

POSTECH at NTCIR-4: CJKE Monolingual and Korean-related Cross-Language Retrieval Experiments

Jun. 2, 2004

In-Su Kang*, Seung-Hoon Na, Jong-Hyeok Lee

Knowledge and Language Engineering Laboratory

Dept. of Computer Science & Engineering

Pohang University of Science and Technology, KOREA

Conclusion and Future Work

Motivation

4 CJK monolingual IR

- Word segmentation is nontrivial
- Words vs. n-grams

	Words	
Lexical Term Space	Incomplete	Complete
Concept Specificity	Concentrated	Distributed
Weak point	Under-generation	Over-generation

Combination of words and n-grams is advocated

We investigate <u>a coupling method of words and n-grams</u>

English monolingual IR (not described in this presentation)

Develop a new phrasal indexing unit

Coupling of Words and N-grams

Coupling methods

Coupling Stage	Couplin	# of Indexes	
Index creation	Index	One	
Term weighting	TF	Sum	
	DF	Sum, or Union	
	Term weight	Interpolation	Two
Ranked list	Document score	Sum	Two

Experiments using NTCIR-3 Korean test set

All but coupling at a ranked list level were not remarkable

4 Coupling at a ranked list level

Sasic idea → Generate & merge several ranked lists with different retrieval characteristics on words and n-grams

Coupling at a Ranked List Level (1/2)

Generation of ranked lists

- Indexing units
 - Words
 - 🔷 N-grams
- 1st and 2nd retrieval models
 - Okapi probabilistic model
 - Jelinek-Mercer language model
- Expansion term selection
 - Robertson selection value
 - Ponte's ratio formula
- Fusion by simple summation

Coupling at a Ranked List Level (2/2)

Selection of top 3 ranked lists out of 16

- Selection measure
 - MAP on NTCIR-3 Korean test set
- Selection constraint
 - Include at least one for each of words and n-grams

	Index Unit				
	Word	N-gram			
1 st Retrieval	Р	Р	L		
Expansion term selection	L (Ponte's)	P (Rebertson's)	L (Ponte's)		
2 nd Retrieval	Р	Р	L		
Abbreviated notation	wPLP	nPPP	nLLL		

Term Extraction

4 Index terms

	Terms	Stoplist
Chinese	Bi-gram, word	None
Japanese	Bi-gram, word	None
Korean	Bi-gram, word	374 stopwords

CJK word extraction

By CJK taggers developed at our laboratory

4 Bi-grams

 For Japanese, bi-grams were generated for a sequence of the same character class (Hiragana, Katagana, Kanji)

NTCIR-4 Results (Chinese)

4 Chinese single language IR

		Т	D	С	DN	TDNC
	nP	0.2297	0.2069	0.2562	0.2855	0.2911
1 st	nL	0.2050	0.1823	0.2365	0.2708	0.2809
Keuleval	wP	0.1603	0.1533	0.1789	0.2281	0.2358
	nPPP	0.2532	0.2398	0.2681	0.2983	0.3060
2 nd	nLLL	0.2699*	0.2686*	0.2856*	0.3019*	0.3046
Keuleval	wPLP	0.1853	0.2016	0.2049	0.2503	0.2693
F		0.2584	0.2535	0.2703	0.2968	<u>0.3103</u> *
Fusion	WPLP+nPPP+nLLL	(-4.3%)	(-5.6%)	(-5.4%)	(-1.7%)	(+1.4%)
	NTCIR-4 MAX	0.3799	0.3880		0.3103	
	* : the best performance for the query type : NTCIR-4 best performance					uery type

NTCIR-4

NTCIR-4 Results (Japanese)

4 Japanese single language IR

		Т	D	С	DN	TDNC
	nP	0.3650	0.3424	0.3496	0.4346	0.4570
1 st Potrioval	nL	0.3260	0.3101	0.3141	0.4274	0.4435
Keuleval	wP	0.3647	0.3715	0.3426	0.4439	0.4561
	nPPP	0.3844	0.3842	0.3926	0.4539	0.4856
2 nd Dotrioval	nLLL	0.4056	0.4282*	0.4207*	0.4924*	0.5024*
Keuleval	wPLP	0.4226*	0.4103	0.3806	0.4715	0.4875
Fusion	wPLP+nPPP+nLLL	0.4211	0.4119	0.4105	0.4741	0.4963
NTCIR-4 MAX		0.4864	0.4838	(-2.4 /0)	0.4963	(-1.2 /0)
		* : the : NT	best perf CIR-4 be	formance st perform	for the q mance	uery type

NTCIR-4 Results (Korean)

