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Abstract

We design a multi-label classification system based
on the combination of binary classifications for clas-
sification subtask at NTCIR-6 Patent Retrieval Task.
In our system, we design a binary classifier per F-
term that determines the assignment of the F-term to
patent documents. Hybrid classifiers are employed as
binary classifiers so that the multiple components of
patent documents are used effectively. The hybrid clas-
sifiers are constructed by combining component gener-
ative models with weights based on the maximum en-
tropy principle. Using a test collection of Japanese
patent documents, we confirmed that our system pro-
vided good ranking of F-terms as regards assigning
them to patent documents.
Keywords: binary classification, hybrid classifier,
multiple components, naive Bayes model, maximum
entropy principle.

1 Introduction

Classification subtask at NTCIR-6 Patent Retrieval
Task is to develop multi-label classification systems
that assign multiple F-terms to Japanese patent doc-
uments. The F-terms were developed by the Japanese
Patent Office, to search effectively for relevant patent
documents in the patent database. At present, hun-
dreds of F-terms are defined per theme, which consti-
tutes just one of many technological fields. Therefore,
a multi-label classification system dealing with a mas-
sive number of class labels is required for the classifi-
cation subtask.

We design a multi-label patent classification system
based on the combination of binary classifications [4,
7] to deal with a massive number of class labels. In
our formulation, we assume the independence of class
labels and design a binary classifier per class label that
determines whether or not to assign the class label to a
data sample. We employ a hybrid classifier [8, 3] as a
binary classifier designed for each class label.

Hybrid classifiers can deal with multiple compo-
nents contained by data samples such as the abstract,
claim, and main text in a patent document. To con-
struct hybrid classifiers, we design a generative model
for each component and combine all these generative
models with weights provided by discriminative train-
ing. Namely, each component is modeled on the ba-
sis of a generative approach, while the classifier is
constructed on the basis of a discriminative approach.
Each hybrid classifier constructed per class label pro-
vides the probability of assigning a class label to a
data sample. Using the probability provided by the
hybrid classifiers, we obtain rankings of class labels
that should be assigned to data samples.

To enable us to apply the binary hybrid classifiers
to patent documents, we employed naive Bayes (NB)
models as their component generative models, using a
bag of words (BOW) representation for each compo-
nent. We used five components, namely title (T), au-
thor and affiliation names (AA), abstract (AB), claim
(C), and main text (MT). Using a test collection given
by NTCIR-6 organizers, we show that our multi-label
classification system provides good F-term ranking
performance for patent documents in terms of mean
average precision (MAP).

2 Multi-label Classification System
based on Binary Hybrid Classifiers

For classification subtask at NTCIR-6 Patent Re-
trieval Task, we design a multi-label classification sys-
tem that provides mapping from a feature vector x to
a class label vector y = (y1, . . . , yk, . . . , yK). Here,
K is the number of class labels. y is a binary bit-
vector that represents the assignment of class labels to
a feature vector, where yk = 1 if the kth class label is
assigned to x, and yk = 0 otherwise. In the classifi-
cation subtask, a feature vector x represents a patent
document and a class label k represents an F-term.

In our multi-label classification system, we design
K binary classifiers each of which provides the prob-
ability P (yk = 1|x) of assigning a kth class label�����
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Figure 1. Outline of binary hybrid classi-
fiers.

to a feature vector x, using training data set D =
{xn, yn}N

n=1. Then, we rank K class labels for a data
sample x based on the values of {P (yk = 1|x)}K

k=1

provided by the binary classifiers. We employ hy-
brid classifiers [8, 3] as the binary classifiers. In this
section, we describe a method for constructing hybrid
classifiers for the binary classification of patent docu-
ments.

2.1 Outline of Hybrid Classifiers

A patent document consists of multiple components
including a title, claim, and main text. For the binary
classification of patent documents, we use hybrid clas-
sifiers to deal with multiple components effectively
and thus acquire good generalization performance.

Let x = (x1, . . . ,xj , . . . ,xJ ) represent a feature
vector of a data sample consisting of multiple com-
ponents, where xj is a feature vector of the jth com-
ponent. In the formulation of hybrid classifiers, we
first model the probability density of the jth compo-
nent for data samples assigned with the kth class la-
bel, p(xj |yk = 1), and also model that for unassigned
samples, p(xj |yk = 0). Then, we combine these com-
ponent generative models of {p(xj |yk)}J

j=1 based on
the maximum entropy (ME) principle. Namely, we
construct a binary hybrid classifier R(yk|x) by com-
bining the component generative models with weights
provided by the discriminative training. We outline the
binary hybrid classifiers in Fig. 1.

2.2 Component Generative Models

For binary hybrid classifiers, we design individual
component generative models, p(xj |yk = 1; θj

yk=1)
and p(xj |yk = 0; θj

yk=0), for the jth component,

where θj
yk=1 (θj

yk=0) is a model parameter set for the
jth component of data samples assigned (not assigned)
the kth class label.

