
Hunter Gatherer: UdeM at 1CLICK-2

Pablo Duboue
Université de Montréal,

Canada
dubouep@iro.umontreal.ca

Jing He
Université de Montréal,

Canada
hejing@iro.umontreal.ca

Jian-Yun Nie
Université de Montréal,

Canada
nie@iro.umontreal.ca

Team Name
UdeM

Subtasks
1CLICK-2 English

ABSTRACT
We describe our hunter-gartherer system for the NTCIR-
10 1CLICK-2 task. We inspire ourselves on the DeepQA
framework looking to adapt it for the 1CLICK task. Several
techniques can be integrated naturally in this framework.
The hunter component generates candidates based on the
passage retrieval for the original query, the gartherer com-
ponent collects evidence for each candidate and score them
based on the collected evidence, and finally a summarization
system is utilized to organized the high-quality candidates.
The evaluation results show the effectiveness of this frame-
work in the 1CLICK search task.

1. INTRODUCTION
Information retrieval (IR) aims to find relevant informa-

tion for information needs. Most existing IR techniques con-
sider the relevant information at document levels and rank
documents according to their relevance to users’ queries.
Alternatively, 1CLICK search [16, 9] defines the informa-
tion retrieval task in a finer granularity, i.e., information
units (iUnits). In particular, it requires systems to return
short answering text that contains these relevant informa-
tion units. Figure 1 shows an example query and relevant
iUnits, as provided by the organizers.

The 1CLICK Task itself involves then, given a query,
produce a 1,000 characters summary (desktop version) or
a 280 characters summary (mobile version) that are to be
extracted from given 200 ranked pages provided by the or-
ganizers. The queries themselves belong to 8 known query
types (celebrities, how to, location, etc), but the type is not
explicitly stated with the query.

In this work, we inspire ourselves on the DeepQA frame-
work looking to adapt it for the 1CLICK task. DeepQA
framework has been successfully used in IBM Watson QA
system for both Jeopardy Challenge and TREC QA task [5].
Generally, 1CLICK task is different from QA task, because
it usually does not contain question word (except queries in
QA category) and it is usually more general than a question.
However, they both heavily rely on the search component,
and they both need to score and organize the information
candidates (iUnits in 1CLICK task and relevant nuggets in

QA literatures). The advantage of DeepQA framework is
that it can integrate a large number of knowledge learnt by
diverse techniques to improve the answering performance.
In our work we wanted to simplify the DeepQA architecture
and apply an unified approach without query type identifi-
cation.

The main idea of DeepQA framework is that each com-
ponent is responsible for generating knowledge and corre-
sponding confidence about the answer, and then we need to
integrate these information to get the final result. There are
three main components in the framework:

• Candidate Generation: generate candidate iUnits for
a specific query

• Candidate Scoring: we can score candidate iUnits ac-
cording to its features such as type, evidence strength,
etc.

• Candidate Organization: organize the candidate in a
piece of compact text

In the following three sections, we will describe Hunter
Gatherer system1 in detail.

2. HUNTER: CANDIDATE GENERATION
1CLICK is evaluated based on the iUnits in the return

text, so the main task is to detect the relevant iUnits. How-
ever, it is difficult to determine the relevance between queries
and iUnits directly. Thus we consider the relation between
iUnits and queries in the context of passages. In particular,
we need to identify candidate iUnits from query relevant
passages, 2 and and we also need to use passages that con-
tain both the query and the candidate iUnit as evidence to
estimate the reliability of each candidate iUnit. We took
the passages as they were returned by the search compo-
nent, i.e., no attempt was made to further qualify them as
answer-bearing passages [10] or their perceived relevance [7].

In the component of candidate generation, we first identify
possible relevant iUnits as candidates for a specific query.

Generally, relevant iUnits should appear in relevant pas-
sages, so we need to acquire relevant passages by main search.

1Source code for Hunter-Gatherer is available at https://
github.com/jinghe/hunter-gatherer
2In our work passages are simply defined as overlapped fixed
windows in documents, since it shows that retrieval on fixed
length passages can usually perform better than retrieval on
semantic units such as paragraphs [1, 20]. We empirically
set the passage length as 120 terms, and overlapping length
as 50 terms in this work.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

233



Query: Whitney Houston Death

Relevant
information:

On February 11, 2012, Houston was found dead in suite 434 at the
Beverly Hilton Hotel, submerged in the bathtub.

V001001 February 11, 2012
V001002 Beverly Hilton Hotel
V001003 suite 434
V001004 submerged in the bathtub

the cause of Houston’s death was drowning and the ”effects of atheroscle-
rotic heart disease and cocaine use”.

