Evaluation and Applications of Automatic Text Summarization

Chin-Yew LIN
Natural Language Group
Information Sciences Institute
University of Southern California
cyl@isi.edu
http://www.isi.edu/~cyl

Automatic Speech Recognition - A Success Story

Chin-Yew LIN, NTCIR-5, Tokyo, Japan, Dec 9, 2005
Statistical Machine Translation - Another Success Story?

- Goal: Automatic translation of texts from one natural language to another
- Common components of statistical machine translation (SMT) systems
 - *Translation model, language model, decoder, and evaluator*

```
<table>
<thead>
<tr>
<th>Foreign/Japanese Parallel Text</th>
<th>Japanese Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Analysis</td>
<td>Statistical Analysis</td>
</tr>
<tr>
<td>Translation Model</td>
<td>Language Model</td>
</tr>
<tr>
<td>Decoder</td>
<td>Automatic Evaluator</td>
</tr>
<tr>
<td>Japanese Reference Text</td>
<td>Translation Quality Estimation</td>
</tr>
</tbody>
</table>
```

Document Understanding Conference (DUC)

- **Tasks (DUC 2001 - 2006, NIST, USA)**
 - Single-doc summarization (DUC 01 and 02: 30 topics)
 - Single-doc headline generation (DUC 03: 30 topics, 04: 50 topics)
 - Multi-doc summarization
 - Generic 10, 50, 100, 200 (2002), and 400 (2001) words summaries
 - Short summaries of about 100 words in three different tasks in 2003
 - focused by an event (30 TDT clusters)
 - focused by a viewpoint (30 TREC clusters)
 - in response to a question (30 TREC Novelty track clusters)
 - Short summaries of about 665 bytes in three different tasks in 2004
 - focused by an event (50 TDT clusters)
 - focused by an event but documents were translated into English from Arabic (24 topics)
 - in response to a “who is X?” question (50 persons)
 - **DUC 2005 and 2006 (50 topics): Question-focused summarization task.**
 - Real-world complex question answering, in which an information need cannot be satisfied by simply stating a name, date, quantity, etc. Given a question and a set of 25 relevant documents, the task is to synthesize a fluent, well-organized 250-word summary of the documents that answers the question(s) in the topic statement.

- **Participants**
Summary of Recent Results

- **Van Halteren and Teufel (2003)**
 - Stable consensus factoid summary could be obtained if 40 to 50 reference summaries were considered.
 - 50 manual summaries of one text.

- **Nenkova and Passonneau (2003)**
 - Stable consensus semantic content unit (SCU) summary could be obtained if at least 5 reference summaries were used.
 - 10 manual multi-doc summaries for three DUC 2003 topics.

- **Hori et al. (2003)**
 - Using multiple references would improve evaluation stability if a metric taking into account consensus.
 - 50 utterances in Japanese TV broadcast news; each with 25 manual summaries.

- **Lin and Hovy (2003), Lin (2004)**

- **Hovy, Lin, Zhou, and Fukumoto (2005)**
 - Basic elements (BE), a new automatic summarization evaluation method intending to move beyond simple surface level word/stem matching and into semantic matching. BE has been used DUC 2005 and showed good correlation with human judgments. (http://www.summaries.net/BE)
An Information-Theoretic Approach to Automatic Evaluation of Summaries

incorporation with
Guihong Cao*, Jienfeng Gao#, and
Jian-Yun Nie*
*University of Montreal
#Microsoft Corporation

Summarization as a Generative Process

- Given a set of documents \(D = \{d_1, d_2, \ldots, d_i\} \)
 - \(i = 1 \) for single document summarization
 - \(i > 1 \) for multiple document summarization,
- We assume there exists a probabilistic distribution with parameters specified by \(\theta \) that generates a summary \(S \) from \(D \).
- The task of automatic summarization is to estimate \(\theta \) that maximizes the likelihood of a set of target summaries \(S^{1:L} \) given a set of input document sets \(D^{1:L} \):
 \[
 \hat{\theta} = \arg \max_{\theta} p(S^{1:L} | \theta, D^{1:L})
 \]
Summarization Evaluation — an Information-Theoretic View

• Given θ_R that generates reference summaries and θ_A that generates system summaries:
 • A better system summary should have a better θ_A that is close to θ_R.
 • The task of summarization evaluation is to estimate the distance between θ_A and θ_R.
 • Possible distance measures:
 • Kullback-Leibler divergence (KL)
 • Jensen-Shannon divergence (JS)
 • We propose:

$$
\text{Score}_{\text{summary}}^{JSD}(S_A | S_R^{1:L}) = -JS_{1/2}(p(\theta_A | S_A) \parallel p(\theta_R | S_R^{1:L}))
$$

