Experience ’

N NN e ay

\

P

v/




Background
Knowledge

History/
Experience

Agent

Internal
State

Machine Learning a .
Action

Goal O

Time-Series

Dynamic Transition

The Machine Learning Part constructs the model of
the agent by abduction and induction from the goal,

data, history and background knowledge.
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Learning From Interpretation Transition (LFIT)
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Input: pairs of interpretations of the form (I,]) € 278 x 2HB

Output: logic program P such that /= Tp (/) for every (I,])
(B Dynamic Environments

» |Inoue, K., Ribeiro, T., Sakama, C.: “Learning from Interpretation Transition”,
Machine Learning, 94(1):51-79, 2014.



Learning Dynamical and Complex Networks

e Learning dynamic systems involving positive and negative feedbacks
* Learning Boolean networks from state transition diagrams
* Learning Cellular Automata from traces of configuration change

o c(xt+1) < c(x-1,t) A c(x,t) A —c(x+1,t).
o c(x,t+1) <= c(x-1,t) A c(x,t) A c(x+1,t).
o c(xt+1) < —c(x-1,t) A c(x,t) A c(x+1,t).
o c(x,t+1) < —c(x-1,t) A c(x,t) A —c(x+1,t).
o c(xt+1) < —c(x-1,t) A —c(x,t) A c(x+1,t).

O |0 | N]|J]oo|lu | |WIN]|EFL|O|T

current pattern | 111 | 110 | 101 | 100 | 011 | 010 |{ 001 | OO0
new state for
center cell 0 1 1 0 1 1 1 0

Wolfram’s Rule 110 (Turing-complete)

» Inoue, K., Ribeiro, T., Sakama, C.: “Learning from Interpretation Transition”,

Machine Learning, 94(1):51-79, 2014.

» Volker, M., Inoue, K.: “Logic Programming for Cellular Automata”, ICLP 2015.
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Learning Robust Boolean Networks
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i, F. et al.: The yeast cell-cycle network is
\ robustly designed, PNAS, 101(14), 2004.
.

* Most transitions from 212 states belong
to the same basin of attraction.

* From this state transition, LFIT learned
54 state transition rules in 0.8 sec.

* An improved learning algorithm using
BDD learned the same rules in 0.18 sec.

» Inoue, K., Ribeiro T., Sakama, C.: “Learning from Interpretation Transition”,
Machine Learning, 94(1):51-79, 2014.

» Ribeiro, T., Inoue, K., Sakama, C.: “A BDD-Based Algorithm for Learning from
Interpretation Transition”, Post-Proc. ILP 2013, LNAI, Vol.8812, pp.47-63, 2014.



“Can Machines Learn Logics?”

Input Agent A (human/computer) Output
S: formulas > Logical System L > T(ETh(S))
J Machine M
(S, T > Learning System C > K

 Giveninput (S, T), a machine M produces an axiomatic system K.
* LFIT can learn meta-level one-step deduction rules, e.g., MP. The scenario
can be applied to learning abduction and other non-standard logics.

» Sakama, C., Inoue, K.: “Can Machines Learn Logics?”, AGI 2015, LNAI, Vol.9205, pp.
341-351, 2015.



Revising Plans in Adaptive Systems

Environment

reaction

Behavioural model learning/revision through probabilistic rule learning

» Sykes, D., Corapi, D., Magee, J., Kramer, J., Russo, A., Inoue, K.: “Learning
revised models for planning in adaptive systems”, ICSE 2013: 63-71.

» Martinez, D., Ribeiro, T., Inoue, K., Alenya, G., Torras, C.: “Learning
Probabilistic Action Models from Interpretation Transitions”, ICLP 2015.



Pathway Completion by Meta-Level Abduction
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Cell cycle with cyclin-dependent kinases (Schneider et al., 2002)

(2) suppressed

» Inoue, K., Doncescu, A., Nabeshima, H.: “Completing causal networks by meta-level
abduction, Machine Learning, 91(2):239-277, 2013.



Completing SBGN Networks with Gene Expression
Data (collaboration with LRI/Paris-Sud & INRA-CNRS)

Biological phenomena Formal system
é ) r 1
Gene expression data SBGN-AF network
Discretization Inference engine Causal network
‘ Meta-Level tra‘ation
(Discretized) observations \ I Abduction background theory
\, J

* SBGN-AF: Systems Biology

Biological analysis <= Hypothesis Graphical Notation Activity Flow
using database or New interactions  * Applications: FSHR-induced
literature or predicates signaling networks

» Yamamoto, Y., Rougny, A., Nabeshima, H., Inoue, K., Moriya, H., Froidevaux, C.,
Iwanuma, K.: “Completing SBGN-AF Networks by Logic-Based Hypothesis Finding”,
FMMB 2014, LNBI, Vol.8738, pp.165-179, 2014,
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The Decision Making Part chooses the best next
action by solving constraint satisfaction problems

(CSP) and constraint optimization problems (COP).



Dynamic Constraint Optimization Problems

« Most real life problems are dynamic, e.g., ii iiii

transportation, team formation, scheduling.
* Those models can be represented as (dynamic) @

(hard & soft) constraint networks. @
* Goal: Minimize penalty and maximize reward. @
* Requires fast computation of new solutions, yet @

some quality guarantees should be provided.




Dynamic COP: Applications and Approaches

Team formation: Making robust teams of agents.

Nurse rerostering: When a nurse is absent, build a new schedule with

minimal and fair changes.

Timetabling: Reconstruct timetables according to situation changes.