4 Korean single language IR

		Т	D	С	DN	TDNC	
	nP	0.4515	0.4198	0.4450	0.5249	0.5598	
1 st	nL	0.4091	0.3674	0.4081	0.4896	0.5318	
Keuleval	wP	0.4285	0.4184	0.4370	0.5111	0.5383	
	nPPP	0.4660	0.4347	0.4499	0.5610	0.6040	
2 nd	nLLL	0.4967	0.4623	0.4496	0.5592	0.5873	
Reuleval	wPLP	0.4900	0.4771	0.4611	0.5806	0.5859	
F		0.5226*	0.4885*	0.4846*	0.5932*	<u>0.6212</u> *	
Fusion	WPLP+nPPP+nLLL	(+5.2%)	(+2.4%)	(+5.1%)	(+2.2%)	(+2.8%)	
	NTCIR-4 MAX	0.5361	0.5097	0.6212			
	* : the best performance for the query type : NTCIR-4 best performance						

Observations

\rm Words vs. n-grams

Coupling at a ranked list level maybe language-dependent

- At NTCIR-4, only Korean SLIR was successful
 - Chinese : -5.6% ~ 1.4% over 2^{nd} retrieval best
 - Japanese : -3.8% ~ -0.4% over 2^{nd} retrieval best
 - Korean : 2.2% ~ 5.2% over 2^{nd} retrieval best
- Our top 3 ranked lists were selected based on NTCIR-3 Korean test set
- 4 Okapi vs. LM (language model)
 - At 1st retrieval, Okapi was better than LM
 - At 2nd retrieval, LM parallels or outperforms Okapi

Contents

- **4** CJK Single Language IR
- Korean-related Cross-Language IR
 - Motivation
 - QT vs. DT
 - Hybrid approach of QT and DT
 - Transliteration-based DT
 - Dictionary statistics
 - NTCIR-4 results
 - Observations
- **4** Conclusion and Future Work

Motivation

- **4** Cross-language IR
 - Query translation
 - Widespread, and much explored
 - Document translation
 - Computationally expensive, and barely attempted
 - MT system or statistical translation model
 - At NTCIR-4, we tried <u>a simple dictionary-based translation</u>
- 4 Our interests
 - Combining query translation and document translation
 - Coupling words and n-grams in CLIR

Language Translation

- Default query translation (QT)
 - Dictionary-based
 - Source-to-target bilingual dictionary
 - Target language query
 - Unstructured sequence of all translations of source language query terms
- Default document translation (DT)
 - Dictionary-based
 - Target-to-source bilingual dictionary
 - Source language document

 Unstructured sequence of all translations of target language document terms

Default QT vs. DT

Disambiguation effect of QT and DT

	Disambiguation context			
	Query	Document	Disambiguation Effect	
Default QT	Noisy	Clean	Resolves source language translation ambiguity	
Default DT	Clean	Noisy	Resolves target language translation ambiguity	

Hybrid of QT and DT

Different translation directions of the same language pair may differently influence translation disambiguation of queries

Hybrid Approach of QT and DT

4 Coupling at a ranked list level

Source Language Query Source Biling	$\xrightarrow{\text{C-Target}} \longrightarrow \xrightarrow{\text{Target Language}} Query$
Source Biling	Query Translation (Statistical WSD)
Source Language Doc. Collection (Word & N-gram)	eudo iment slation < Target Language Doc. Collection (Word & N-gram) 1
↓ Document → Lists Fu	sion Document Lists
· · · · · · · · · · · · · · · · · · ·	\bigvee

	QT	DT
KC	nPLP	nPLP
KJ	wPLP	nPLP
СК, ЈК	wPLP + nPLP	None

nPLP, wPLP

 Selected from our experiments on NTCIR-3 Korean-to-Japanese CLIR test set

Transliteration-based DT (1/2)

\rm CJK languages

Share ideographic Chinese characters

- 🔷 Chinese : Hanzi
- 🔷 Japanese : Kanji
- 🔷 Korean : Hanja

4 In Korean text

Chinese characters are written in Hangul

Hangul : a Korean alphabet, not ideographic, but phonetic

M-to-1 mapping b/w Chinese characters and Hangul

◆漢代(Han dynasty) → 한대

◆ 寒帶(the frigid zone) → 한대

Transliteration-based DT (2/2)

- Transliteration-based DT (in KC or KJ CLIR)
 - Chinese characters are transliterated into Hangul
 - The resulting Hangul sequence is indexed
- \rm Advantages
 - Alleviates vocabulary mismatch problem
 - ◆고궁→古宮 (an old palace), in a KJ dictionary
 - ◆故宮 (an old palace), in Japanese documents
 - Their Hangul transliterations can be matched with a query term $\square \exists$
 - 古宮 → 고궁, and 故宮 → 고궁
 - Mitigate unknown word problem
 - ◆ Unknown query term 김대중 (a former Korean president)
 - Can be matched with a document term 金大中 by Hangul transliteration

Statistics of Bilingual Dictionaries

- **4** Bilingual dictionaries
 - Extracted from transfer dictionaries of our lab's MT systems
 - COBALT-JK/KJ (Collocation-Based Language Translator b/w Korean and Japanese)
 - TOTAL (Translator Of Three Asian Languages)