We employ naive Bayes (NB) models [7] as com-
ponent generative models for patent documents, using
an independent word-based representation, known as
the Bag-of-Words (BOW) representation. Let xj =

(xj
1, . . . , x

j
i , . . . , x

j
Vj

) be the word-frequency vector of

the jth component of a data sample, where xj
i denotes

the frequency of the ith word in the jth component and
Vj denotes the number of vocabulary words included
in the jth component. In the NB model, the probabil-
ity distribution of xj for data samples assigned the kth
class label is regarded as a multinomial distribution:

p(xj |yk = 1; θj
yk=1) =

Vj∏

i=1

(
θj

i,yk=1

)xj
i

. (1)

Here, θj
i,yk=1 > 0 and

∑Vj

i=1 θj
i,yk=1 = 1. θj

i,yk=1 rep-
resents the probability that the ith word appears in the
jth component of data samples assigned the kth class
label. p(xj |yk = 0; θj

yk=0) is also given the same dis-

tribution form as p(xj |yk = 1; θj
yk=1).

Model parameter set Θj
k = {θj

yk
}j,yk

is com-

puted by maximizing the posterior p(Θj
k|D) (MAP es-

timation). According to the Bayes rule, p(Θj
k|D) ∝

p(D|Θj
k)p(Θj

k), the objective function for the MAP
estimation of component generative models is given
by

J(Θj
k) =

N∑

n=1

log p(xj
n|ynk; θj

ynk
)

+
1∑

yk=0

log p(θj
yk

). (2)

Here, p(θj
yk

) is a prior probability distribution of θ j
yk

.
We use the following Dirichlet prior

p(θj
yk

) ∝
Vj∏

i=1

(
θj

i,yk

)ξj
yk

−1

, (3)

where ξj
yk

(> 1) represents a hyperparameter. Using
feature vectors {xj

n}n,j , we compute the estimate of
θj

i,yk
to maximize the objective function J(Θj

k) as

θ̂j
i,yk

=

∑N
n=1 Iyk

(ynk)xj
ni + ξj

yk
− 1

∑Vj

i=1

∑N
n=1 Iyk

(ynk)xj
ni + Vj(ξ

j
yk − 1)

. (4)

Here, Iyk
(ynk) is an indicator function where

Iyk
(ynk) = 1 if ynk = yk, and Iyk

(ynk) = 0 oth-
erwise. For our system, we used normalized feature
vectors such as

∑Vj

i=1 xj
ni = 1.

2.3 Hybrid Classifier Construction

We provide the probability of assigning a kth class
label to a data sample x, R(yk = 1|x), based on
the weighted combination of the component genera-
tive models in a discriminative manner. More specif-
ically, we design the distribution of R(yk = 1|x) by�����
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combining component generative models based on the
maximum entropy (ME) principle [1].

The ME principle is a framework for obtaining a
probability distribution, which prefers the most uni-
form models that satisfy any given constraints. Pro-
viding the constraints for component generative mod-
els and the probability of assigning the kth class label
as shown in [3], we can obtain a probability distribu-
tion according the ME principle as

R(yk = 1|x; Θ̂k, Λk)

=
1

1 + exp
{
−μk − ∑J

j=1 λj
kf j

k(x)
} , (5)

where f j
k(x) = log{p(xj |yk = 1; θ̂

j

yk=1)/p(xj |yk =

0; θ̂
j

yk=0)}, and Λk = {{λj
k}J

j=1, μk} is a set of

Lagrange multipliers. λj
k provides the combination

weight of the jth component, and μk provides an as-
signment bias for the kth class label. The probabil-
ity of not assigning the kth class label is provided as
R(yk = 0|x; Θ̂k, Λk) = 1 − R(yk = 1|x; Θ̂k, Λk).
The distribution R(yk|x; Θ̂k, Λk) gives us the formu-
lation of a binary hybrid classifier based on a discrim-
inative combination of component generative models.

According to the ME principle, the solution of Λk

in Eq. (5) is equal to the Λk value that maximizes the
log likelihood for R(yk|x; Θ̂k, Λk) of training samples
(xn, ynk) ∈ D [1, 6]. However, D is also used to es-
timate Θk. Using the same training samples for Λk

as Θk may lead to a bias estimation of Λk. Thus, a
leave-one-out cross-validation of the training samples
is used for estimating Λk [8]. Let Θ̂(−n)

k be the gener-
ative model parameter estimated by using all the train-
ing samples except (xn, ynk). The objective function
of Λk then becomes

J(Λk) =
N∑

n=1

log R(ynk|xn; Θ̂(−n)
k , Λk)

+ log p(Λk), (6)

where p(Λk) is a prior probability distribution of Λk.
We use a Gaussian prior [2] as

p(Λk) ∝
J∏

j=1

exp

{
− (λj

k − 1)2

2σ2

}

× exp
(
− μ2

k

2ρ2

)
, (7)

where σ and ρ are hyperparameters. We can com-
pute an estimate of Λk to maximize J(Λk) by using
the L-BFGS algorithm [5], which is a quasi-Newton
method. We summarize the algorithm for estimating
these model parameters in Fig. 2.