Kullback-Leibler vs. Jensen-Shannon

• Kullback-Leibler Divergence

$$
KL(p_1 \parallel p_2) = \sum_{\theta} p_{\theta} \log \left(\frac{p_{\theta}}{p_2} \right)
$$

• KL divergence has discontinuity over its sampling space; it’s undefined where $p_2=0$.
• KL divergence is asymmetric, i.e.

$$
KL(p_1 \parallel p_2) \neq KL(p_2 \parallel p_1)
$$

• Jensen-Shannon Divergence (Lin 1991)

$$
JS_{1/2}(p_1 \parallel p_2) = \frac{1}{2} \sum_{\theta} p_{\theta} \log \left(\frac{p_{\theta}}{\frac{1}{2} p_1 + \frac{1}{2} p_2} \right) + p_{\theta} \log \left(\frac{p_{\theta}}{\frac{1}{2} p_1 + \frac{1}{2} p_2} \right)
$$
How to Estimate θ?

• Assume a multinomial summary generation model (Zaragoza et al. 2003):
 \[\theta = (\theta_1, \theta_2, \ldots, \theta_v) \in [0,1]^v, \quad \sum_{i=1}^v \theta_i = 1 \]

• Instead of estimating θ, we estimate its posterior using Bayes’ rule:
 \[p(\theta | S) = \frac{p(S | \theta) p(\theta)}{p(S)} \]

• Assuming a multinomial unigram model and by choosing a Dirichlet prior for $p(\theta)$, we have the posterior probability also in Dirichlet form that has a maximum a posterior (MAP) estimation as follows (Gelman et al. 2003):
 \[\theta_{MAP} = \frac{C(w_i,S) + \alpha_i - 1}{\sum_{i=1}^V (C(w_i,S) + \alpha_i) - V} \]

 Hyperparameter for Dirichlet prior

Multinomial Distribution and Dirichlet Prior

• Multinomial distribution
 \[p(S | \theta) = Z_{a_0} \prod_{i=1}^V (\theta_i)^{a_i}; \quad a_i = C(w_i | S) \]
 \[a_0 = \sum_{i=1}^V a_i; \quad Z_{a_0} = \frac{\Gamma(a_0 + 1)}{\prod_{i=1}^V \Gamma(a_i + 1)} \]

• Dirichlet Prior
 \[p(\theta) = Z'_{a_0} \prod_{i=1}^V (\theta_i)^{\alpha_i - 1}; \quad \alpha_i \geq 1 \]
 \[\alpha_0 = \sum_{i=1}^V \alpha_i; \quad Z'_{a_0} = \frac{\Gamma(\alpha_0)}{\prod_{i=1}^V \Gamma(\alpha_i + 1)} \]
Smoothing θ

\[
\theta_i^{MAP} = \frac{C(w_i, S) + \alpha_i - 1}{\sum_{j=1}^{V} (C(w_j, S) + \alpha_j) - V}
\]
\[
\theta_i^{ML} = \frac{C(w_i, S)}{\sum_{j=1}^{V} C(w_j, S)}; \quad \alpha_i = 1
\]
\[
\theta_i^{Additive} = \frac{C(w_i, S) + \lambda}{\sum_{j=1}^{V} C(w_j, S) + \lambda V}; \quad \alpha_i = \lambda + 1, \lambda > 0
\]
\[
\theta_i^{Bayes} = \frac{C(w_i, S) + \mu p(w_i | T)}{\sum_{j=1}^{V} C(w_j, S) + \mu}; \quad \alpha_i = \mu p(w_i | T) + 1
\]

Evaluation

- **Measurement**
 - Examine the Pearson’s and Spearman’s correlations between human assigned mean coverage and automatic scores:
 - Jensen-Shannon divergence without smoothing (JSD)
 - Jensen-Shannon divergence with Bayes-smoothing (JSDS)
 - Kullback-Leibler divergence with Bayes-smoothing (KLDS)
 - Log likelihood ratio with Bayes-smoothing (LLS)

 \[
 Score_{summary}^{LLS} (S_A | S_R^{1:L}) = \sum_{i=1}^{N_A} \log p(\theta_i^{Bayes} | S_R^{1:L})
 \]

- **Experimental setup**
 - Use DUC 2002 100 words single and multi doc data.
 - Compare single vs. multiple references.
 - Apply stemming but keep stopwords.
 - Set Bayes-smoothing factor μ to 2000. (Zhai & Lafferty 04)
Conclusions & Future Directions