V002001 drowning
V002002 atherosclerotic heart disease
V002003 cocaine

Figure 1: Query Example.

Table 1: Indri Query Setting
Text Query Phrase Type

A B #1(A B) named entity
A B #combine(0.5 #1(A B) pattern phrase

0.5 #combine(A B))

In main search, we first identify the phrases in the original
query. Specifically, we use NTLK named entity recognizer
to identify the named entities in the query (in the terminol-
ogy of [3], we employ only “document search” candidates).
If a phrase is a named entity, we require the words to ap-
pear in the exact order in the passages; The rebuilt query
is represented in Indri query language [19], each token and
phrases are connected by the “combine” operator. The de-
tails are presented in Table 1. For example, for the query
“Whitney Houston death”, we can get the token “death” and
named entity “Whitney Houston” after parsing the query, so
the Indri query can be expressed as

#combine[passage120:50](#1(Whitney Houston) death)

where we set retrieved passage length as 120 and overlap
between candidate passages as 50. The“#1”operator means
that “Whitney” and “Houston” should appear together in
order and “#combine” combines the matching score of the
two components.

The top passages of “main search” are likely to be relevant
to the query, and we detect candidate iUnits from a relevant
passage pool containing top K passages. In this stage, we
pursue high recall of iUnits, so a large number of candidate
iUnits are kept. We expect most of the irrelevant iUnits can
be filtered by the candidate scoring component. We treat
tokens and named entities appearing in the passage pool as
candidate iUnits.

We also consider to extract some “key information” from
the retrieval passages as candidate iUnits. For example, for
some queries about persons or locations, their properties
such as career and birthday can be considered as “key in-
formation”. To extract such information, we need a training
data containing labels about these information, and learn an
extractor based on the training data. In our work, we sim-
ply consider the infobox in Wikipedia pages as“key informa-
tion”. The infobox in an wikipedia article is a fixed-format

table designed to be added at the top right corner of the ar-
ticle, presenting a summary of some aspect the article share.
For example, for a wikipedia article about a city, the corre-
sponding infobox usually contains the information about its
area, population, time zone, etc. In this way, we can get the
training data by matching the infobox property text with
the corresponding Wikipedia article. We use mallet [14] to
train a CRF model [11] for the extraction purpose.

3. GATHERER: CANDIDATE SCORING
In this section, we will introduce the Candidate scoring

component. In this component, we first gather the evidence
for each candidate iUnit, and then integrate the evidence
information to score the iUnit.

We use evidence search to gather evidence information for
each candidate iUnit. In this step, we construct a new Indri
language query containing both original query and iUnit.
The original query part was built in the same way as de-
scribed in the main search. For an iUnit, it can be a token,
a named entity or a pattern based phrase extracted by CRF
model. The query is created according to the rules defined
in Table 1. Then the query is submitted to the Indri search
engine and get a list of evidence passages. For the query
”Whitney Houston death”, we can get candidate iUnits such
as “Beverly Hilton Hotel”. In this step, we need to get ev-
idence by searching with a query containing original query
and iUnit information. For the iUnit“Beverly Hilton Hotel”,
our system can find that it is a named entity again, so the
evidence search query is built as

#combine[passage120:50](#1(Whitney Houston)
#1(Beverly Hilton Hotel) death)

For a candidate iUnit with the corresponding passages
acquired from main search and evidence search, it can be
scored by integrating these information. Intuitively, an iU-
nit should be more likely to be relevant if it appears in many
high relevant passages in the main search, and there are
many high relevant evidence passages to support it. There-
fore, we can define a heuristic method to measure the rele-
vance of an iUnit as follows:

R(q, u) = λ1 ·
X

p∈MS,u∈p

(R(q, p) +α) + λ2 ·
X

p∈ES

(R(q, p) + β)

(1)

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

234



where q,u and p represent a query, an iUnit and a passage
respectively, R(q, p) is the relevance score for passage p ac-
cording to query q, MS is the passage set from the main
search and ES is the passage set from the evidence search.
λ1, λ2, α and β are free parameters to control the impor-
tance of each components.

In a more sophisticated manner, we can integrate the
above features in a learning framework. If we have a set of
(query, iUnits) pairs, in which each iUnit is relevant to the
query, we can learn a iUnit ranking model. However, since
this is the first year for 1CLICK English task, no training
data is available. Alternatively, we select 60 Wikipedia arti-
cles as the training data, in which the title is treated as the
query, and iUnits in the first paragraph are treated relevant
iUnits. Besides, for each query in this training data set, we
also need passages from main search and evidence search to
extract required features, and some irrelevant iUnits as neg-
ative examples. In this work, we use ClueWeb09 dataset for
both main search and evidence search, and other candidate
iUnits from the main search are treated as irrelevant iUnits.
Given the training data, we learn an iUnit ranking model
with gradient boosting tree method [12].