Given training sample set: D = {(xn, yn)}N
n=1

1. Compute Θ̂k using Eq. (2).

2. Compute Θ̂
(−n)
k

, ∀n by applying Eq. (2) to training
samples except (xn, ynk).

3. Compute Λk using Eq. (6) under fixed Θ̂
(−n)
k

.
4. Output a classifier R(yk |x; Θ̂k, Λ̂k).

Figure 2. Algorithm for estimating model
parameters of binary hybrid classifiers.

3 Experiments

3.1 Test Collections

For classification subtask at NTCIR-6 Patent Re-
trieval Task, Japanese patent documents submitted to
the Japanese patent office from 1993 to 1999 were
given us for an evaluation of the multi-label classifi-
cation systems that assign F-terms to Japanese patent
documents. The 21606 patent documents that related
to one of 108 themes and were submitted in 1998 and
1999 were selected as text data by the NTCIR-6 orga-
nizers. We designed a multi-label classification system
per theme and trained it by using patent documents
submitted from 1993 to 1997.

To apply binary hybrid classifiers, we extracted five
components, title (T), author and affiliation names
(AA), abstract (AB), claim (C), and main text (MT),
from the patent documents. We extracted nouns,
verbs, and adjectives from each component by using
MeCab1 and obtained word-frequency vectors as fea-
ture vectors of components. Vocabulary words in-
cluded in only one patent document were removed
from the feature vectors.

3.2 Evaluation Results

With the standard TREC-style evaluation method,
we calculated recall and precision in an F-term ranking
for each patent document, and we summarized these
scores in terms of the mean average precision (MAP).
We also collected confident class labels assigned to
patent documents by classifiers, and then calculated
the F-measure, recall, and precision of confidence for
each patent document. These evaluation scores were
averaged over all patent documents provided as test
data.

Table 1 shows the recall-precision curve and MAP
obtained with our system and the top two other teams’
systems submitted to the NTCIR-6 organizers. These
scores were extracted from the results returned by the
organizers. Our system provided better MAP than the
other systems. This result indicates that our system

1 http://mecab.sourceforge.net/�����
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Table 1. recall-precision curve and MAP
with our and top two other systems.

Recall Precision
Our System SVM-based kNN-based

0.0 0.8219 0.8251 0.7864
0.1 0.7965 0.8013 0.7594
0.2 0.7233 0.7304 0.6828
0.3 0.6365 0.6432 0.5969
0.4 0.5655 0.5684 0.5273
0.5 0.5143 0.5142 0.4770
0.6 0.4272 0.4180 0.3934
0.7 0.3520 0.3335 0.3244
0.8 0.2961 0.2702 0.2711
0.9 0.2291 0.1989 0.2054
1.0 0.1979 0.1679 0.1723

MAP 0.4852 0.4779 0.4518

Table 2. F-measure, recall, and precision
of confidence with our and top two other
systems.

System F-measure Recall Precision
Ours (Fixed Threshold) 0.3289 0.2705 0.5874
Ours (Tuned Threshold) 0.4037 0.4846 0.4083

SVM-based 0.4125 0.4904 0.4075
kNN-based 0.3840 0.5668 0.3354

provided better F-term ranking for patent documents.
The precision of our system was better when the recall
was high. We confirmed that our system was useful
especially when required to extract every F-term as-
signed to a patent document.

Table 2 shows F-measure, recall, and precision of
confidence obtained with our system and the top two
other teams’ systems submitted to the NTCIR-6 orga-
nizers. In our system, two thresholds for {R(yk =
1|x; Θ̂k, Λ̂k)}K

k=1 provided by binary classifiers were
used to assign F-terms to patent documents. First,
we used a fixed threshold value of 0.5 for the assign-
ment. Namely, we assigned the kth F-term to patent
document x when R(yk = 1|x; Θ̂k, Λ̂k) ≥ R(yk =
0|x; Θ̂k, Λ̂k). Second, we tuned a threshold value per
theme to maximize the leave-one-out cross-validation
F-measure of the training data. As shown in table 2,
the recall of our system was small when the threshold
value was fixed at 0.5. This result indicates that our
system with the fixed threshold value did not assign
many of the F-terms that should be assigned to patent
documents. However, the recall and F-measure for our
system were improved by tuning the threshold value.
We confirmed that tuning the threshold values of our
system was useful in practice as regards obtaining bet-
ter F-term assignment performance in F-measure.

4 Conclusion

We designed a multi-label classification system
based on binary classifiers for classification subtask
at NTCIR-6 Patent Retrieval Task. Each binary clas-
sifier was used for determining the assignment of an
F-term to patent documents. As the binary classifiers,
we employed hybrid classifiers dealing with multiple
components of patent documents. The hybrid classi-
fiers were constructed by combining component gen-
erative models with weights in a discriminative man-
ner. Using a test collection provided by the NTCIR-6
organizers, we confirmed experimentally that our sys-
tem provided good F-term ranking performance for
patent documents in terms of mean average precision
(MAP). We also confirmed that tuning the threshold
value per theme for our system improved the F-term
assignment performance in F-measure. Future work
will involve training the multi-label classifier system
with labeled and unlabeled (test) data, which are data
with and without class labels.
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