- Information-theoretic measure based on Jensen-Shannon divergence (JSD) without smoothing performed the best among all measures.
- JSD-based measure also compared favorably to unigram-based ROUGE-1, especially in the multi-document summarization task.
- JSD-based measure did as well as ROUGE based on longer N-grams. We would like to extend our unigram-based bag-of-words multinomial generation model into N-gram-based bag-of-N-grams multinomial generation model.
- Smoothed measures did not do well. This is not a surprise due to the nature of the task of summarization evaluation. Intuitively, only information presented in system summaries could be accounted for scoring:
 - What are in reference summaries should also be in good system summaries;
 - System summaries should not be given credit for information they do not provide.
- JSD-based measure still match only on lexical level \Rightarrow apply query expansion technique to move toward matching in semantic space.
 - Use Markov chain expansion proposed by Lafferty & Zhai (2001)
 - Use information-flow expansion proposed by Nie & Cao (2005)
 - Use probabilistic latent semantic analysis (PLSA) proposed by Hoffmann (1999)
Summarization Applications

Browse a Summarized Web

- The Palm m100 handheld is the first product in the new Entry Level Product Line, where it is positioned as the entry-level consumer Palm product.

* Stanford PowerBrowser Project, Orkut et al. WWW10, 2001
Summarizing Public Opinions and Press Coverage

As Bush starts 2nd term, wild election media turned mild
Rating of Bush: network news, Fox, Time, Newsweek, 1st quarter ’02, ’03, ’04, ’05

Although Bush is far from the high standing in the media that he had after 9-11, in the first quarter of 2003, he started with a remarkably mild media watching him go into his 2nd term. One year ago at the kick-off of the election campaign, he faced harsh media criticism.

(MediaTenor: http://www.mediatenor.com)

Chin-Yew LIN, NTCIR-5, Tokyo, Japan, Dec 9, 2005

Summarizing Product Reviews

Welcome to Opinion Observer

Chin-Yew LIN, NTCIR-5, Tokyo, Japan, Dec 9, 2005
Summarizing Research Trend (Lee et al. CHI 2005)

ISI – DARPA Surprise Language Exercise 2003
(Leuski et al. 03)
Thank You!

Automatic Text Summarization - Another Success Story?

- Goal: Automatic translation of texts from one natural language to another
- Common components of statistical machine translation (SMT) systems
 - Translation model, language model, decoder, and evaluator
What Is the Right Span of Information Unit

- Information Retrieval
 - Document and passage
- Question and Answering
 - Factoid, paragraph, document, ...
- Summarization
 - Word, phrase, clause (EDU), sentence, paragraph, ...

Recent Results

- Van Halteren and Teufel (2003)
 - Stable consensus factoid summary could be obtained if 40 to 50 reference summaries were considered.
 - 50 manual summaries of one text.
 - Stable consensus semantic content unit (SCU) summary could be obtained if at least 5 reference summaries were used.
 - 10 manual multi-doc summaries for three DUC 2003 topics.
- Hori et al. (2003)
 - Using multiple references would improve evaluation stability if a metric taking into account consensus.
 - 50 utterances in Japanese TV broadcast news; each with 25 manual summaries.
 - ROUGE, an automatic summarization evaluation method used in DUC 2003.
Automatic Evaluation of Summarization Using ROUGE

- ROUGE summarization evaluation package
 - Currently (v1.5.5) include the following automatic evaluation methods: (Lin, Text Summarization Branches Out workshop 2004)
 - ROUGE-N: N-gram based co-occurrence statistics
 - ROUGE-L: LCS-based statistics
 - ROUGE-W: Weighted LCS-based statistics that favors consecutive LCSes (see ROUGE note)
 - ROUGE-S: Skip-bigram-based co-occurrence statistics
 - ROUGE-SU: Skip-bigram plus unigram-based co-occurrence statistics
 - Free download for research purpose at: http://www.isi.edu/~cyl/ROUGE

The Factoid Method

- Factoids
 - Atomic semantic units represent sentence meaning (FOPL style).
 - "Atomic" means that a semantic unit is used as a whole across multiple summaries.
 - Each factoid may carry information varying from a single word to a clause.
- Example:
 - The police have arrested a white Dutch man.
 - A suspect was arrested.
 - The police did the arresting.
 - The suspect is white.
 - The suspect is Dutch.
 - The suspect is male.
The Pyramid Method

- Pyramid
 - A weighted inventory of factoids or summarization content units (SCU)
 - A: “Unable to make payments on a $2.1 billion debt”
 - B: “made payments on PAL's $2 billion debt impossible”
 - C: “with a rising $2.1 billion debt”
 - D: “PAL is buried under a $2.2 billion dollar debt it cannot repay”
 - SCU
 - F1: PAL has 2.1 million debt (All)
 - F2: PAL can’t make payments on debt (Most)