4. CANDIDATE ORGANIZATION
The required output of 1CLICK task is a compact piece

of text instead of a list of relevant iUnits. Given the lim-
ited length of the text, it is still challengeable to contain
these iUnits. Each sentence from the main search can be
considered as a candidate for the final output, and we need
to maximize the overall relevance information within the
length constraint. In an ideal setting, given some training
output, we could have used supervised learning to determine
the best target sentences [6]. Without training data, how-
ever, the overall relevance information can be estimated by
the sum of relevance score from the non-redundant iUnits.
Thus, this problem is casted as an Integer Linear Program-
ming problem [15].

We express selection of sentences as an optimization prob-
lem. Given NC nuggets (our candidates) and NS sentences,
where some sentences contain some nuggets (expressed as a
binary matrix M) and each nugget has an score (expressed
by the vector W ), we want to select sentences up to a certain
length (the length of each sentence is contained in the vec-
tor L) so to maximize the scores of the contained nuggets,
which in GLPK [13] is expressed as:

param NS; param NC; param K;

param M{1..NS, 1..NC}, binary;

param L{1..NS}, integer;

param W{1..NC};

var s{1..NS}, binary;

var e{1..NC}, binary;

maximize z: sum { i in 1..NC } e[i]*W[i];

subject to l: sum { i in 1..NS } L[i]*s[i] <= K;

subject to m {j in 1..NC}:

sum { i in 1..NS } M[i,j]*s[i] >= e[j];

Using ILP produced the best results in our test runs, but
we submitted also runs without using ILP due to time execu-
tion limitations. In such runs we realized duplicate passages
were a big issue. We thus filtered with MMR method [2],
using a bigram model and compute a distance between sen-

tences as the Jaccard distance [8] between their bigrams,
when taken as a set.

5. FINAL REMARKS
We submitted four runs in total:

UDEM-E-D-MAND-1 Basic Desktop Hunter Gatherer:
50 passages in main search, 20 top documents per can-
didate, 200 documents for evidence search.

UDEM-E-M-MAND-2 Basic Mobile Hunter Gatherer: same
as above, but mobile version.

UDEM-E-D-MAND-3 Wiki Extractors Hunter Gatherer:
same as UDEM-E-D-MAND1 but with Wikipedia-trained
CRF extractors.

UDEM-E-D-MAND-4 ILP Hunter Gatherer: same as
UDEM-E-D-MAND1 but with ILP.

We submitted three desktop runs: a baseline run using
the MMR system described at the end of Sec. 4 (Run 1),
an improved run using the CRF-based candidate extrac-
tors trained on Wikipedia (Run 3) and an ILP-based run
(Run 4).3 The results are in Table 2, compared also to the
maximum, minimum and averages for each query category
and overall for desktop mandatory runs. The first thing we
can see from the table is that we had our runs as the top
scoring and lower scoring submissions. This highlights the
importance of adapting DeepQA ideas intelligently. We can
also see Run 4 was one of the better performing runs, even
though it makes no explicit distinction between query types.
Having its roots on Question Answering, it is also good to
see that it performs so much better in the QA category (it
is 30% better than the second best submission in that cat-
egory). The value of the CRF-based candidate extractors
can be seen in some improvement in the celebrity-oriented
queries (the first four query-type columns). We are intrigued
about the behavior in the politician category; we look for-
ward studying other participant submissions to further elu-
cidate the difference.

We sadly had no time to do an ILP-based ran for the
mobile version nor the CRF extractors.

An after-submission error analysis showed we were nega-
tively affected by:

• Spam, i.e., sentences and text with the intention to
deceive search engines.

• Keywords in meta-tags in the head of a page (different
from spam itself and easier to filter).

• Sentences unusually long but where only small segment
was relevant.

All these issues should be addressable with further work.
In particular, we are interested in exploring breaking apart
multi-clause sentences leveraging work in text simplification
[18] or sentence compression [4].

Other aspects we are interested in leveraging in future
work is the use of unsupervised parsing [17] for phrase-based
candidate generation.