	# of Translation Pairs	# of Source Language Entries	Dictionary Ambiguity
KC	113,312	81,750	1.39
СК	СК 127,560		1.16
KJ	420,650	303,199	1.39
JK	434,672	399,220	1.09

NTCIR-4 Results (KC and KJ)

4 CLIR using Korean as a query language

(%): improvement

		Т	D	С	DN	TDNC
	QT(wP–)	0.1436	0.1456	0.1584	0.1665	0.1778
TZ	DT(nP–)	0.1551 (8.0%)	0.1448 (-0.5%)	0.1567 (-1.1%)	0.1937 (16.3%)	0.2057 (15.7%)
к С	QT(wP–)+DT(nP–)	0.1687 (8.8%)	0.1731 (18.9%)	0.1763 (11.4%)	0.1992 (2.8%)	0.2089 (1.6%)
	QT(wPLP) + DT(nPLP)	0.1892 (12.2%)	0.1869 (7.9%)	0.2028 (15.0%)	0.2378 (19.4%)	0.2469 (18.2%)
	QT(wP-)	0.2861	0.3039	0.3000	0.3763	0.3905
TZ	DT(nP–)	0.3165 (10.6%)	0.3207 (5.5%)	0.3140 (4.7%)	0.3909 (3.9%)	0.4039 (3.4%)
K J	QT(wP–)+DT(nP–)	0.3234 (2.2%)	0.3362 (4.8%)	0.3241 (3.2%)	0.4098 (4.8%)	0.4229 (4.7%)
	QT(wPLP) + DT(nPLP)	0.3602 (11.4%)	0.3601 (7.1%)	0.3713 (14.6%)	0.4471 (9.1%)	0.4473 (5.8%)

Observations (KC and KJ)

4 Overall, a default DT was better than a default QT

- QT (KC or KJ) is more ambiguous than DT (CK or JK)
- Transliteration of DT may improve recall
- 4 A hybrid of QT and DT outperforms QT or DT alone
 - QT and DT has different disambiguation effects on queries
- Post-translation feedback works well

	КС			KJ		
QT	0.1584			0.3314		
DT	0.1712	8.09%	8.09%	0.3492	5.38%	5.38%
QT + DT (no feedback)	0.1852	8.20%	16.96%	0.3633	4.03%	9.63%
QT + DT (feedback)	0.2127	14.83%	34.31%	0.3972	9.34%	19.87%

NTCIR-4 Results (CK and JK)

4 CLIR using Korean as a document language

Coupling effect of words and n-grams					(%): improvement		
		Т	D	С	DN	TDNC	
C K	QT(wP–)	0.3466	0.3193	0.3364	0.4004	0.4299	
	QT(nP–)	0.3572 (3.1%)	0.3342 (4.7%)	0.3466 (3.0%)	0.4099 (2.4%)	0.4355 (1.3%)	
	QT(wP-)+QT(nP-)	0.3663 (2.5%)	0.3463 (3.6%)	0.3557 (2.6%)	0.4259 (3.9%)	0.4538 (4.2%)	
	QT(wPLP) + QT(nPLP)	0.4343 (18.6%)	0.4314 (24.6%)	0.4083 (14.8%)	0.5060 (18.8%)	0.5138 (13.2%)	
J K	QT(wP–)	0.3559	0.3431	0.3451	0.4243	0.4450	
	QT(nP–)	0.3490 (-1.9%)	0.3501 (2.0%)	0.3587 (3.9%)	0.4536 (6.9%)	0.4607 (3.5%)	
	QT(wP–)+QT(nP–)	0.3634 (2.1%)	0.3666 (4.7%)	0.3833 (6.9%)	0.4632 (2.1%)	0.4773 (3.6%)	
	QT(wPLP) + QT(nPLP)	0.4559 (25.5%)	0.4306 (17.5%)	0.4593 (19.8%)	0.5383 (16.2%)	0.5446 (14.1%)	

NTCIR-4

NTCIR-4 Results (SLIR vs. CLIR)

4 SLIR vs. CLIR

CLIR is compared with SLIR best performance

Note that most literatures compare CLIR with SLIR baseline

	SLIR	CLIR	% of SLIR
KC	0.2779 (CC)	0.2127	0.76
KJ	0.4428 (JJ)	0.3972	0.90
СК	0.5420 (KK)	0.4588	0.85
JK	0.5420 (KK)	0.4857	0.90

Each figure : Average of AvgPre over T,D,C,DN, and TDNC

Conclusion and Future Work

4 CJK monolingual IR

Coupling of words and n-grams at a ranked list level

- Korean-related CLIR
 - A simple dictionary-based DT, and transliteration-based DT
 - A hybrid approach of QT and DT even at its default mode
 - Performs collaboratively
- In future
 - More analysis of NTCIR-4 results such as
 - Query-by-query analysis
 - Language-dependent coupling of words and n-grams
 - Net effect of transliteration-based DT