Problems with Factoid and SCU

- Each factoid may carry very different amount of information
 - How to assign fair information value to a factoid?
 - No predetermined size of factoids or SCUs ⇒ “counting matches” and “scoring” would be problematic.
- The inventory of factoids grows as more summaries are added to the reference pool
 - Old factoids tend to break apart to create new factoids
- Interdependency of factoids are ignored
- Totally manual creation so far and only been tested on very small data set
 - Factoid: 2 documents
 - SCU+Pyramid: 3 sets of multi-doc topics
- How to automate?
Basic Elements (BE)

- **Definition**
 - **A head, modifier and relation triple**: BE::<HEAD|MOD|REL>
 - BE::HEAD is the head of a major syntactic constituent (noun, verb, adjective or adverbial phrases).
 - BE::MOD is a single dependent of BE::HEAD with a relation, BE::REL, between them.
 - BE::REL could be a syntactic, semantic relation or NIL.

- **Example**
 - “Two Libyans were indicted for the Lockerbie bombing in 1991.”
 - ⇒ <Libyans|two|CARDINAL>
 - ⇒ <indicted|Libyans|ACCUSED>
 - ⇒ <indicted|bombing|CRIME>
 - ⇒ <indicted|1991|TIME>

Research Issues

- **How can BEs be created automatically?**
 - Extract dependency triples from automatic parse trees.
 - BE-F: MINPAR triples* (Lin 95)
 - BE-L: Charniak parse trees + automatic semantic role tagging*
- **What score should each BE have?**
 - Equal weight*, tfidf, information value, ...
- **When do two BEs match?**
 - Lexical*, lemma*, synonym, distributional similarity, ...
- **How should an overall summary score be derived from the individual matched BEs’ scores?**
 - Consensus of references*
Current Status

- First version, BE 1.0, released to the research community on April 13, 2005.
 - Package include:
 - BE-F (Minipar) BE breakers
 - ROUGE-1.5.5 scorer
 - One of the three official automatic evaluation metrics for Multilingual Summarization Evaluation 2005 (MSE 2005).
 - It is used in DUC 2005.
 - Free download for research purpose at: http://www.isi.edu/~cyl/BE

Evaluation

- Measurement
 - Examine the Pearson’s correlation between human assigned mean coverage (C) and BE.
 - Compare results with ROUGE 1-4, S4, and SU4.
- Experimental setup
 - Use DUC 2002 (10 systems) and 2003 (18 systems) 100 words multi doc data.
 - Compare single vs. multiple references.
 - Applied stemming and stopword removal.
Correlation Analysis (DUC 2002)

DUC-2002 M100 BE-F vs. Human Scores Pearson's Correlation

<table>
<thead>
<tr>
<th>Original</th>
<th>Stemmed</th>
<th>Stopped</th>
<th>Original</th>
<th>Stemmed</th>
<th>Stopped</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.751</td>
<td>0.755</td>
<td>0.837</td>
<td>0.698</td>
<td>0.707</td>
</tr>
<tr>
<td>RM1</td>
<td>0.619</td>
<td>0.609</td>
<td>0.773</td>
<td>0.622</td>
<td>0.611</td>
</tr>
<tr>
<td>RM2</td>
<td>0.736</td>
<td>0.733</td>
<td>0.647</td>
<td>0.488</td>
<td>0.501</td>
</tr>
<tr>
<td>RL</td>
<td>0.647</td>
<td>0.633</td>
<td>0.667</td>
<td>0.679</td>
<td>0.726</td>
</tr>
<tr>
<td>RS4</td>
<td>0.747</td>
<td>0.748</td>
<td>0.845</td>
<td>0.723</td>
<td>0.726</td>
</tr>
<tr>
<td>RSU4</td>
<td>0.855</td>
<td>0.865</td>
<td>0.867</td>
<td>0.809</td>
<td>0.822</td>
</tr>
</tbody>
</table>