3Run 4 was not using the CRF-based candidate extractors,
as we wanted to see the different contribution of the two
approaches. Run 3 had 8% more relevant candidates.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

235



RUN Category
All ACTOR ATHLE ARTIST POLIT FACIL GEO DEFIN QA

Run 1 0.047 0.040 0.028 0.039 0.037 0.060 0.025 0.066 0.068
Run 3 0.050 0.058 0.016 0.038 0.086 0.058 0.016 0.077 0.053
Run 4 0.080 0.068 0.084 0.074 0.025 0.079 0.062 0.076 0.146
MAX 0.080 0.068 0.084 0.074 0.086 0.083 0.080 0.088 0.146
MIN 0.047 0.040 0.016 0.018 0.025 0.005 0.016 0.055 0.053

AVRG 0.059 0.053 0.034 0.032 0.049 0.070 0.044 0.067 0.096
MEDIAN 0.055 0.053 0.028 0.027 0.039 0.076 0.035 0.066 0.089

Table 2: Evaluation results.

6. REFERENCES
[1] J. P. Callan. Passage-level evidence in document

retrieval. In Proceedings SIGIR ’94, pages 302–310,
1994.

[2] J. G. Carbonell and J. Goldstein. The Use of MMR,
Diversity-Based Reranking for Reordering Documents
and Producing Summaries. In A. Moffat and J. Zobel,
editors, Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 335–336,
Melbourne, Australia, 1998.

[3] J. Chu-Carroll and J. Fan. Leveraging wikipedia
characteristics for search and candidate generation in
question answering. In W. Burgard and D. Roth,
editors, AAAI. AAAI Press, 2011.

[4] J. Clarke and M. Lapata. Global inference for sentence
compression: An integer linear programming
approach. Journal of Artificial Intelligence Research,
31(1):399–429, 2008.

[5] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan,
D. Gondek, A. A. Kalyanpur, A. Lally, J. W.
Murdock, E. Nyberg, J. Prager, et al. Building
Watson: an overview of the DeepQA project. AI
magazine, 31(3):59–79, 2010.

[6] D. C. Gondek, A. Lally, A. Kalyanpur, J. W.
Murdock, P. A. Duboue, L. Zhang, Y. Pan, Z. M. Qiu,
and C. Welty. A framework for merging and ranking
of answers in DeepQA. IBM Journal of Research and
Development, 56(3.4):14:1 – 14:12, 2012. Digital
Object Identifier: 10.1147/JRD.2012.2188760.

[7] J. He, P. Duboue, and J.-Y. Nie. Bridging the gap
between intrinsic and perceived relevance in snippet
generation. In Proceedings of COLING 2012, pages
1129–1146, Mumbai, India, December 2012. The
COLING 2012 Organizing Committee.

[8] P. Jaccard. ÃL’tude comparative de la distribution
florale dans une portion des alpes et des jura. Bulletin
de la SociÃl’tÃl’ Vaudoise des Sciences Naturelles,
(37):547–579, 1901.

[9] M. P. Kato, M. Ekstrand-Abueg, V. Pavlu, T. Sakai,
T. Yamamoto, and M. Iwata. Overview of the
NTCIR-10 1CLICK-2 task. Proceedings of the 10th
NTCIR Conference, 2013.

[10] E. Krikon, D. Carmel, and O. Kurland. Predicting the
performance of passage retrieval for question
answering. In X. wen Chen, G. Lebanon, H. Wang,
and M. J. Zaki, editors, CIKM, pages 2451–2454.
ACM, 2012.

[11] J. D. Lafferty, A. McCallum, and F. C. N. Pereira.
Conditional random fields: Probabilistic models for

segmenting and labeling sequence data. In ICML,
pages 282–289, 2001.

[12] P. Li, C. J. C. Burges, and Q. Wu. Mcrank: Learning
to rank using multiple classification and gradient
boosting. In NIPS, 2007.

[13] A. Makhorin. The GNU Linear Programming Kit
(GLPK), 2000. Available online from
http://www.gnu.org/software/glpk/glpk.html.

[14] A. K. McCallum. Mallet: A machine learning for
language toolkit. 2002.

[15] R. T. McDonald. A study of global inference
algorithms in multi-document summarization. In
ECIR, pages 557–564, 2007.

[16] T. Sakai, M. P. Kato, and Y.-I. Song. Overview of
NTCIR-9 1CLICK. Proceedings of NTCIR-9, pages
180–201, 2011.

[17] Y. Seginer. Fast unsupervised incremental parsing. In
Annual Meeting of the Association for Computational
Linguistics, volume 45, page 384, 2007.

[18] A. Siddharthan. Syntactic simplification and text
cohesion. Research on Language and Computation,
4(1):77–109, 2006.

[19] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft.
Indri: A language model-based search engine for
complex queries. In Proceedings of the International
Conference on Intelligent Analysis, volume 2, pages
2–6. Citeseer, 2005.

[20] J. Zobel, A. Moffat, R. Wilkinson, and R. Sacks-Davis.
Efficient retrieval of partial documents. Inf. Process.
Manage., 31:361–377, May 1995.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

236