Two different approaches:
* Proactive: we prepare and take actions before
changes happen.

* Reactive: we do not know what will happen
and can only react to the changes.

06:50 Cape Town BA058
07:20 Johannesburg  BA054
07:20 Buenos Aires BA246

07:20 viaxSao Paulo

07:30 Mumbai BA138

12:15 Manchester BA1391

12:35 Paris CdG BA309 Cancelled

» Okimoto, T., Schwind, N., Clement, M., Ribeiro, T., Inoue, K., Marquis, P.: “How to
Form a Task-Oriented Robust Team”, AAMAS 2015: 395-403.

» Clement, M., Okimoto, T., Schwind, N., Inoue, K.: “Finding Resilient Solutions for
Dynamic Multi-Objective Constraint Optimization Problems”, ICAART 2015: 509-516.



Task Oriented Robust Team Formation

* Goal: Make a team to achieve a given set of tasks
such that it can be effective even if some agents
break down.

* Ateam s k-robust if it can still perform all tasks
after losing any k agents.

* Robustness is a proactive solution to prepare for
unpredictable changes (the loss of some agents).

* TORTF does not prove more computationally
demanding than the task-efficient team formation
problem, i.e., robustness is for free.

» Okimoto, T., Schwind, N., Clement, M., Ribeiro, T., Inoue, K., Marquis, P.:
“How to Form a Task-Oriented Robust Team”, AAMAS 2015: 395-403.



Cyber Security Trade-Off Problem

“You can't have 100 percent security and then also have 100 percent privacy
and zero inconvenience.” (Barack Obama, 2013)

Interception and communications data retention measures, even if the
purpose is social security, are under the difficult trade-off between security,

privacy and cost.”
How to solve this trade-off and build the societal consensus?

We used Multi-Objective Constraint Optimization (MO-COP) technigues.

SECURITY

» Okimoto, T., Ikegai, N., Ribeiro, T., Inoue, K., Okada, H., Maruyama, H.:
Cyber Security Problem Based on Multi-Objective Distributed Constraint
Optimization Technique, WSR 2013.
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Selected Solutions for Multi-Objective Problems

* Motivation: Product Configuration Example

- Many (sometimes, thousands of) choices are given to the user.

— Each alternative involves many criteria (e.g., for a car, price, lifetime,
safety, brand reputation).

- Impossible for users to choose their preferred product!

————+—————> price
0123456728910

(a) “Diverse” solutions (existing works)

age
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(b) Our proposal
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(c) Our proposal (efficient approximation)

» Characterization of representative solutions (Figure b) / Efficient
approximation procedures (Figure c)

* Interesting benefits for an iterative use, for large-scale problems.

» Schwind, N., Okimoto, T., Konieczny, S., M., Inoue, K.: to appear, 2016.
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The Model Checking Part verifies that the agent works correctly by

predicting future results in dynamic environments.
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Resilience of Constraint-Based Dynamic Systems
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* Formalization of generic systems through COP
@ variables: components of the system
@ constraints: interactions between these components
@ optimization function: evaluates the quality of a configuration of the system

* Resistance + Recoverability + Functionality = Resilience

» Schwind, N., Okimoto, T., Inoue, K., Chan, H., Ribeiro, T., Minami, K., Maruyama, H.: “Systems Resilience: A
Challenge Problem for Dynamic Constraint-Based Agent Systems”, AAMAS 2013, pp.785-788.

» Received The 3™ Prize of Best Challenges and Visions Papers.

Natural Disasters




Belief Propagation in Multi-Agent Systems
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e We want to predict the propagation of fallacious beliefs in social

networks (brand crisis management, e.g., Domino’s Pizza crisis in April
2009)

e We want to track the truth when several agents describe the same
situation but have conflicting beliefs



Belief Propagation in Multi-Agent Systems

Formalization of the framework, named "Belief Revision Games"
Set of appealing properties:
— 3 Preservation properties:

Convergence, Responsiveness, Monotonicity

— 6 agents’ revision policies (ranging from credulous to
skeptical ones)

Investigation of the extent to which these properties are
satisfied by the revision policies

Robust framework, consistent with natural expectations:
— credulous agents are more responsive than skeptical ones.
—> with skeptical agents, convergence is guaranteed.

» Schwind, N., Inoue, K., Bourgne, G., Konieczny, S., Marquis, P.: “Belief Revision
Games”, AAAI-15: 1590-1596, 2015.



Resilience Properties in Oscillatory Biological Systems
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Comet, et al., “Simplified models for the mammalian circadian |
clock”, Evry Spring school on Modelling complex biological r L

systems in the context of genomics, pp.85—106, 2012.

* Use parametric time Petri nets in order to analyze precisely the dynamic
behavior of biological oscillatory systems, e.g., the mammalian circadian clock.

* Analyze resilience properties that endorse major changes in their environment,
e.g. jet-lags, day-night alternating work-time.

» Andreychenko, A., Magnin, M., Inoue, K.: “Modeling of Resilience Properties in
Oscillatory Biological Systems Using Parametric Time Petri Nets”, CMSB 2015: 239-250.
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Adaptation to IP Broadcasting Systems
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Inference and Learning in Dynamic Environments

Al techniques that can identify the model of a system in
dynamic environments and can achieve tasks even when
< unknown situations are encountered.

Modeling Decision Making
(Machine Learning) (Constraint Optimization)
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Prediction/Verification
(Model Checking)
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Resilient Systems Dynamic Scheduling Opinion Construction
Robustness/Sustainability Cyber Security Multi-Agent Learning
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