DUC-2002 M100 BE-L vs. Human Scores Pearson's Correlation

<table>
<thead>
<tr>
<th>Original</th>
<th>Stemmed</th>
<th>Stopped</th>
<th>Original</th>
<th>Stemmed</th>
<th>Stopped</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.933</td>
<td>0.927</td>
<td>0.912</td>
<td>0.896</td>
<td>0.889</td>
</tr>
<tr>
<td>RM1</td>
<td>0.895</td>
<td>0.880</td>
<td>0.857</td>
<td>0.857</td>
<td>0.867</td>
</tr>
<tr>
<td>RM2</td>
<td>0.719</td>
<td>0.717</td>
<td>0.837</td>
<td>0.667</td>
<td>0.667</td>
</tr>
<tr>
<td>RL</td>
<td>0.811</td>
<td>0.817</td>
<td>0.886</td>
<td>0.504</td>
<td>0.519</td>
</tr>
<tr>
<td>RS4</td>
<td>0.961</td>
<td>0.952</td>
<td>0.921</td>
<td>0.921</td>
<td>0.914</td>
</tr>
<tr>
<td>RSU4</td>
<td>0.865</td>
<td>0.865</td>
<td>0.867</td>
<td>0.809</td>
<td>0.822</td>
</tr>
</tbody>
</table>

Correlation Analysis (DUC 2003)

DUC-2003 M100 BE-F vs. Human Scores Pearson's Correlation

<table>
<thead>
<tr>
<th>Original</th>
<th>Stemmed</th>
<th>Stopped</th>
<th>Original</th>
<th>Stemmed</th>
<th>Stopped</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.931</td>
<td>0.927</td>
<td>0.920</td>
<td>0.940</td>
<td>0.940</td>
</tr>
<tr>
<td>RM1</td>
<td>0.933</td>
<td>0.933</td>
<td>0.904</td>
<td>0.930</td>
<td>0.930</td>
</tr>
<tr>
<td>RM2</td>
<td>0.931</td>
<td>0.931</td>
<td>0.904</td>
<td>0.930</td>
<td>0.930</td>
</tr>
<tr>
<td>RL</td>
<td>0.933</td>
<td>0.933</td>
<td>0.933</td>
<td>0.933</td>
<td>0.933</td>
</tr>
<tr>
<td>RS4</td>
<td>0.895</td>
<td>0.895</td>
<td>0.895</td>
<td>0.895</td>
<td>0.895</td>
</tr>
<tr>
<td>RSU4</td>
<td>0.859</td>
<td>0.859</td>
<td>0.859</td>
<td>0.859</td>
<td>0.859</td>
</tr>
</tbody>
</table>

DUC-2003 M100 BE-L vs. Human Scores Pearson's Correlation

<table>
<thead>
<tr>
<th>Original</th>
<th>Stemmed</th>
<th>Stopped</th>
<th>Original</th>
<th>Stemmed</th>
<th>Stopped</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.959</td>
<td>0.949</td>
<td>0.917</td>
<td>0.918</td>
<td>0.918</td>
</tr>
<tr>
<td>RM1</td>
<td>0.882</td>
<td>0.882</td>
<td>0.753</td>
<td>0.718</td>
<td>0.718</td>
</tr>
<tr>
<td>RM2</td>
<td>0.859</td>
<td>0.859</td>
<td>0.853</td>
<td>0.849</td>
<td>0.849</td>
</tr>
<tr>
<td>RL</td>
<td>0.961</td>
<td>0.952</td>
<td>0.921</td>
<td>0.914</td>
<td>0.914</td>
</tr>
<tr>
<td>RS4</td>
<td>0.811</td>
<td>0.817</td>
<td>0.744</td>
<td>0.754</td>
<td>0.754</td>
</tr>
<tr>
<td>RSU4</td>
<td>0.747</td>
<td>0.748</td>
<td>0.845</td>
<td>0.723</td>
<td>0.726</td>
</tr>
</tbody>
</table>

Chin-Yew LIN, NTCIR-5, Tokyo, Japan, Dec 9, 2005
Conclusions

- BE-F consistently achieves over 90% Pearson’s correlation with human judgments in all testing categories.
 - BE-F with stemming and matching only on BE::HEAD and BE::MOD (HM & HM1) has the best correlation.
- BE-L has over 90% correlation when both BE::HEAD and BE::MOD are considered in the matching. It also works better with multiple references.
- BE-F and BE-L are more stable than ROUGE across corpora. (DUC’02 R2 Org vs. DUC’03 R3 Stop)
- Need to go beyond lexical matching.
- Need to develop better BE ranking algorithms.
- Need to address the issue of human disagreement:
 - Better summary writers?
 - Better domain knowledge?
 - Better task definition ...
Future Directions

• BE breaking
 • Use FrameNet II frame elements in BE relations.

• BE matching
 • Paraphrases, synonyms, and distributional similarity.

• BE ranking
 • Prioritize BEs in a given application context.
 • Assign weights according to BE’s information content.
 • Utilize inter-BE dependency.

• Application
 • Develop summarization methods based on BE.